Precision-cut rat placental slices as a model to study sex-dependent inflammatory response to LPS and Poly I:C
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36605215
PubMed Central
PMC9807759
DOI
10.3389/fimmu.2022.1083248
Knihovny.cz E-zdroje
- Klíčová slova
- LPS, Poly I:C, cytokines, immune response, precision-cut slices, rat placenta,
- MeSH
- cytokiny metabolismus MeSH
- krysa rodu Rattus MeSH
- lipopolysacharidy * škodlivé účinky MeSH
- placenta * MeSH
- poly I metabolismus MeSH
- těhotenství MeSH
- zánět metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokiny MeSH
- lipopolysacharidy * MeSH
- poly I MeSH
INTRODUCTION: Maternal inflammation in pregnancy represents a major hallmark of several pregnancy complications and a significant risk factor for neurodevelopmental and neuropsychiatric disorders in the offspring. As the interface between the mother and the fetus, the placenta plays a crucial role in fetal development and programming. Moreover, studies have suggested that the placenta responds to an inflammatory environment in a sex-biased fashion. However, placenta-mediated immunoregulatory mechanisms are still poorly understood. METHODS: Therefore, we have developed a model of ex vivo precision-cut placental slices from the rat term placenta to study acute inflammatory response. Rat placental slices with a precise thickness of 200 µm were generated separately from male and female placentas. Inflammation was stimulated by exposing the slices to various concentrations of LPS or Poly I:C for 4 and 18 hours. RESULTS: Treatment of placental slices with LPS significantly induced the expression and release of proinflammatory cytokines TNF-α, IL-6, and IL-1β. In contrast, Poly I:C treatment resulted in a less-pronounced inflammatory response. Interestingly, the female placenta showed higher sensitivity to LPS than male placenta. Anti-inflammatory agents, curcumin, 1α,25- dihydroxyvitamin D3, and progesterone attenuated the LPS-induced proinflammatory cytokine response at both mRNA and protein levels. DISCUSSION: We conclude that rat placental slices represent a novel alternative model to study the role of sexual dimorphism in the acute inflammatory response and immune activation in pregnancy.
Zobrazit více v PubMed
Knöfler M, Haider S, Saleh L, Pollheimer J, Gamage TK, James J. Human placenta and trophoblast development: key molecular mechanisms and model systems. Cell Mol Life Sci (2019) 76(18):3479–96. doi: 10.1007/s00018-019-03104-6 PubMed DOI PMC
Jansson T, Powell Theresa L. Role of the placenta in fetal programming: underlying mechanisms and potential interventional approaches. Clin Sci (2007) 113(1):1–13. doi: 10.1042/CS20060339 PubMed DOI
Costa MA. The endocrine function of human placenta: an overview. Reprod Biomed Online (2016) 32(1):14–43. doi: 10.1016/j.rbmo.2015.10.005 PubMed DOI
Cotechini T, Graham C. Aberrant maternal inflammation as a cause of pregnancy complications: A potential therapeutic target? Placenta (2015) 36(8):960–6. doi: 10.1016/j.placenta.2015.05.016 PubMed DOI
Patterson PH. Immune involvement in schizophrenia and autism: etiology, pathology and animal models. Behav Brain Res (2009) 204(2):313–21. doi: 10.1016/j.bbr.2008.12.016 PubMed DOI
Yockey LJ, Iwasaki A. Interferons and proinflammatory cytokines in pregnancy and fetal development. Immunity (2018) 49(3):397–412. doi: 10.1016/j.immuni.2018.07.017 PubMed DOI PMC
