Seasonal Shifts in Bacterial and Fungal Microbiomes of Leaves and Associated Leaf-Mining Larvae Reveal Persistence of Core Taxa Regardless of Diet
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36629441
PubMed Central
PMC9927363
DOI
10.1128/spectrum.03160-22
Knihovny.cz E-zdroje
- Klíčová slova
- bacteria, fungi, invertebrate-microbe interactions, microbial communities, microbial ecology, plant-microbe interactions,
- MeSH
- Bacteria genetika MeSH
- dieta MeSH
- larva MeSH
- mykobiom * MeSH
- roční období MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Microorganisms are key mediators of interactions between insect herbivores and their host plants. Despite a substantial interest in studying various aspects of these interactions, temporal variations in microbiomes of woody plants and their consumers remain understudied. In this study, we investigated shifts in the microbiomes of leaf-mining larvae (Insecta: Lepidoptera) and their host trees over one growing season in a deciduous temperate forest. We used 16S and ITS2 rRNA gene metabarcoding to profile the bacterial and fungal microbiomes of leaves and larvae. We found pronounced shifts in the leaf and larval microbiota composition and richness as the season progressed, and bacteria and fungi showed consistent patterns. The quantitative similarity between leaf and larval microbiota was very low for bacteria (~9%) and decreased throughout the season, whereas fungal similarity increased and was relatively high (~27%). In both leaves and larvae, seasonality, along with host taxonomy, was the most important factor shaping microbial communities. We identified frequently occurring microbial taxa with significant seasonal trends, including those more prevalent in larvae (Streptococcus, Candida sake, Debaryomyces prosopidis, and Neoascochyta europaea), more prevalent in leaves (Erwinia, Seimatosporium quercinum, Curvibasidium cygneicollum, Curtobacterium, Ceramothyrium carniolicum, and Mycosphaerelloides madeirae), and frequent in both leaves and larvae (bacterial strain P3OB-42, Methylobacterium/Methylorubrum, Bacillus, Acinetobacter, Cutibacterium, and Botrytis cinerea). Our results highlight the importance of considering seasonality when studying the interactions between plants, herbivorous insects, and their respective microbiomes, and illustrate a range of microbial taxa persistent in larvae, regardless of their occurrence in the diet. IMPORTANCE Leaf miners are endophagous insect herbivores that feed on plant tissues and develop and live enclosed between the epidermis layers of a single leaf for their entire life cycle. Such close association is a precondition for the evolution of more intimate host-microbe relationships than those found in free-feeding herbivores. Simultaneous comparison of bacterial and fungal microbiomes of leaves and their tightly linked consumers over time represents an interesting study system that could fundamentally contribute to the ongoing debate on the microbial residence of insect gut. Furthermore, leaf miners are ideal model organisms for interpreting the ecological and evolutionary roles of microbiota in host plant specialization. In this study, the larvae harbored specific microbial communities consisting of core microbiome members. Observed patterns suggest that microbes, especially bacteria, may play more important roles in the caterpillar holobiont than generally presumed.
Department of Biology and Ecology Faculty of Science University of Ostrava Ostrava Czech Republic
Institute of Microbiology Academy of Sciences of the Czech Republic Prague Czech Republic
Zobrazit více v PubMed
Barbosa P, Krischik VA, Jones CG. 1991. Microbial mediation of plant-herbivore interactions. John Wiley & Sons, New York, NY.
