Therapeutic Potential of Flavonoids and Tannins in Management of Oral Infectious Diseases-A Review
Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
APVV-19-0056
Slovak Research and Development Agency
VEGA 1/0284/20
THE MINISTRY OF EDUCATION, SCIENCE, RESEARCH, AND SPORT OF SLOVAKIA - VEGA
VEGA 1/0226/22
THE MINISTRY OF EDUCATION, SCIENCE, RESEARCH, AND SPORT OF SLOVAKIA - VEGA
ITMS: 313011T431
Operational Programme Integrated Infrastructure
PubMed
36615352
PubMed Central
PMC9821998
DOI
10.3390/molecules28010158
PII: molecules28010158
Knihovny.cz E-resources
- Keywords
- antibiofilm activity, antimicrobial activity, flavonoids, medicinal plants, natural products, oral infections, oral pathogens, tannins,
- MeSH
- Anti-Infective Agents * pharmacology therapeutic use MeSH
- Flavonoids therapeutic use MeSH
- Hydrolyzable Tannins metabolism MeSH
- Communicable Diseases * MeSH
- Plants, Medicinal * metabolism MeSH
- Plant Extracts MeSH
- Tannins metabolism MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Anti-Infective Agents * MeSH
- Flavonoids MeSH
- Hydrolyzable Tannins MeSH
- Plant Extracts MeSH
- Tannins MeSH
Medicinal plants are rich sources of valuable molecules with various profitable biological effects, including antimicrobial activity. The advantages of herbal products are their effectiveness, relative safety based on research or extended traditional use, and accessibility without prescription. Extensive and irrational usage of antibiotics since their discovery in 1928 has led to the increasing expiration of their effectiveness due to antibacterial resistance. Now, medical research is facing a big and challenging mission to find effective and safe antimicrobial therapies to replace inactive drugs. Over the years, one of the research fields that remained the most available is the area of natural products: medicinal plants and their metabolites, which could serve as active substances to fight against microbes or be considered as models in drug design. This review presents selected flavonoids (such as apigenin, quercetin, kaempferol, kurarinone, and morin) and tannins (including oligomeric proanthocyanidins, gallotannins, ellagitannins, catechins, and epigallocatechin gallate), but also medicinal plants rich in these compounds as potential therapeutic agents in oral infectious diseases based on traditional usages such as Agrimonia eupatoria L., Hamamelis virginiana L., Matricaria chamomilla L., Vaccinium myrtillus L., Quercus robur L., Rosa gallica L., Rubus idaeus L., or Potentilla erecta (L.). Some of the presented compounds and extracts are already successfully used to maintain oral health, as the main or additive ingredient of toothpastes or mouthwashes. Others are promising for further research or future applications.
See more in PubMed
WHO Oral Health. [(accessed on 3 October 2022)]. Available online: https://www.who.int/news-room/fact-sheets/detail/oral-health.
Arweiler N.B., Netuschil L. The Oral Microbiota. Microbiota Hum. Body. 2016:45–60. doi: 10.1007/978-3-319-31248-4. PubMed DOI
Bennett J., Dolin R., Blaser M.J. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases. 9th ed. Elsevier; Amsterdam, The Netherlands: 2019.
Peng X., Cheng L., You Y., Tang C., Ren B., Li Y., Xu X., Zhou X. Oral Microbiota in Human Systematic Diseases. Int. J. Oral Sci. 2022;14:14. doi: 10.1038/s41368-022-00163-7. PubMed DOI PMC
Read E., Curtis M.A., Neves J.F. Inflammatory Bowel Disease. Nat. Rev. Gastroenterol. Hepatol. 2021;18:731–742. doi: 10.1038/s41575-021-00488-4. PubMed DOI
Cortelli R.J., Barbosa M.D.S., Westphal M.A. Halitosis: A Review of Associated Factors and Therapeutic Approach. Braz. Oral Res. 2008;22:44–54. doi: 10.1590/S1806-83242008000500007. PubMed DOI
Ogle O.E. Odontogenic Infections. Dent. Clin. NA. 2017;61:235–252. doi: 10.1016/j.cden.2016.11.004. PubMed DOI
Singh U., Tandon T., Sinha D. Apical Periodontitis—Virulence Factors of Enterococcus Faecalis and Candida Albicans. Austin. J. Dent. 2020;7:1147.
