Effects of sulfur and phosphorus concentration on the lipid accumulation and fatty acid profile in Chlorella vulgaris (Chlorophyta)
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
CB2017-2018 A1-S-8367
consejo nacional de ciencia y tecnologia Mexico
PubMed
36607536
DOI
10.1007/s12223-022-01029-5
PII: 10.1007/s12223-022-01029-5
Knihovny.cz E-zdroje
- Klíčová slova
- Fatty acids, Lipids, Microalgae, Nutrient deficiency,
- MeSH
- biomasa MeSH
- biopaliva MeSH
- Chlorella vulgaris * metabolismus MeSH
- dusík metabolismus MeSH
- fosfor metabolismus MeSH
- lipidy MeSH
- mastné kyseliny * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biopaliva MeSH
- dusík MeSH
- fosfor MeSH
- lipidy MeSH
- mastné kyseliny * MeSH
Nutrient deficiency induces a variety of cellular responses, including an increase in lipid accumulation in microalgae. Nitrogen starvation is the most studied deprivation. Here, we determine the effects of phosphorus and sulfur limitation on lipid accumulation in Chlorella vulgaris. A set of 9 experiments were performed, varying the initial concentration of these nutrients (set to 0, 50, and 100% of their original composition in Bold's basal medium). According to our results, the variation of P and S modified the specific growth rate, lag phase, and cell generation time. The ratio of 50%P and 0%S significantly increased the total lipid concentration. The fatty acid profile was dominated by C16:0, C18:0, and C18:1; a considerable increase in C20:5 was observed with 0%P and 50%S and 0%P and 100%S. Regarding neutral lipids, the response surface methodology (RSM) indicates that the maximum was observed when S was between 40 and 60% and P was between 95 and 100%. Therefore, the enhanced production of lipids caused by P and S limitation may contribute to the efficient oil production useful for algal biofuels.
Zobrazit více v PubMed
Ajala SO, Alexander ML (2020) Assessment of Chlorella vulgaris, Scenedesmus obliquus, and Oocystis minuta for removal of sulfate, nitrate, and phosphate in wastewater. Int J Energy Environ Eng 11:311–326. https://doi.org/10.1007/s40095-019-00333-0 DOI
Ananthi V, Raja R, Carvalho IS, Brindhadevi K, Pugazhendhi A, Arun A (2021) A realistic scenario on microalgae based biodiesel production: third generation biofuel. Fuel 284:118965. https://doi.org/10.1016/j.fuel.2020.118965 DOI
Aratboni HA, Rafiei N, Garcia-Granados R, Alemzadeh A, Morones-Ramírez JB (2019) Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microb Cell Factories 18:1–17. https://doi.org/10.1186/s12934-019-1228-4 DOI
Arias M, Martínez A, Cañizares R (2013) Biodiesel production from microalgae: cultivation parameters that affect lipid production. Acta Biol Colomb 18:43–68
Atiku A, Mohamed RMSR, Al-Gheethi AA, Wurochekke AA, Kassim AH (2016) Harvesting microalgae biomass from the phycoremediation process of greywater. Environ Sci Pollut Res 23:24624–24641. https://doi.org/10.1007/s11356-016-7456-9 DOI
Benasla A, Hausler R (2020) Growth and production of lipids in Raphidocelis subcapitata immobilized in sodium alginate beads. Energies 13:506. https://doi.org/10.3390/en13020506 DOI
Bertozzini E, Galluzzi L, Penna A, Magnani M (2011) Application of the standard addition method for the absolute quantification of neutral lipids in microalgae using Nile red. J Microbiol Methods 87:17–23. https://doi.org/10.1016/j.mimet.2011.06.018 PubMed DOI
Bhatia S (2015) Modern applications of plant biotechnology in pharmaceutical sciences. In: Bhatia S, Sharma K, Dahiya R, Bera T (eds) Plant Tissue Culture. Academic Press, pp 31–107
Bligh EG, Dyer WJ (1959) A rapid method of total extraction and purification. Can J Biochem Physiol 37:911–917. https://doi.org/10.1139/o59-099 PubMed DOI