Frago E, Dicke M, Godfray HCJ. 2012. Insect symbionts as hidden players in insect–plant interactions. Trends Ecol Evol 27:705–711. doi:10.1016/j.tree.2012.08.013. PubMed DOI
Stone BWG, Weingarten EA, Jackson CR. 2018. The role of the phyllosphere microbiome in plant health and function. Annu Plant Rev Online 1:533–556. doi:10.1002/9781119312994.apr0614. DOI
Lindow SE, Brandl MT. 2003. Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883. doi:10.1128/AEM.69.4.1875-1883.2003. PubMed DOI PMC
Perreault R, Laforest-Lapointe I. 2022. Plant-microbe interactions in the phyllosphere: facing challenges of the anthropocene. ISME J 16:339–345. doi:10.1038/s41396-021-01109-3. PubMed DOI PMC
Berasategui A, Salem H. 2020. Microbial determinants of folivory in insects, p 217–232. In Bosch, TCG, Hadfield, MG (ed), Cellular dialogues in the holobiont, 1st ed. CRC Press, Boca Raton, FL.
Ceja-Navarro JA, Nguyen NH, Karaoz U, Gross SR, Herman DJ, Andersen GL, Bruns TD, Pett-Ridge J, Blackwell M, Brodie EL. 2014. Compartmentalized microbial composition, oxygen gradients and nitrogen fixation in the gut of Odontotaenius disjunctus. ISME J 8:6–18. doi:10.1038/ismej.2013.134. PubMed DOI PMC
Smith TE, Moran NA. 2020. Coordination of host and symbiont gene expression reveals a metabolic tug-of-war between aphids and Buchnera. Proc Natl Acad Sci USA 117:2113–2121. doi:10.1073/pnas.1916748117. PubMed DOI PMC
Hammer TJ, Janzen DH, Hallwachs W, Jaffe SP, Fierer N. 2017. Caterpillars lack a resident gut microbiome. Proc Natl Acad Sci USA 114:9641–9646. doi:10.1073/pnas.1707186114. PubMed DOI PMC
Chen B, Teh B-S, Sun C, Hu S, Lu X, Boland W, Shao Y. 2016. Biodiversity and activity of the gut microbiota across the life history of the insect herbivore Spodoptera littoralis. Sci Rep 6:29505. doi:10.1038/srep29505. PubMed DOI PMC
Hammer TJ, Sanders JG, Fierer N. 2019. Not all animals need a microbiome. FEMS Microbiol Lett 366:fnz117. doi:10.1093/femsle/fnz117. PubMed DOI
Mason CJ, Clair AS, Peiffer M, Gomez E, Jones AG, Felton GW, Hoover K. 2020. Diet influences proliferation and stability of gut bacterial populations in herbivorous lepidopteran larvae. PLoS One 15:e0229848. doi:10.1371/journal.pone.0229848. PubMed DOI PMC
Montagna M, Mereghetti V, Gargari G, Guglielmetti S, Faoro F, Lozzia G, Locatelli D, Limonta L. 2016. Evidence of a bacterial core in the stored products pest Plodia interpunctella: the influence of different diets. Environ Microbiol 18:4961–4973. doi:10.1111/1462-2920.13450. PubMed DOI
Connor EF, Taverner MP. 1997. The evolution and adaptive significance of the leaf-mining habit. Oikos 79:6–25. doi:10.2307/3546085. DOI
Michell CT, Nyman T. 2021. Microbiomes of willow-galling sawflies: effects of host plant, gall type, and phylogeny on community structure and function. Genome 64:615–626. doi:10.1139/gen-2020-0018. PubMed DOI
Body M, Kaiser W, Dubreuil G, Casas J, Giron D. 2013. Leaf-miners co-opt microorganisms to enhance their nutritional environment. J Chem Ecol 39:969–977. doi:10.1007/s10886-013-0307-y. PubMed DOI
Kaiser W, Huguet E, Casas J, Commin C, Giron D. 2010. Plant green-island phenotype induced by leaf-miners is mediated by bacterial symbionts. Proc Biol Sci 277:2311–2319. doi:10.1098/rspb.2010.0214. PubMed DOI PMC
Gutzwiller F, Dedeine F, Kaiser W, Giron D, Lopez-Vaamonde C. 2015. Correlation between the green-island phenotype and Wolbachia infections during the evolutionary diversification of Gracillariidae leaf-mining moths. Ecol Evol 5:4049–4062. doi:10.1002/ece3.1580. PubMed DOI PMC
Mehrkhou F, Güz N, Korkmaz EM, Çağatay NS. 2021. Analysis of genetic variation in an important pest, Tuta absoluta, and its microbiota with a new bacterial endosymbiont. Turk J Agric For 45:111–123. doi:10.3906/tar-2006-12. DOI
Metla Z, Voitkāne S, Sešķēna R, Petrova V, Jankevica L. 2013. Presence of entomopathogenic fungi and bacteria in Latvian population of horse-chestnut leaf miner Cameraria ohridella. Acta Biol Univ Daugavp 13:69–76.