Patil S., Rao S.R., Majumdar B., Anil S. Clinical Appearance of Oral Candida Infection and Therapeutic Strategies. Front. Microbiol. 2015;6:1–10. doi: 10.3389/fmicb.2015.01391. PubMed DOI PMC
Conrads G., About I. Pathophysiology of Dental Caries. In: Schwendicke F., Frencken J., editors. Caries Excavation: Evolution of Treating Cavitated Carious Lesions. Volume 27. Monogr Oral Sci; Basel, Karger: 2018. pp. 1–10. PubMed DOI
Könönen E., Gursoy M., Gursoy U.K. Periodontitis: A Multifaceted Disease of Tooth-Supporting Tissues. J. Clin. Med. 2019;8:1135. doi: 10.3390/jcm8081135. PubMed DOI PMC
Checchi V., Maravic T., Bellini P., Generali L., Consolo U., Breschi L., Mazzoni A. The Role of Matrix Metalloproteinases in Periodontal Disease. Int. J. Environ. Res. Public Health. 2020;17:4923. doi: 10.3390/ijerph17144923. PubMed DOI PMC
Moghadam T.E., Yazdanian M., Tahmasebi E., Tebyanian H., Ranjbar R., Yazdanian A., Seifalian A., Tafazoli A. Current Herbal Medicine as an Alternative Treatment in Dentistry: In Vitro, in Vivo and Clinical Studies. Eur. J. Pharmacol. 2020;889:173665. doi: 10.1016/j.ejphar.2020.173665. PubMed DOI
Palombo E.A. Traditional Medicinal Plant Extracts and Natural Products with Activity against Oral Bacteria: Potential Application in the Prevention and Treatment of Oral Diseases. Evid. Based Complement. Altern. Med. 2011;2011:15. doi: 10.1093/ecam/nep067. PubMed DOI PMC
Al Alsheikh M.H., Sultan I., Kumar V., Rather I.A., Al-sheikh H., Jan A.T., Mohd Q., Haq R. Plant-Based Phytochemicals as Possible Alternative to Antibiotics in Combating Bacterial Drug Resistance. Antibiotics. 2020;9:480. doi: 10.3390/antibiotics9080480. PubMed DOI PMC
Li X., Liu Y., Yang X., Li C., Song Z., Vernon J. The Oral Microbiota: Community Composition, Influencing Factors, Pathogenesis, and Interventions. Front. Microbiol. 2022;13:895537. doi: 10.3389/fmicb.2022.895537. PubMed DOI PMC
Slobodníková L., Fialová S., Rendeková K., Kováč J. Antibiofilm Activity of Plant Polyphenols. Molecules. 2016;21:1717. doi: 10.3390/molecules21121717. PubMed DOI PMC
Flemming J., Meyer-Probst C.T., Speer K., Kölling-Speer I., Hannig C., Hannig M. Preventive Applications of Polyphenols in Dentistry—A Review. Int. J. Mol. Sci. 2021;22:4892. doi: 10.3390/ijms22094892. PubMed DOI PMC
Kumar R., Mirza M.A., Naseef P.P., Kuruniyan M.S. Exploring the Potential of Natural Product-Based Nanomedicine for Maintaining Oral Health. Molecules. 2022;27:1725. doi: 10.3390/molecules27051725. PubMed DOI PMC
Nagy M., Mučaji P., Grančai D. Pharmacognosy: Biologically Active Plant Metabolites and Their Sources. 2nd ed. Osveta; Martin, Slovakia: 2017.
Górniak I., Bartoszewski R., Króliczewski J. Comprehensive Review of Antimicrobial Activities of Plant Flavonoids. Phytochem. Rev. 2019;18:241–272. doi: 10.1007/s11101-018-9591-z. DOI
Wang T., Li Q., Bi K. Bioactive Flavonoids in Medicinal Plants: Structure, Activity and Biological Fate. Asian J. Pharm. Sci. 2018;13:12–23. doi: 10.1016/j.ajps.2017.08.004. PubMed DOI PMC
Panche A.N., Diwan A.D., Chandra S.R. Journal of Nutritional Science. J. Nutr. Sci. 2016;5:1–15. doi: 10.1017/jns.2016.41. PubMed DOI PMC
Kumar S., Pandey A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013;2013:16. doi: 10.1155/2013/162750. PubMed DOI PMC
Fialova S., Rendekova K., Mucaji P., Slobodnikova L. Plant Natural Agents: Polyphenols, Alkaloids and Essential Oils as Perspective Solution of Microbial Resistance. Curr. Org. Chem. 2017;21:1875–1884. doi: 10.2174/1385272821666170127161321. DOI