Cakmak T, Angun P, Demiray Y, Ozkan AD, Elibol Z, Tekinay T (2012) Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii. Biotechnol Bioeng 109:1947–1957. https://doi.org/10.1002/bit.24474 PubMed DOI
Char CD, Guerrero SN, Alzamora SM (2007) Growth of Eurotium chevalieri in milk jam: influence of pH, potassium sorbate and water activity. J Food Saf 27:1–16. https://doi.org/10.1111/j.1745-4565.2007.00055.x DOI
Chu F, Chu P, Cai P, Li W, Lam P, Zeng R (2013) Phosphorus plays an important role in enhancing biodiesel productivity of Chlorella vulgaris under nitrogen deficiency. Bioresour Technol 134:341–346. https://doi.org/10.1016/j.biortech.2013.01.131 PubMed DOI
Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process Process Intensif 48:1146–1151. https://doi.org/10.1016/j.cep.2009.03.006 DOI
Deng X, Fei X, Li Y (2011) The effects of nutritional restriction on neutral lipid accumulation in Chlamydomonas and Chlorella. Afr J Microbiol Res 5:260–270. https://doi.org/10.5897/AJMR10.557 DOI
Devadasu E, Chinthapalli DK, Chouhan N, Madireddi SK, Rasineni GK, Sripadi P, Subramanyam R (2019) Changes in the photosynthetic apparatus and lipid droplet formation in Chlamydomonas reinhardtii under iron deficiency. Photosynth Res 139:253–266. https://doi.org/10.1007/s11120-018-0580-2 PubMed DOI
Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509. https://doi.org/10.1016/S0021-9258(18)64849-5 PubMed DOI
Gaytan-Luna DE, Ochoa-Alfaro AE, Rocha-Uribe A, Pérez-Martínez AS, Alpuche-Solís AG, Soria-Guerra RE (2016) Effect of green and red light in lipid accumulation and transcriptional profile of genes implicated in lipid biosynthesis in Chlamydomonas reinhardtii. Biotechnol Progress 32:1404–1411. https://doi.org/10.1002/btpr.2368 DOI
Hase E, Morimura Y, Mihara S, Tamiya H (1958) The role of sulfur in the cell division of Chlorella. Arch Microbiol 31:87–95. https://doi.org/10.1007/BF00409966 DOI
Hernandez-Torres A, Zapata-Morales AL, Alfaro AEO, Soria-Guerra RE (2016) Identification of gene transcripts involved in lipid biosynthesis in Chlamydomonas reinhardtii under nitrogen, iron and sulfur deprivation. World J Microbiol Biotechnol 32:55. https://doi.org/10.1007/s11274-016-2008-5 PubMed DOI
Horváth S (1970) Importance of the generation time in microbiological experiments. Folia Microbiol 15:259–266. https://doi.org/10.1007/BF02869052 DOI
Ibáñez-Salazar A, Rosales-Mendoza S, Rocha-Uribe A, Ramírez-Alonso JI, Lara-Hernández I, Hernándes-Torres A, Paz-Maldonado LMT, Silva-Ramirez AS, Bañuelos-Hernández B, Martínez-Salgado JL, Soria-Guerra RE (2014) Over-expression of Dof-type transcription factor increases lipid production in Chlamydomonas reinhardtii. J Biotechnol 184:27–38. https://doi.org/10.1016/j.jbiotec.2014.05.003 PubMed DOI
Jiang H, Gao K (2004) Effects of lowering temperature during culture on the production of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum. J Phycol 40:651–654. https://doi.org/10.1111/j.1529-8817.2004.03112.x DOI
Kuo CM, Chen TY, Lin TH, Kao CY, Lai JT, Chang JS, Lin CS (2015) Cultivation of Chlorella sp. GD using piggery wastewater for biomass and lipid production. Bioresour Technol 194:326–333. https://doi.org/10.1016/j.biortech.2015.07.026 PubMed DOI
Lam MK, Yusoff MI, Uemura Y, Lim JW, Khoo CG, Lee KT, Ong HC (2017) Cultivation of Chlorella vulgaris using nutrients source from domestic wastewater for biodiesel production: growth condition and kinetic studies. Renew Energy 103:197–207. https://doi.org/10.1016/j.renene.2016.11.032 DOI
Lari Z, Moradi-Kheibari N, Ahmadzadeh H, Abrishamchi P, Murry M (2016) Bioprocess engineering of microalgae to optimize lipid production through nutrient management. J Appl Phycol 28:3235–3250. https://doi.org/10.1007/s10811-016-0884-6 DOI