Chen B, Xie S, Zhang X, Zhang N, Feng H, Sun C, Lu X, Shao Y. 2020. Gut microbiota metabolic potential correlates with body size between mulberry-feeding lepidopteran pest species. Pest Manag Sci 76:1313–1323. doi:10.1002/ps.5642. PubMed DOI
Wang H, Xian X, Gu Y, Castañé C, Arnó J, Wu S, Wan F, Liu W, Zhang G, Zhang Y. 2022. Similar bacterial communities among different populations of a newly emerging invasive species, Tuta absoluta (Meyrick). Insects 13:252. doi:10.3390/insects13030252. PubMed DOI PMC
Apigo A, Oono R. 2022. Plant abundance, but not plant evolutionary history, shapes patterns of host specificity in foliar fungal endophytes. Ecosphere 13:e03879. doi:10.1002/ecs2.3879. DOI
Barge EG, Leopold DR, Peay KG, Newcombe G, Busby PE. 2019. Differentiating spatial from environmental effects on foliar fungal communities of Populus trichocarpa. J Biogeogr 46:2001–2011. doi:10.1111/jbi.13641. DOI
Cobian GM, Egan CP, Amend AS. 2019. Plant–microbe specificity varies as a function of elevation. ISME J 13:2778–2788. doi:10.1038/s41396-019-0470-4. PubMed DOI PMC
González-Teuber M, Palma-Onetto V, Aguilera-Sammaritano J, Mithöfer A. 2021. Roles of leaf functional traits in fungal endophyte colonization: potential implications for host–pathogen interactions. J Ecol 109:3972–3987. doi:10.1111/1365-2745.13678. DOI
Copeland JK, Yuan L, Layeghifard M, Wang PW, Guttman DS. 2015. Seasonal community succession of the phyllosphere microbiome. Mol Plant Microbe Interact 28:274–285. doi:10.1094/MPMI-10-14-0331-FI. PubMed DOI
Stone BWG, Jackson CR. 2021. Seasonal patterns contribute more towards phyllosphere bacterial community structure than short-term perturbations. Microb Ecol 81:146–156. doi:10.1007/s00248-020-01564-z. PubMed DOI PMC
Kinkel L. 1991. Fungal community dynamics, p 253–270. In Andrews JH, Hirano SS (ed), Microbial ecology of leaves. Springer, New York, NY.
Kinkel LL. 1997. Microbial population dynamics on leaves. Annu Rev Phytopathol 35:327–347. doi:10.1146/annurev.phyto.35.1.327. PubMed DOI
Pedgley DE. 1991. Aerobiology: the atmosphere as a source and sink for microbes, p 43–59. In Andrews JH, Hirano SS (ed), Microbial ecology of leaves. Springer, New York, NY.