Ratnayake U, Quinn T, Walker DW, Dickinson H. Cytokines and the neurodevelopmental basis of mental illness. Front Neurosci (2013) 7:180. doi: 10.3389/fnins.2013.00180 PubMed DOI PMC
Zaretsky MV, Alexander JM, Byrd W, Bawdon RE. Transfer of inflammatory cytokines across the placenta. Obstet Gynecol (2004) 103(3):546–50. doi: 10.1097/01.AOG.0000114980.40445.83 PubMed DOI
Aguilar-Valles A, Rodrigue B, Matta-Camacho E. Maternal immune activation and the development of dopaminergic neurotransmission of the offspring: Relevance for schizophrenia and other psychoses. Front Psychiatry (2020) 11:852. doi: 10.3389/fpsyt.2020.00852 PubMed DOI PMC
Goeden N, Velasquez J, Arnold KA, Chan Y, Lund BT, Anderson GM, et al. . Maternal inflammation disrupts fetal neurodevelopment via increased placental output of serotonin to the fetal brain. J Neurosci (2016) 36(22):6041–9. doi: 10.1523/JNEUROSCI.2534-15.2016 PubMed DOI PMC
Karahoda R, Robles M, Marushka J, Stranik J, Abad C, Horackova H, et al. . Prenatal inflammation as a link between placental expression signature of tryptophan metabolism and preterm birth. Hum Mol Genet (2021) 30(22):2053–67. doi: 10.1093/hmg/ddab169 PubMed DOI PMC
Braun AE, Carpentier PA, Babineau BA, Narayan AR, Kielhold ML, Moon HM, et al. . Females are not just ‘protected’males”: sex-specific vulnerabilities in placenta and brain after prenatal immune disruption. eneuro (2019) 6(6). doi: 10.1523/ENEURO.0358-19.2019 PubMed DOI PMC
Cai KC, van Mil S, Murray E, Mallet J-F, Matar C, Ismail N. Age and sex differences in immune response following LPS treatment in mice. Brain Behav Immun (2016) 58:327–37. doi: 10.1016/j.bbi.2016.08.002 PubMed DOI
Di Renzo GC, Picchiassi E, Coata G, Clerici G, Brillo E. Is there a sex of the placenta? J Pediatr Neonatal Individualized Med (JPNIM) (2015) 4(2):e040246–e. doi: 10.7363/040246 DOI
Sood R, Zehnder JL, Druzin ML, Brown PO. Gene expression patterns in human placenta. Proc Natl Acad Sci (2006) 103(14):5478–83. doi: 10.1073/pnas.0508035103 PubMed DOI PMC
Olinga P, Merema MT, De Jager MH, Derks F, Melgert BN, Moshage H, et al. . Rat liver slices as a tool to study LPS-induced inflammatory response in the liver. J Hepatol (2001) 35(2):187–94. doi: 10.1016/S0168-8278(01)00103-9 PubMed DOI
Li M, de Graaf IA, Groothuis GM. Precision-cut intestinal slices: alternative model for drug transport, metabolism, and toxicology research. Expert Opin Drug Metab Toxicol (2016) 12(2):175–90. doi: 10.1517/17425255.2016.1125882 PubMed DOI
Sauer UG, Vogel S, Aumann A, Hess A, Kolle SN, Ma-Hock L, et al. . Applicability of rat precision-cut lung slices in evaluating nanomaterial cytotoxicity, apoptosis, oxidative stress, and inflammation. Toxicol Appl Pharmacol (2014) 276(1):1–20. doi: 10.1016/j.taap.2013.12.017 PubMed DOI
Hasuda AL, Person E, Khoshal AK, Bruel S, Puel S, Oswald IP, et al. . Deoxynivalenol induces apoptosis and inflammation in the liver: Analysis using precision-cut liver slices. Food Chem Toxicol (2022) 163:112930. doi: 10.1016/j.fct.2022.112930 PubMed DOI
Liu G, Särén L, Douglasson H, Zhou X-H, Åberg PM, Ollerstam A, et al. . Precision cut lung slices: an ex vivo model for assessing the impact of immunomodulatory therapeutics on lung immune responses. Arch Toxicol (2021) 95(8):2871–7. doi: 10.1007/s00204-021-03096-y PubMed DOI