Fernández-Rojas B., Gutiérrez-Venegas G. Flavonoids Exert Multiple Periodontic Benefits Including Anti-Inflammatory, Periodontal Ligament-Supporting, and Alveolar Bone-Preserving Effects. Life Sci. 2018;209:435–454. doi: 10.1016/j.lfs.2018.08.029. PubMed DOI
Samy R.P., Gopalakrishnakone P. Therapeutic Potential of Plants as Anti-Microbials for Drug Discovery. Evid. Based Complement. Altern. Med. 2010;7:283–294. doi: 10.1093/ecam/nen036. PubMed DOI PMC
Yuan G., Guan Y., Yi H., Lai S., Sun Y., Cao S. Antibacterial Activity and Mechanism of Plant Flavonoids to Gram-Positive Bacteria Predicted from Their Lipophilicities. Sci. Rep. 2021;11:10471. doi: 10.1038/s41598-021-90035-7. PubMed DOI PMC
Bittner Fialová S., Rendeková K., Mučaji P., Nagy M., Slobodníková L. Antibacterial Activity of Medicinal Plants and Their Constituents in the Context of Skin and Wound Infections, Considering European Legislation and Folk Medicine—A Review. Int. J. Mol. Sci. 2021;22:10746. doi: 10.3390/ijms221910746. PubMed DOI PMC
Xie Y., Yang W., Tang F., Chen X., Ren L. Antibacterial Activities of Flavonoids: Structure-Activity Relationship and Mechanism. Curr. Med. Chem. 2014;22:132–149. doi: 10.2174/0929867321666140916113443. PubMed DOI
Duarte S., Gregoire S., Singh A.P., Vorsa N., Schaich K., Bowen W.H., Koo H. Inhibitory Effects of Cranberry Polyphenols on Formation and Acidogenicity of Streptococcus Mutans Biofilms. FEMS Microbiol. Lett. 2006;257:50–56. doi: 10.1111/j.1574-6968.2006.00147.x. PubMed DOI
Cascioferro S., Totsika M., Schillaci D. Microbial Pathogenesis Sortase A: An Ideal Target for Anti-Virulence Drug Development. Microb. Pathog. 2014;77:105–112. doi: 10.1016/j.micpath.2014.10.007. PubMed DOI
Salmanli M., Tatar G., Tuzuner T. Computer Methods and Programs in Biomedicine Investigation of the Antimicrobial Activities of Various Antimicrobial Agents on Streptococcus Mutans Sortase A through Computer-Aided Drug Design ( CADD ) Approaches. Comput. Methods Programs Biomed. 2021;212:106454. doi: 10.1016/j.cmpb.2021.106454. PubMed DOI
Koo H., Rosalen P.L., Cury J.A., Park Y.K., Bowen W.H. Effects of Compounds Found in Propolis on Streptococcus mutans Growth and on Glucosyltransferase Activity. Antimicrob. Agents Chemother. 2002;46:1302–1309. doi: 10.1128/AAC.46.5.1302-1309.2002. PubMed DOI PMC
Koo H., Hayacibara M.F., Schobel B.D., Cury J.A., Rosalen P.L., Park Y.K., Vacca-Smith A.M., Bowen W.H. Inhibition of Streptococcus mutans Biofilm Accumulation and Polysaccharide Production by Apigenin and Tt-Farnesol. J. Antimicrob. Chemother. 2003;52:782–789. doi: 10.1093/jac/dkg449. PubMed DOI
Zeng Y., Nikitkova A., Abdelsalam H., Li J. Archives of Oral Biology Activity of Quercetin and Kaemferol against Streptococcus Mutans Bio Fi Lm. Arch. Oral Biol. 2019;98:9–16. doi: 10.1016/j.archoralbio.2018.11.005. PubMed DOI PMC
Patra J.K., Kim E.S., Oh K., Kim H.-J., Kim Y., Baek K.-H. Antibacterial Effect of Crude Extract and Metabolites of Phytolacca Americana on Pathogens Responsible for Periodontal Inflammatory Diseases and Dental Caries. BMC Complement. Altern. Med. 2014;14:343. doi: 10.1186/1472-6882-14-343. PubMed DOI PMC
Yang W.-Y., Kim C.-K., Ahn C.-H., Kim H., Shin J., Oh K.-B. Flavonoid Glycosides Inhibit Sortase A and Sortase A-Mediated Aggregation of Streptococcus mutans, an Oral Bacterium Responsible for Human Dental Caries. J. Microbiol. Biotechnol. 2016;26:1566–1569. doi: 10.4014/jmb.1605.05005. PubMed DOI
Shu Y., Liu Y., Li L., Feng J., Lou B., Zhou X., Wu H. Antibacterial Activity of Quercetin on Oral Infectious Pathogens. Afr. J. Microbiol. Res. 2011;5:5358–5361. doi: 10.5897/AJMR11.849. DOI
Cha S., Kim G., Cha J. Synergistic Antimicrobial Activity of Apigenin against Oral Pathogens. Int. J. Eng. Res. Sci. 2016;2:27–37.