Bowsher AW, Benucci GMN, Bonito G, Shade A. 2021. Seasonal dynamics of core fungi in the switchgrass phyllosphere, and co-occurrence with leaf bacteria. Phytobiomes J 5:60–68. doi:10.1094/PBIOMES-07-20-0051-R. DOI
Grady KL, Sorensen JW, Stopnisek N, Guittar J, Shade A. 2019. Assembly and seasonality of core phyllosphere microbiota on perennial biofuel crops. Nat Commun 10:4135. doi:10.1038/s41467-019-11974-4. PubMed DOI PMC
Bao L, Gu L, Sun B, Cai W, Zhang S, Zhuang G, Bai Z, Zhuang X. 2020. Seasonal variation of epiphytic bacteria in the phyllosphere of Gingko biloba, Pinus bungeana and Sabina chinensis. FEMS Microbiol Ecol 96:fiaa017. doi:10.1093/femsec/fiaa017. PubMed DOI
Gomes T, Pereira JA, Benhadi J, Lino-Neto T, Baptista P. 2018. Endophytic and epiphytic phyllosphere fungal communities are shaped by different environmental factors in a Mediterranean ecosystem. Microb Ecol 76:668–679. doi:10.1007/s00248-018-1161-9. PubMed DOI
Jackson CR, Denney WC. 2011. Annual and seasonal variation in the phyllosphere bacterial community associated with leaves of the southern magnolia (Magnolia grandiflora). Microb Ecol 61:113–122. doi:10.1007/s00248-010-9742-2. PubMed DOI
Materatski P, Varanda C, Carvalho T, Dias AB, Campos MD, Rei F, Félix MdR. 2019. Spatial and temporal variation of fungal endophytic richness and diversity associated to the phyllosphere of olive cultivars. Fungal Biol 123:66–76. doi:10.1016/j.funbio.2018.11.004. PubMed DOI
Peñuelas J, Rico L, Ogaya R, Jump AS, Terradas J. 2012. Summer season and long-term drought increase the richness of bacteria and fungi in the foliar phyllosphere of Quercus ilex in a mixed Mediterranean forest. Plant Biol (Stuttg) 14:565–575. doi:10.1111/j.1438-8677.2011.00532.x. PubMed DOI
Jumpponen A, Jones KL. 2010. Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments. New Phytol 186:496–513. doi:10.1111/j.1469-8137.2010.03197.x. PubMed DOI
Voříšková J, Baldrian P. 2013. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J 7:477–486. doi:10.1038/ismej.2012.116. PubMed DOI PMC
Mae T. 2004. Leaf senescence and nitrogen metabolism, p 157–168. In Noodén LD (ed), Plant cell death processes. Academic Press, San Diego, CA.
Paaso U, Keski-Saari S, Keinänen M, Karvinen H, Silfver T, Rousi M, Mikola J. 2017. Intrapopulation genotypic variation of foliar secondary chemistry during leaf senescence and litter decomposition in silver birch (Betula pendula). Front Plant Sci 8:1074. doi:10.3389/fpls.2017.01074. PubMed DOI PMC
Smith AP, Fontenot EB, Zahraeifard S, DiTusa SF. 2017. Molecular components that drive phosphorus remobilisation during leaf senescence, p 159–186. In Annual plant reviews online. John Wiley & Sons, Ltd, New York, NY.