Gilligan J, Tong M, Longato L, de la Monte SM, Gundogan F. Precision-cut slice culture method for rat placenta. Placenta (2012) 33(1):67–72. doi: 10.1016/j.placenta.2011.10.013 PubMed DOI PMC
De Graaf IA, Olinga P, De Jager MH, Merema MT, De Kanter R, Van De Kerkhof EG, et al. . Preparation and incubation of precision-cut liver and intestinal slices for application in drug metabolism and toxicity studies. Nat Protoc (2010) 5(9):1540–51. doi: 10.1038/nprot.2010.111 PubMed DOI
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods (2001) 25(4):402–8. doi: 10.1006/meth.2001.1262 PubMed DOI
Karahoda R, Horackova H, Kastner P, Matthios A, Cerveny L, Kucera R, et al. . Serotonin homeostasis in the materno-foetal interface at term: Role of transporters (SERT/SLC6A4 and OCT3/SLC22A3) and monoamine oxidase a (MAO-a) in uptake and degradation of serotonin by human and rat term placenta. Acta Physiol (2020) 229(4):e13478. doi: 10.1111/apha.13478 PubMed DOI PMC
Firmal P, Shah VK, Chattopadhyay S. Insight into TLR4-mediated immunomodulation in normal pregnancy and related disorders. Front Immunol (2020) 11. doi: 10.3389/fimmu.2020.00807 PubMed DOI PMC
Lim R, Barker G, Wall CA, Lappas M. Dietary phytophenols curcumin, naringenin and apigenin reduce infection-induced inflammatory and contractile pathways in human placenta, foetal membranes and myometrium. Mol Hum Reprod (2013) 19(7):451–62. doi: 10.1093/molehr/gat015 PubMed DOI
Gong P, Liu M, Hong G, Li Y, Xue P, Zheng M, et al. . Curcumin improves LPS-induced preeclampsia-like phenotype in rat by inhibiting the TLR4 signaling pathway. Placenta (2016) 41:45–52. doi: 10.1016/j.placenta.2016.03.002 PubMed DOI
Chen Y-H, Yu Z, Fu L, Wang H, Chen X, Zhang C, et al. . Vitamin D3 inhibits lipopolysaccharide-induced placental inflammation through reinforcing interaction between vitamin d receptor and nuclear factor kappa b p65 subunit. Sci Rep (2015) 5(1):1–14. doi: 10.1038/srep10871 PubMed DOI PMC
Garcia-Ruiz G, Flores-Espinosa P, Preciado-Martínez E, Bermejo-Martínez L, Espejel-Nuñez A, Estrada-Gutierrez G, et al. . In vitro progesterone modulation on bacterial endotoxin-induced production of IL-1β, TNFα, IL-6, IL-8, IL-10, MIP-1α, and MMP-9 in pre-labor human term placenta. Reprod Biol Endocrinol (2015) 13(1):1–12. doi: 10.1186/s12958-015-0111-3 PubMed DOI PMC
Ruigrok MJ, Maggan N, Willaert D, Frijlink HW, Melgert BN, Olinga P, et al. . siRNA-mediated RNA interference in precision-cut tissue slices prepared from mouse lung and kidney. AAPS J (2017) 19(6):1855–63. doi: 10.1208/s12248-017-0136-y PubMed DOI
Wu X, Roberto JB, Knupp A, Kenerson HL, Truong CD, Yuen SY, et al. . Precision-cut human liver slice cultures as an immunological platform. J Immunol Methods (2018) 455:71–9. doi: 10.1016/j.jim.2018.01.012 PubMed DOI PMC
Zhang J, Luo W, Huang P, Peng L, Huang Q. Maternal c-reactive protein and cytokine levels during pregnancy and the risk of selected neuropsychiatric disorders in offspring: A systematic review and meta-analysis. J Psychiatr Res (2018) 105:86–94. doi: 10.1016/j.jpsychires.2018.09.002 PubMed DOI
Lye P, Bloise E, Javam M, Gibb W, Lye SJ, Matthews SG. Impact of bacterial and viral challenge on multidrug resistance in first-and third-trimester human placenta. Am J Pathol (2015) 185(6):1666–75. doi: 10.1016/j.ajpath.2015.02.013 PubMed DOI