André C.B., Rosalen P.L., de Galvão L.C.C., Fronza B.M., Ambrosano G.M.B., Ferracane J.L., Giannini M. Modulation of Streptococcus Mutans Virulence by Dental Adhesives Containing Anti-Caries Agents. Dent. Mater. 2017;33:1084–1092. doi: 10.1016/j.dental.2017.07.006. PubMed DOI
Koo H., Schobel B., Scott-Anne K., Watson G., Bowen W.H., Cury J.A., Rosalen P.L., Park Y.K. Apigenin and Tt-Farnesol with Fluoride Effects on S. mutans Biofilms and Dental Caries. J. Dent. Res. 2005;84:1016–1020. doi: 10.1177/154405910508401109. PubMed DOI PMC
Koo H., Seils J., Abranches J., Burne R.A., Bowen W.H., Quivey R.G. Influence of Apigenin on Gtf Gene Expression in Streptococcus mutans UA159. Antimicrob. Agents Chemother. 2006;50:542–546. doi: 10.1128/AAC.50.2.542-546.2006. PubMed DOI PMC
Jeon J.-G., Klein M.I., Xiao J., Gregoire S., Rosalen P.L., Koo H. Influences of Naturally Occurring Agents in Combination with Fluoride on Gene Expression and Structural Organization of Streptococcus mutans in Biofilms. BMC Microbiol. 2009;9:228. doi: 10.1186/1471-2180-9-228. PubMed DOI PMC
Gregoire S., Singh A.P., Vorsa N., Koo H. Influence of Cranberry Phenolics on Glucan Synthesis by Glucosyltransferases and Streptococcus Mutans Acidogenicity. J. Appl. Microbiol. 2007;103:1960–1968. doi: 10.1111/j.1365-2672.2007.03441.x. PubMed DOI
Gutiérrez-Venegas G., Gomez-Mora J.A., Meraz-Rodríguez M., Flores-Sanchez M., Ortiz-Miranda L. Heliyon Effect of Fl Avonoids on Antimicrobial Activity of Microorganisms Present in Dental Plaque. Heliyon. 2019;5:e03013. doi: 10.1016/j.heliyon.2019.e03013. PubMed DOI PMC
Huang P., Hu P., Yun S. Morin Inhibits Sortase A and Subsequent Biofilm Formation in Streptococcus Mutans. Curr. Microbiol. 2014;68:47–52. doi: 10.1007/s00284-013-0439-x. PubMed DOI
Guan X., Zhou Y., Liang X., Xiao J., He L., Li J. Effects of Compounds Found in Nidus Vespae on the Growth and Cariogenic Virulence Factors of Streptococcus Mutans. Microbiol. Res. 2012;167:61–68. doi: 10.1016/j.micres.2011.03.002. PubMed DOI
El Mihyaoui A., Esteves da Silva J.C.G., Charfi S., Candela Castillo M.E., Lamarti A., Arnao M.B. Chamomile (Matricaria chamomilla L.): A Review of Ethnomedicinal Use, Phytochemistry and Pharmacological Uses. Life. 2022;12:479. doi: 10.3390/life12040479. PubMed DOI PMC
Braga A.S., de Simas L.L.M., Pires J.G., Souza B.M., de Melo F.P.S.R., Saldanha L.L., Dokkedal A.L., Magalhães A.C. Antibiofilm and Anti-Caries Effects of an Experimental Mouth Rinse Containing Matricaria chamomilla L. Extract under Microcosm Biofilm on Enamel. J. Dent. 2020;99:103415. doi: 10.1016/j.jdent.2020.103415. PubMed DOI
Andishe Tadbir A., Pourshahidi S., Ebrahimi H., Hajipour Z., Memarzade M.R., Shirazian S. The Effect of Matricaria chamomilla (Chamomile) Extract in Orabase on Minor Aphthous Stomatitis, a Randomized Clinical Trial. J. Herb. Med. 2015;5:71–76. doi: 10.1016/j.hermed.2015.05.001. DOI
Sychrová A., Škovranová G., Čulenová M., Bittner Fialová S. Prenylated Flavonoids in Topical Infections and Wound Healing. Molecules. 2022;27:4491. doi: 10.3390/molecules27144491. PubMed DOI PMC
Chen L., Cheng X., Shi W., Lu Q., Liang V., Heber D., Ma L. Letters to the Editor Inhibition of Growth of Streptococcus mutans, Methicillin-Resistant Staphylococcus. J. Clin. Microbiol. 2005;43:3574–3575. doi: 10.1128/JCM.43.7.3574-3575.2005. PubMed DOI PMC
Badria F.A., Zidan O.A. Natural Products for Dental Caries Prevention. J. Med. Food. 2004;7:381–384. doi: 10.1089/jmf.2004.7.381. PubMed DOI
Furiga A., Lonvaud-funel A., Badet C. In Vitro Study of Antioxidant Capacity and Antibacterial Activity on Oral Anaerobes of a Grape Seed Extract. Food Chem. 2009;113:1037–1040. doi: 10.1016/j.foodchem.2008.08.059. DOI
Veloz J.J., Saavedra N., Lillo A., Alvear M., Barrientos L., Salazar L.A. Antibiofilm Activity of Chilean Propolis on Streptococcus mutans Is Influenced by the Year of Collection. Biomed Res. Int. 2015;2015:291351. doi: 10.1155/2015/291351. PubMed DOI PMC
Veloz J.J., Alvear M., Salazar L.A. Antimicrobial and Antibiofilm Activity against Streptococcus mutans of Individual and Mixtures of the Main Polyphenolic Compounds Found in Chilean Propolis. Biomed Res. Int. 2019;2019:7602343. doi: 10.1155/2019/7602343. PubMed DOI PMC
Barrientos L., Herrera C.L., Montenegro G., Ortega X., Veloz J., Alvear M., Cuevas A., Saavedra N., Salazar L.A. Chemical and Botanical Characterization of Chilean Propolis and Biological Activity on Cariogenic Bacteria Streptococcus mutans and Streptococcus sobrinus. Braz. J. Microbiol. 2013;44:577–585. doi: 10.1590/S1517-83822013000200038. PubMed DOI PMC
Nagy M., Mučaji P., Grančai D. Pharmacognosy Biogenesis of Natural Substances. 1st ed. Osveta; Martin, Slovakia: 2011.