Li P, Sun X, Sun X, Tang J, Turaib A, Wang X, Cheng Z, Deng L, Zhang Y (2020) Response of lipid productivity to photosynthesis of Chlorella vulgaris under various nutrient stress modes. J Renew Sustain Energy 12:056102. https://doi.org/10.1063/1.5144539 DOI
Liang K, Zhang Q, Gu M, Cong W (2013) Effect of phosphorus on lipid accumulation in freshwater microalga Chlorella sp. J Appl Phycol 23:311–318. https://doi.org/10.1007/s10811-012-9865-6 DOI
Li-Beisson Y, Peltier G (2013) Third-generation biofuels: current and future research on microalgal lipid biotechnology. OCL 20:D606. https://doi.org/10.1051/ocl/2013031 DOI
Mandal S, Mallick N (2009) Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl Microbiol Biotechnol 84:281–291. https://doi.org/10.1007/s00253-009-1935-6 PubMed DOI
Matsui H, Shiozaki K, Okumura Y, Ishikawa M, Waqalevu V, Hayasaka O, Honda A, Kotani T (2020) Effects of phosphorous deficiency of a microalga Nannochloropsis oculata on its fatty acid profiles and intracellular structure and the effectiveness in rotifer nutrition. Algal Res 49:101905. https://doi.org/10.1016/j.algal.2020.101905 DOI
Mizuno Y, Sato A, Watanabe K, Hirata A, Takeshita T, Ota S, Sato N, Zachleder V, Tsuzuki M, Kawano S (2013) Sequential accumulation of starch and lipid induced by sulfur deficiency in Chlorella and Parachlorella species. Bioresour Technol 129:150–155. https://doi.org/10.1016/j.biortech.2012.11.030 PubMed DOI
Mohd N, Yasin NHM, Takriff MS (2021) Predictive growth model of indigenous green microalgae (Scenedesmus sp. UKM9) in palm oil mill effluent (POME). IOP Conf Ser Mater Sci Eng 1051:012070. https://doi.org/10.1088/1757-899X/1051/1/012070 DOI
Myers RH, Montgomery DC, Anderson-Cook CM (2009) The analysis of second-order response surfaces, in response surface methodology. Process and Product Optimization Using Designed Experiments, 3rd edn. John Wiley & Sons, Hoboken, NJ, USA
Obata M, Toda T, Taguchi S (2009) Using chlorophyll fluorescence to monitor yields of microalgal production. J Appl Phycol 21:315–319. https://doi.org/10.1007/s10811-008-9369-6 DOI
Ohse S, Derner RB, Ozorio RÁ, Corrêa RG, Furlong EB, Cunha PCR (2015) Lipid content and fatty acid profiles in ten species of microalgae. IDESIA 33:93–101. https://doi.org/10.4067/S0718-34292015000100010 DOI
Ong S, Kao C, Chiu S, Tsai M, Lin C (2010) Characterization of the thermal-tolerant mutants of Chlorella sp. with high growth rate and application in outdoor photobioreactor cultivation. Bioresour Technol 101:2880–2883. https://doi.org/10.1016/j.biortech.2009.10.007 PubMed DOI
Perdana BA, Chaidir Z, Kusnanda AJ, Dharma A, Zakaria IJ, Syafrizayanti BA, Putra MY (2021) Omega-3 fatty acids of microalgae as a food supplement: a review of exogenous factors for production enhancement. Algal Res 60:102542. https://doi.org/10.1016/j.algal.2021.102542 DOI
Přibyl P, Cepák V, Zachleder V (2012) Production of lipids in 10 strains of Chlorella and Parachlorella, and enhanced lipid productivity in Chlorella vulgaris. Appl Microbiol Biotechnol 94:549–561. https://doi.org/10.1007/s00253-012-3915-5 PubMed DOI
Qari HA, Oves M (2020) Fatty acid synthesis by Chlamydomonas reinhardtii in phosphorus limitation. J Bioenerg Biomembr 52:27–38. https://doi.org/10.1007/s10863-019-09813-8 PubMed DOI
Rawat J, Gupta PK, Pandit S, Priya K, Agarwal D, Pant M, Thakur VK, Pande V (2022) Latest expansions in lipid enhancement of microalgae for biodiesel production: an update. Energies 15:1550. https://doi.org/10.3390/en15041550 DOI
Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N (2009) Microalgae for oil: strain selection induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112. https://doi.org/10.1002/bit.22033 PubMed DOI