Chen B, Du K, Sun C, Vimalanathan A, Liang X, Li Y, Wang B, Lu X, Li L, Shao Y. 2018. Gut bacterial and fungal communities of the domesticated silkworm (Bombyx mori) and wild mulberry-feeding relatives. ISME J 12:2252–2262. doi:10.1038/s41396-018-0174-1. PubMed DOI PMC
Mason CJ, Raffa KF. 2014. Acquisition and structuring of midgut bacterial communities in gypsy moth (Lepidoptera: Erebidae) larvae. Environ Entomol 43:595–604. doi:10.1603/EN14031. PubMed DOI
Paniagua Voirol LR, Frago E, Kaltenpoth M, Hilker M, Fatouros NE. 2018. Bacterial symbionts in Lepidoptera: their diversity, transmission, and impact on the host. Front Microbiol 9:556. doi:10.3389/fmicb.2018.00556. PubMed DOI PMC
Vincent JB, Weiblen GD, May G. 2016. Host associations and beta diversity of fungal endophyte communities in New Guinea rainforest trees. Mol Ecol 25:825–841. doi:10.1111/mec.13510. PubMed DOI
Berlec A. 2012. Novel techniques and findings in the study of plant microbiota: search for plant probiotics. Plant Sci 193–194:96–102. doi:10.1016/j.plantsci.2012.05.010. PubMed DOI
Zarraonaindia I, Owens SM, Weisenhorn P, West K, Hampton-Marcell J, Lax S, Bokulich NA, Mills DA, Martin G, Taghavi S, van der Lelie D, Gilbert JA. 2015. The soil microbiome influences grapevine-associated microbiota. mBio 6:e02527-14. doi:10.1128/mBio.02527-14. PubMed DOI PMC
Šigut M, Pyszko P, Šigutová H, Višňovská D, Kostovčík M, Kotásková N, Dorňák O, Kolařík M, Drozd P. 2022. Fungi are more transient than bacteria in caterpillar gut microbiomes. Sci Rep 12:15552. doi:10.1038/s41598-022-19855-5. PubMed DOI PMC
Müller T, Müller M, Behrendt U, Stadler B. 2003. Diversity of culturable phyllosphere bacteria on beech and oak: the effects of lepidopterous larvae. Microbiol Res 158:291–297. doi:10.1078/0944-5013-00207. PubMed DOI
Humphrey PT, Whiteman NK. 2020. Insect herbivory reshapes a native leaf microbiome. Nat Ecol Evol 4:221–229. doi:10.1038/s41559-019-1085-x. PubMed DOI PMC
David AS, Quiram GL, Sirota JI, Seabloom EW. 2016. Quantifying the associations between fungal endophytes and biocontrol-induced herbivory of invasive purple loosestrife (Lythrum salicaria L.). Mycologia 108:625–637. doi:10.3852/15-207. PubMed DOI
Borer ET, Laine A-L, Seabloom EW. 2016. A multiscale approach to plant disease using the metacommunity concept. Annu Rev Phytopathol 54:397–418. doi:10.1146/annurev-phyto-080615-095959. PubMed DOI
Seabloom EW, Condon B, Kinkel L, Komatsu KJ, Lumibao CY, May G, McCulley RL, Borer ET. 2019. Effects of nutrient supply, herbivory, and host community on fungal endophyte diversity. Ecology 100:e02758. doi:10.1002/ecy.2758. PubMed DOI
Shutt JD, Burgess MD, Phillimore AB. 2019. A spatial perspective on the phenological distribution of the spring woodland caterpillar peak. Am Nat 194:E109–E121. doi:10.1086/705241. PubMed DOI
van Asch M, Visser ME. 2007. Phenology of forest caterpillars and their host trees: the importance of synchrony. Annu Rev Entomol 52:37–55. doi:10.1146/annurev.ento.52.110405.091418. PubMed DOI
Jackson CR, Churchill PF, Roden EE. 2001. Successional changes in bacterial assemblage structure during epilithic biofilm development. Ecology 82:555–566. doi:10.1890/0012-9658(2001)082[0555:SCIBAS]2.0.CO;2. DOI