Engels C., Schieber A., Gänzle M.G. Inhibitory Spectra and Modes of Antimicrobial Action of Gallotannins from Mango Kernels (Mangifera indica L.) Appl. Environ. Microbiol. 2011;77:2215–2223. doi: 10.1128/AEM.02521-10. PubMed DOI PMC
Farha A.K., Yang Q.-Q., Kim G., Li H.-B., Zhu F., Liu H.-Y., Gan R.-Y., Corke H. Tannins as an Alternative to Antibiotics. Food Biosci. 2020;38:100751. doi: 10.1016/j.fbio.2020.100751. DOI
Fraga-Corral M., Otero P., Cassani L., Echave J., Garcia-Oliveira P., Carpena M., Chamorro F., Lourenço-Lopes C., Prieto M.A., Simal-Gandara J. Traditional Applications of Tannin Rich Extracts Supported by Scientific Data: Chemical Composition, Bioavailability and Bioaccessibility. Foods. 2021;10:251. doi: 10.3390/foods10020251. PubMed DOI PMC
Rauf A., Imran M., Abu-Izneid T., Iahtisham-Ul-Haq, Patel S., Pan X., Naz S., Sanches Silva A., Saeed F., Rasul Suleria H.A. Proanthocyanidins: A Comprehensive Review. Biomed. Pharmacother. 2019;116:108999. doi: 10.1016/j.biopha.2019.108999. PubMed DOI
Krenn L., Steitz M., Schlicht C., Kurth H., Gaedcke F. Anthocyanin- and Proanthocyanidin-Rich Extracts of Berries in Food Supplements—Analysis with Problems. Die Pharm. Int. J. Pharm. Sci. 2007;62:803–812. PubMed
Hellström J.K., Törrönen A.R., Mattila P.H. Proanthocyanidins in Common Food Products of Plant Origin. J. Agric. Food Chem. 2009;57:7899–7906. doi: 10.1021/jf901434d. PubMed DOI
Patel S. Rose Hip as an Underutilized Functional Food: Evidence-Based Review. Trends Food Sci. Technol. 2017;63:29–38. doi: 10.1016/j.tifs.2017.03.001. DOI
González O.A., Escamilla C., Danaher R.J., Dai J., Ebersole J.L., Mumper R.J., Miller C.S. Antibacterial Effects of Blackberry Extract Target Periodontopathogens. J. Periodontal Res. 2013;48:80–86. doi: 10.1111/j.1600-0765.2012.01506.x. PubMed DOI PMC
Riihinen K.R., Ou Z.M., Gödecke T., Lankin D.C., Pauli G.F., Wu C.D. The Antibiofilm Activity of Lingonberry Flavonoids against Oral Pathogens Is a Case Connected to Residual Complexity. Fitoterapia. 2014;97:78–86. doi: 10.1016/j.fitote.2014.05.012. PubMed DOI
Feng G., Klein M.I., Gregoire S., Singh A.P., Vorsa N., Koo H. The Specific Degree-of-Polymerization of A-Type Proanthocyanidin Oligomers Impacts Streptococcus mutans Glucan-Mediated Adhesion and Transcriptome Responses within Biofilms. Biofouling. 2013;29:629–640. doi: 10.1080/08927014.2013.794456. PubMed DOI PMC
Philip N., Walsh L.J. Cranberry Polyphenols: Natural Weapons against Dental Caries. Dent. J. 2019;7:20. doi: 10.3390/dj7010020. PubMed DOI PMC
Koo H., Duarte S., Murata R.M., Scott-Anne K., Gregoire S., Watson G.E., Singh A.P., Vorsa N. Influence of Cranberry Proanthocyanidins on Formation of Biofilms by Streptococcus mutans on Saliva-Coated Apatitic Surface and on Dental Caries Development in Vivo. Caries Res. 2010;44:116–126. doi: 10.1159/000296306. PubMed DOI PMC