Ru ITK, Sung YY, Jusoh M, Wahid MEA, Nagappan T (2020) Chlorella vulgaris: a perspective on its potential for combining high biomass with high value bioproducts. Appl Phycol 1:2–11. https://doi.org/10.1080/26388081.2020.1715256 DOI
Sajjadi B, Chen WY, Ramanb AAA, Ibrahimc S (2018) Microalgae lipid and biomass for biofuel production: a comprehensive review on lipid enhancement strategies and their effects on fatty acid composition. Renew Sustain Energy Rev 97:200–232. https://doi.org/10.1016/j.rser.2018.07.050 DOI
Sakarika M, Kornaros M (2017) Kinetics of growth and lipids accumulation in Chlorella vulgaris during batch heterotrophic cultivation: effect of different nutrient limitation strategies. Bioresour Technol 243:356–365. https://doi.org/10.1016/j.biortech.2017.06.110 PubMed DOI
Shen P, Wang H, Pan Y, Meng Y, Wu P, Xue S (2016) Identification of characteristic fatty acids to quantify triacylglycerols in microalgae. Front Plant Sci 7:1–7. https://doi.org/10.3389/fpls.2016.00162 DOI
Takeshita T, Ota S, Yamazaki T, Hirata A, Zachleder V, Kawano S (2014) Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions. Bioresour Technol 158:127–134. https://doi.org/10.1016/j.biortech.2014.01.135 PubMed DOI
Tjørve KMC, Tjørve E (2017) The use of Gompertz models in growth analyses, and new Gompertz-model approach: an addition to the unified-Richards family. PLoS ONE 12:e0178691. https://doi.org/10.1371/journal.pone.0178691 PubMed DOI PMC
Wang Q, Zhang Y, Wu H, Xu N, Li A (2021) Effects of sulfur limitation on nitrogen and sulfur uptake and lipid accumulation in Scenedesmus acuminatus. J Appl Phycol 33:301–311. https://doi.org/10.1007/s10811-020-02319-6 DOI
Westoby M, Nielsen DA, Gillings MR, Litchman E, Madin JS, Paulsen IT, Tetu SG (2021) Cell size, genome size, and maximum growth rate are near-independent dimensions of ecological variation across bacteria and archaea. Ecol Evol 11:3956–3976. https://doi.org/10.1002/ece3.7290 PubMed DOI PMC
Wong YK, Ho YH, Ho KC, Leung HM, Yung KKL (2017) Growth medium screening for Chlorella vulgaris growth and lipid productions. J Aquac Mar Biol 6:00143. https://doi.org/10.15406/jamb.2017.06.00143 DOI
Yaakob MA, Mohamed RMSR, Al-Gheethi A, Ravishankar GA, Ambati RR (2021) Influence of nitrogen and phosphorus on microalgal growth, biomass, lipid, and fatty acid production: An overview. Cells 10:393. https://doi.org/10.3390/cells10020393 PubMed DOI PMC
Zarrinmehr MJ, Farhadian O, Heyrati FP, Keramat J, Koutra E, Kornaros M, Daneshvar E (2019) Effect of nitrogen concentration on the growth rate and biochemical composition of the microalga, Isochrysis galbana. Egypt J Aquat Res 46:1687–4285. https://doi.org/10.1016/j.ejar.2019.11.003 DOI
Zhang Z, Shrager J, Jain M, Chang CW, Vallon O, Grossman A (2004) Insights into the survival of Chlamydomonas reinhardtii during sulfur starvation based on microarray analysis of gene expression. Eukaryot Cell 3:1331–1348. https://doi.org/10.1128/EC.3.5.1331-1348.2004 PubMed DOI PMC
Zhang Y, Huang Z, Zheng H, Wang Q, Li A (2020) Growth, biochemical composition and photosynthetic performance of Scenedesmus acuminatus under different initial sulfur supplies. Algal Res 45:101728. https://doi.org/10.1016/j.algal.2019.101728 DOI
Zhu L, Li Z, Hiltunen E (2016) Strategies for lipid production improvement in microalgae as a biodiesel feedstock. BioMed Res Int 8:1–8. https://doi.org/10.1155/2016/879548 DOI
Zwietering MH, Jongenburger I, Rombouts FM, Van’t Riet K (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56:1875–1881. https://doi.org/10.1128/aem.56.6.1875-1881.1990 PubMed DOI PMC