Osono T. 2008. Endophytic and epiphytic phyllosphere fungi of Camellia japonica: seasonal and leaf age-dependent variations. Mycologia 100:387–391. doi:10.3852/07-110r1. PubMed DOI
Whipps JM, Hand P, Pink D, Bending GD. 2008. Phyllosphere microbiology with special reference to diversity and plant genotype. J Appl Microbiol 105:1744–1755. doi:10.1111/j.1365-2672.2008.03906.x. PubMed DOI
González-Serrano F, Pérez-Cobas AE, Rosas T, Baixeras J, Latorre A, Moya A. 2020. The gut microbiota composition of the moth Brithys crini reflects insect metamorphosis. Microb Ecol 79:960–970. doi:10.1007/s00248-019-01460-1. PubMed DOI
Gurung K, Wertheim B, Falcao Salles J. 2019. The microbiome of pest insects: it is not just bacteria. Entomol Exp Appl 167:156–170. doi:10.1111/eea.12768. DOI
Osawa R, Mitsuoka T. 1990. Selective medium for enumeration of tannin-protein complex-degrading Streptococcus spp. in feces of koalas. Appl Environ Microbiol 56:3609–3611. doi:10.1128/aem.56.11.3609-3611.1990. PubMed DOI PMC
Visôtto LE, Oliveira MGA, Ribon AOB, Mares-Guia TR, Guedes RNC. 2009. Characterization and identification of proteolytic bacteria from the gut of the velvetbean caterpillar (Lepidoptera: Noctuidae). Environ Entomol 38:1078–1085. doi:10.1603/022.038.0415. PubMed DOI
Malassigné S, Minard G, Vallon L, Martin E, Valiente Moro C, Luis P. 2021. Diversity and functions of yeast communities associated with insects. Microorganisms 9:1552. doi:10.3390/microorganisms9081552. PubMed DOI PMC
Morales H, Sanchis V, Usall J, Ramos AJ, Marín S. 2008. Effect of biocontrol agents Candida sake and Pantoea agglomerans on Penicillium expansum growth and patulin accumulation in apples. Int J Food Microbiol 122:61–67. doi:10.1016/j.ijfoodmicro.2007.11.056. PubMed DOI
Fernandez-Cassi X, Söderqvist K, Bakeeva A, Vaga M, Dicksved J, Vagsholm I, Jansson A, Boqvist S. 2020. Microbial communities and food safety aspects of crickets (Acheta domesticus) reared under controlled conditions. J Insects Food Feed 6:429–440. doi:10.3920/JIFF2019.0048. DOI
Heisel T, Montassier E, Johnson A, Al-Ghalith G, Lin Y-W, Wei L-N, Knights D, Gale CA. 2017. High-fat diet changes fungal microbiomes and interkingdom relationships in the murine gut. mSphere 2:e00351-17. doi:10.1128/mSphere.00351-17. PubMed DOI PMC
Salem H, Florez L, Gerardo N, Kaltenpoth M. 2015. An out-of-body experience: the extracellular dimension for the transmission of mutualistic bacteria in insects. Proc Biol Sci 282:20142957. doi:10.1098/rspb.2014.2957. PubMed DOI PMC
Rastogi G, Sbodio A, Tech JJ, Suslow TV, Coaker GL, Leveau JHJ. 2012. Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce. ISME J 6:1812–1822. doi:10.1038/ismej.2012.32. PubMed DOI PMC
Goonasekara I, Maharachchikumbura S, Wijayawardene N, Phookamsak R, Schumacher R, Bahkali A, Jones E, Hyde K. 2016. Seimatosporium quercina sp. nov. (Discosiaceae) on Quercus robur from Germany. Phytotaxa 255:240–248. doi:10.11646/phytotaxa.255.3.5. DOI
Robert K, Baranowska M, Behnke-Borowczyk J. 2019. The effect of size of black cherry stumps on the composition of fungal communities colonising stumps. Open Life Sci 14:482–493. doi:10.1515/biol-2019-0054. PubMed DOI PMC
Crous PW, Groenewald JZ, Mansilla JP, Hunter GC, Wingfield MJ. 2004. Phylogenetic reassessment of Mycosphaerella spp. and their anamorphs occurring on Eucalyptus. Stud Mycol 50:195–214. doi:10.3114/sim.55.1.99. PubMed DOI PMC