Yamanaka-Okada A., Sato E., Kouchi T., Kimizuka R., Kato T., Okuda K. Inhibitory Effect of Cranberry Polyphenol on Cariogenic Bacteria. Bull. Tokyo Dent. Coll. 2008;49:107–112. doi: 10.2209/tdcpublication.49.107. PubMed DOI
Kim D., Hwang G., Liu Y., Wang Y., Singh A.P., Vorsa N., Koo H. Cranberry Flavonoids Modulate Cariogenic Properties of Mixed-Species Biofilm through Exopolysaccharides-Matrix Disruption. PLoS ONE. 2016;10:e0145844. doi: 10.1371/journal.pone.0145844. PubMed DOI PMC
Puupponen-Pimiä R., Nohynek L., Alakomi H.-L., Oksman-Caldentey K.-M. Bioactive Berry Compounds—Novel Tools against Human Pathogens. Appl. Microbiol. Biotechnol. 2005;67:8–18. doi: 10.1007/s00253-004-1817-x. PubMed DOI
Satoh Y., Ishihara K. Investigation of the Antimicrobial Activity of Bilberry (Vaccinium myrtillus L.) Extract against Periodontopathic Bacteria. J. Oral Biosci. 2020;62:169–174. doi: 10.1016/j.job.2020.01.009. PubMed DOI
Dutreix L., Bernard C., Juin C., Imbert C., Girardot M. Do Raspberry Extracts and Fractions Have Antifungal or Anti-Adherent Potential against Candida Spp.? Int. J. Antimicrob. Agents. 2018;52:947–953. doi: 10.1016/j.ijantimicag.2018.08.020. PubMed DOI
Malheiros J., Simões D.M., Figueirinha A., Cotrim M.D., Fonseca D.A. Agrimonia Eupatoria L.: An Integrative Perspective on Ethnomedicinal Use, Phenolic Composition and Pharmacological Activity. J. Ethnopharmacol. 2022;296:115498. doi: 10.1016/j.jep.2022.115498. PubMed DOI
EMA EMA. Agrimoniae Herba. [(accessed on 1 November 2022)]. Available online: https://www.ema.europa.eu/en/medicines/herbal/agrimoniae-herba.
Ham Y., Kim T. Plant Extracts Inhibiting Biofilm Formation by Streptococcus mutans without Antibiotic Activity. J. Korean Wood Sci. Technol. 2018;46:692–702. doi: 10.5658/WOOD.2018.46.6.692. DOI
Melzig M.F., Böttger S. Tormentillae Rhizoma—Review for an Underestimated European Herbal Drug. Planta Med. 2020;86:1050–1057. doi: 10.1055/a-1129-7214. PubMed DOI
Tomczyk M., Sosnowska K., Pleszczyńska M., Strawa J., Wiater A., Grochowski D.M., Tomczykowa M., Winnicka K. Hydrogel Containing an Extract of Tormentillae Rhizoma for the Treatment of Biofilm-Related Oral Diseases. Nat. Prod. Commun. 2017;12:1934578X1701200328. doi: 10.1177/1934578X1701200328. PubMed DOI
Cheesman M.J., Alcorn S., Verma V., Cock I.E. Journal of Traditional and Complementary Medicine An Assessment of the Growth Inhibition pro Fi Les of Hamamelis virginiana L. Extracts against Streptococcus and Staphylococcus Spp. J. Tradit. Chinese Med. Sci. 2021;11:457–465. doi: 10.1016/j.jtcme.2021.03.002. PubMed DOI PMC
Mouchrek Júnior J.C.E., de Araújo Castro Nunes L.H., Arruda C.S., Rizzi C., Mouchrek A.Q.S., Tavarez R., Tonetto M., Bandeca M.C., Filho E.M.M. Effectiveness of Oral Antiseptics on Tooth Biofilm: A Study in Vivo. J. Contemp. Dent. Pract. 2015;16:674–678. doi: 10.5005/jp-journals-10024-1739. PubMed DOI
EMA EMA. Quercus Cortex. [(accessed on 2 November 2022)]. Available online: https://www.ema.europa.eu/en/medicines/herbal/quercus-cortex.