Boles JL, Ross MG, Beloosesky R, Desai M, Belkacemi L. Placental-mediated increased cytokine response to lipopolysaccharides: a potential mechanism for enhanced inflammation susceptibility of the preterm fetus. J Inflammation Res (2012) 5:67. doi: 10.2147/JIR.S32108 PubMed DOI PMC
Bloise E, Bhuiyan M, Audette MC, Petropoulos S, Javam M, Gibb W, et al. . Prenatal endotoxemia and placental drug transport in the mouse: placental size-specific effects. PloS One (2013) 8(6):e65728. doi: 10.1371/journal.pone.0065728 PubMed DOI PMC
McColl ER, Piquette-Miller M. Poly (I: C) alters placental and fetal brain amino acid transport in a rat model of maternal immune activation. Am J Reprod Immunol (2019) 81(6):e13115. doi: 10.1111/aji.13115 PubMed DOI
Fan M, Li X, Gao X, Dong L, Xin G, Chen L, et al. . LPS induces preeclampsia-like phenotype in rats and HTR8/SVneo cells dysfunction through TLR4/p38 MAPK pathway. Front Physiol (2019) 10. doi: 10.3389/fphys.2019.01030 PubMed DOI PMC
Iyer SS, Ghaffari AA, Cheng G. Lipopolysaccharide-mediated IL-10 transcriptional regulation requires sequential induction of type I IFNs and IL-27 in macrophages. J Immunol (2010) 185(11):6599–607. doi: 10.4049/jimmunol.1002041 PubMed DOI PMC
Teixeira-Coelho M, Guedes J, Ferreirinha P, Howes A, Pedrosa J, Rodrigues F, et al. . Differential post-transcriptional regulation of IL-10 by TLR 2 and TLR 4-activated macrophages. Eur J Immunol (2014) 44(3):856–66. doi: 10.1002/eji.201343734 PubMed DOI PMC
Xue P, Zheng M, Gong P, Lin C, Zhou J, Li Y, et al. . Single administration of ultra-low-dose lipopolysaccharide in rat early pregnancy induces TLR4 activation in the placenta contributing to preeclampsia. PloS One (2015) 10(4):e0124001. doi: 10.1371/journal.pone.0124001 PubMed DOI PMC
Mor G, Cardenas I. The immune system in pregnancy: a unique complexity. Am J Reprod Immunol (2010) 63(6):425–33. doi: 10.1111/j.1600-0897.2010.00836.x PubMed DOI PMC
Kowash HM, Potter HG, Edye ME, Prinssen EP, Bandinelli S, Neill JC, et al. . Poly(I:C) source, molecular weight and endotoxin contamination affect dam and prenatal outcomes, implications for models of maternal immune activation. Brain Behav Immun (2019) 82:160–6. doi: 10.1016/j.bbi.2019.08.006 PubMed DOI
Zhou Y, Guo M, Wang X, Li J, Wang Y, Ye L, et al. . TLR3 activation efficiency by high or low molecular mass poly I:C. Innate Immun (2013) 19(2):184–92. doi: 10.1177/1753425912459975 PubMed DOI PMC
Cvitic S, Longtine MS, Hackl H, Wagner K, Nelson MD, Desoye G, et al. . The human placental sexome differs between trophoblast epithelium and villous vessel endothelium. PloS One (2013) 8(10):e79233. doi: 10.1371/journal.pone.0079233 PubMed DOI PMC
Everhardt Queen A, Moerdyk-Schauwecker M, McKee LM, Leamy LJ, Huet YM. Differential expression of inflammatory cytokines and stress genes in male and female mice in response to a lipopolysaccharide challenge. PloS One (2016) 11(4):e0152289. doi: 10.1371/journal.pone.0152289 PubMed DOI PMC
Verthelyi D. Sex hormones as immunomodulators in health and disease. Int Immunopharmacol (2001) 1(6):983–93. doi: 10.1016/S1567-5769(01)00044-3 PubMed DOI
Hoo R, Nakimuli A, Vento-Tormo R. Innate immune mechanisms to protect against infection at the human decidual-placental interface. Front Immunol (2020) 2070. doi: 10.3389/fimmu.2020.02070 PubMed DOI PMC
Herbert J, Gow A. Precision cut lung slices as a model for 3R application in toxicology. Appl Vitro Toxicol (2020) 6(2):47–8. doi: 10.1089/aivt.2020.29025.com DOI