Kandra L., Gyémánt G., Zajácz Á., Batta G. Inhibitory Effects of Tannin on Human Salivary α-Amylase. Biochem. Biophys. Res. Commun. 2004;319:1265–1271. doi: 10.1016/j.bbrc.2004.05.122. PubMed DOI
Basri D.F., Tan L.S., Shafiei Z., Zin N.M. In Vitro Antibacterial Activity of Galls of Quercus Infectoria Olivier against Oral Pathogens. Evid. Based Complement. Altern. Med. 2012;2012:632796. doi: 10.1155/2012/632796. PubMed DOI PMC
Limsuwan S., Subhadhirasakul S., Voravuthikunchai S.P. Medicinal Plants with Significant Activity against Important Pathogenic Bacteria Medicinal Plants with Significant Activity against Important Pathogenic Bacteria. Pharm. Biol. 2009;47:683–689. doi: 10.1080/13880200902930415. DOI
Khameneh B., Eskin N.A.M., Iranshahy M., Fazly Bazzaz B.S. Phytochemicals: A Promising Weapon in the Arsenal against Antibiotic-Resistant Bacteria. Antibiotics. 2021;10:1044. doi: 10.3390/antibiotics10091044. PubMed DOI PMC
Saremi A., Arora R. The Cardiovascular Implications of Alcohol and Red Wine. Am. J. Ther. 2008;15:265–277. doi: 10.1097/MJT.0b013e3180a5e61a. PubMed DOI
Monagas M., Bartolomé B., Gómez-Cordovés C. Updated Knowledge About the Presence of Phenolic Compounds in Wine. Crit. Rev. Food Sci. Nutr. 2005;45:85–118. doi: 10.1080/10408690490911710. PubMed DOI
Daglia M., Stauder M., Papetti A., Signoretto C., Giusto G., Canepari P., Pruzzo C., Gazzani G. Isolation of Red Wine Components with Anti-Adhesion and Anti-Biofilm Activity against Streptococcus mutans. Food Chem. 2010;119:1182–1188. doi: 10.1016/j.foodchem.2009.08.037. DOI
Lee J.-H., Shim J.S., Chung M.-S., Lim S.-T., Kim K.H. In Vitro Anti-Adhesive Activity of Green Tea Extract against Pathogen Adhesion. Phyther. Res. 2009;23:460–466. doi: 10.1002/ptr.2609. PubMed DOI
Maruyama T., Tomofuji T., Endo Y., Irie K., Azuma T., Ekuni D., Tamaki N., Yamamoto T., Morita M. Supplementation of Green Tea Catechins in Dentifrices Suppresses Gingival Oxidative Stress and Periodontal Inflammation. Arch. Oral Biol. 2011;56:48–53. doi: 10.1016/j.archoralbio.2010.08.015. PubMed DOI
Ferrazzano G.F., Roberto L., Amato I., Cantile T., Sangianantoni G., Ingenito A. Antimicrobial Properties of Green Tea Extract Against Cariogenic Microflora: An In Vivo Study. J. Med. Food. 2011;14:907–911. doi: 10.1089/jmf.2010.0196. PubMed DOI
Shahakbari R., Eshghpour M., Rajaei A., Rezaei N.M., Golfakhrabadi P., Nejat A. Effectiveness of Green Tea Mouthwash in Comparison to Chlorhexidine Mouthwash in Patients with Acute Pericoronitis: A Randomized Clinical Trial. Int. J. Oral Maxillofac. Surg. 2014;43:1394–1398. doi: 10.1016/j.ijom.2014.05.017. PubMed DOI
Chopra A., Thomas B.S., Sivaraman K., Prasad H.K., Kamath S.U. Green Tea Intake as an Adjunct to Mechanical Periodontal Therapy for the Management of Mild to Moderate Chronic Periodontitis: A Randomized Controlled Clinical Trial. Oral Health Prev. Dent. 2016;4:293–303. doi: 10.3290/j.ohpd.a36100. PubMed DOI
Asahi Y., Noiri Y., Miura J., Maezono H., Yamaguchi M., Yamamoto R., Azakami H., Hayashi M., Ebisu S. Effects of the Tea Catechin Epigallocatechin Gallate on Porphyromonas Gingivalis Biofilms. J. Appl. Microbiol. 2014;116:1164–1171. doi: 10.1111/jam.12458. PubMed DOI
Sakanaka S., Aizawa M., Kim M., Yamamoto T. Inhibitory Effects of Green Tea Polyphenols on Growth and Cellular Adherence of an Oral Bacterium, Porphyromonas Gingivalis. Biosci. Biotechnol. Biochem. 1996;60:745–749. doi: 10.1271/bbb.60.745. PubMed DOI
Hirasawa M., Takada K., Makimura M., Otake S. Improvement of Periodontal Status by Green Tea Catechin Using a Local Delivery System: A Clinical Pilot Study. J. Periodontal Res. 2002;37:433–438. doi: 10.1034/j.1600-0765.2002.01640.x. PubMed DOI
Xu X., Zhou X.D., Wu C.D. Tea Catechin Epigallocatechin Gallate Inhibits Streptococcus mutans Biofilm Formation by Suppressing Gtf Genes. Arch. Oral Biol. 2012;57:678–683. doi: 10.1016/j.archoralbio.2011.10.021. PubMed DOI
Matsunaga T., Nakahara A., Minnatul K.M., Noiri Y., Ebisu S., Kato A., Azakami H. The Inhibitory Effects of Catechins on Biofilm Formation by the Periodontopathogenic Bacterium, Eikenella corrodens. Biosci. Biotechnol. Biochem. 2010;74:2445–2450. doi: 10.1271/bbb.100499. PubMed DOI
Kushiyama M., Shimazaki Y., Murakami M., Yamashita Y. Relationship Between Intake of Green Tea and Periodontal Disease. J. Periodontol. 2009;80:372–377. doi: 10.1902/jop.2009.080510. PubMed DOI
Shumi W., Hossain M.A., Park D.-J., Park S. Inhibitory Effects of Green Tea Polyphenol Epigallocatechin Gallate (EGCG) on Exopolysaccharide Production by Streptococcus mutans under Microfluidic Conditions. BioChip J. 2014;8:179–186. doi: 10.1007/s13206-014-8304-y. DOI
Cho Y.-S., Oh J.J., Oh K.-H. Antimicrobial Activity and Biofilm Formation Inhibition of Green Tea Polyphenols on Human Teeth. Biotechnol. Bioprocess Eng. 2010;15:359–364. doi: 10.1007/s12257-009-0195-8. DOI
Shimamura T., Zhao W.-H., Hu Z.-Q. Mechanism of Action and Potential for Use of Tea Catechin as an Antiinfective Agent. Anti Infect. Agents Med. Chem. 2007;6:57–62. doi: 10.2174/187152107779314124. DOI
Abdulbaqi H.R., Himratul-Aznita W.H., Baharuddin N.A. Anti-Plaque Effect of a Synergistic Combination of Green Tea and Salvadora persica L. against Primary Colonizers of Dental Plaque. Arch. Oral Biol. 2016;70:117–124. doi: 10.1016/j.archoralbio.2016.06.011. PubMed DOI
Kawarai T., Narisawa N., Yoneda S., Tsutsumi Y., Ishikawa J., Hoshino Y., Senpuku H. Inhibition of Streptococcus Mutans Biofilm Formation Using Extracts from Assam Tea Compared to Green Tea. Arch. Oral Biol. 2016;68:73–82. doi: 10.1016/j.archoralbio.2016.04.002. PubMed DOI
Vahid Dastjerdi E., Abdolazimi Z., Ghazanfarian M., Amdjadi P., Kamalinejad M., Mahboubi A. Effect of Punica granatum L. Flower Water Extract on Five Common Oral Bacteria and Bacterial Biofilm Formation on Orthodontic Wire. Iran. J. Public Health. 2014;43:1688–1694. PubMed PMC
Abdollahzadeh S., Mashouf R.Y., Mortazavi H., Moghaddam M.H. Antibacterial and Antifungal Activities of Punica Granatum Peel Extracts Against Oral Pathogens. J. Dent. 2011;8:1–6. PubMed PMC
Rahmani A.H., Alsahli M.A., Almatroodi S.A. Active Constituents of Pomegranates (Punica granatum) as Potential Candidates in the Management of Health through Modulation of Biological Activities. Pharmacogn. J. 2017;9:689–695. doi: 10.5530/pj.2017.5.109. DOI
Gomes L.A.P., Alves Figueiredo L.M., do Rosário Palma A.L., Corrêa Geraldo B.M., Isler Castro K.C., de Oliveira Fugisaki L.R., Jorge A.O.C., de Oliveira L.D., Junqueira J.C. Punica granatum L. (Pomegranate) Extract: In Vivo Study of Antimicrobial Activity against Porphyromonas Gingivalis in Galleria Mellonella Model. Sci. World J. 2016;2016:8626987. doi: 10.1155/2016/8626987. PubMed DOI PMC
Widyarman S.A., Lay S.H., Wendhita I.P., Tjakra E.E., Murdono F.I., Binartha C.T.O. Indonesian Mangosteen Fruit (Garcinia mangostana L.) Peel Extract Inhibits Streptococcus Mutans and Porphyromonas Gingivalis in Biofilms In Vitro. Contemp. Clin. Dent. 2019;10:123–128. doi: 10.4103/ccd.ccd_758_18. PubMed DOI PMC
Araghizadeh A., Kohanteb J., Fani M.M. Inhibitory Activity of Green Tea (Camellia sinensis) Extract on Some Clinically Isolated Cariogenic and Periodontopathic Bacteria. Med. Princ. Pract. 2013;22:368–372. doi: 10.1159/000348299. PubMed DOI PMC
Esawy M.A., Ragab T.I.M., Shalaby A.S.G., Basha M., Emam M. Evaluated Bioactive Component Extracted from Punica Granatum Peel and Its Ag NPs Forms as Mouthwash against Dental Plaque. Biocatal. Agric. Biotechnol. 2019;18:101073. doi: 10.1016/j.bcab.2019.101073. DOI
Steinberg D., Feldman M., Ofek I., Weiss E.I. Cranberry High Molecular Weight Constituents Promote Streptococcus sobrinus Desorption from Artificial Biofilm. Int. J. Antimicrob. Agents. 2005;25:247–251. doi: 10.1016/j.ijantimicag.2004.10.014. PubMed DOI
Nagula R.L., Wairkar S. Recent advances in topical delivery of flavonoids: A review. J. Control Release. 2019;296:190–201. doi: 10.1016/j.jconrel.2019.01.029. PubMed DOI
Ayala-Fuentes J.C., Chavez-Santoscoy R.A. Nanotechnology as a Key to Enhance the Benefits and Improve the Bioavailability of Flavonoids in the Food Industry. Foods. 2021;10:2701. doi: 10.3390/foods10112701. PubMed DOI PMC