Hsieh TF, Huang HC, Mündel H-H, Conner RL, Erickson RS, Balasubramanian PM. 2005. Resistance of common bean (Phaseolus vulgaris) to bacterial wilt caused by Curtobacterium flaccumfaciens pv. flaccumfaciens. J Phytopathol 153:245–249. doi:10.1111/j.1439-0434.2005.00963.x. DOI
Nguyen D, Boberg J, Ihrmark K, Stenström E, Stenlid J. 2016. Do foliar fungal communities of Norway spruce shift along a tree species diversity gradient in mature European forests? Fungal Ecol 23:97–108. doi:10.1016/j.funeco.2016.07.003. DOI
Dobrovol’skaya TG, Khusnetdinova KA, Manucharova NA, Balabko PN. 2016. The structure and functions of bacterial communities in an agrocenosis. Eurasian Soil Sc 49:70–76. doi:10.1134/S106422931601004X. DOI
Falk SP, Gadoury DM, Cortesi P, Pearson RC, Seem RC. 1995. Parasitism of Uncinula necator cleistothecia by the mycoparasite Ampelomyces quisqualis. Phytopathology 85:794–800. doi:10.1094/Phyto-85-794. DOI
Waight K, Pinyakong O, Luepromchai E. 2007. Degradation of phenanthrene on plant leaves by phyllosphere bacteria. J Gen Appl Microbiol 53:265–272. doi:10.2323/jgam.53.265. PubMed DOI
Sundin GW, Jacobs JL. 1999. Ultraviolet radiation (UVR) sensitivity analysis and UVR survival strategies of a bacterial community from the phyllosphere of field-grown peanut (Arachis hypogeae L.). Microb Ecol 38:27–38. doi:10.1007/s002489900152. PubMed DOI
Díaz-Riaño J, Posada L, Acosta IC, Ruíz-Pérez C, García-Castillo C, Reyes A, Zambrano MM. 2019. Computational search for UV radiation resistance strategies in Deinococcus swuensis isolated from Paramo ecosystems. PLoS One 14:e0221540. doi:10.1371/journal.pone.0221540. PubMed DOI PMC
Liu J, Song M, Wei X, Zhang H, Bai Z, Zhuang X. 2022. Responses of phyllosphere microbiome to ozone stress: abundance, community compositions and functions. Microorganisms 10:680. doi:10.3390/microorganisms10040680. PubMed DOI PMC
Gai CS, Dini-Andreote F, Dini Andreote F, Lopes JRS, Araújo WL. 2011. Endophytic bacteria associated to sharpshooters (Hemiptera: cicadellidae), insect vectors of Xylella fastidiosa subsp. pauca. J Plant Pathol Microbiol 2:109. doi:10.4172/2157-7471.1000109. DOI
Lacava PT, Parker J, Andreote FD, Dini-Andreote F, Ramirez J, Miller TA. 2007. Analysis of the bacterial community in glassy-winged sharpshooter heads. Entomol Res 37:261–266. doi:10.1111/j.1748-5967.2007.00123.x. DOI
Mikaelyan A, Thompson CL, Hofer MJ, Brune A. 2016. Deterministic assembly of complex bacterial communities in guts of germ-free cockroaches. Appl Environ Microbiol 82:1256–1263. doi:10.1128/AEM.03700-15. PubMed DOI PMC
Ravenscraft A, Berry M, Hammer T, Peay K, Boggs C. 2019. Structure and function of the bacterial and fungal gut microbiota of neotropical butterflies. Ecol Monogr 89:e01346. doi:10.1002/ecm.1346. DOI
Nair JR, Singh G, Sekar V. 2002. Isolation and characterization of a novel Bacillus strain from coffee phyllosphere showing antifungal activity. J Appl Microbiol 93:772–780. doi:10.1046/j.1365-2672.2002.01756.x. PubMed DOI
Perissol C, Roux M, Le Petit J. 1993. Succession of bacteria attached to evergreen oak leaf surfaces [phylloplane]. Eur J Soil Biol 29:167–176.
Senthilkumar M, Madhaiyan M, Sundaram SP, Kannaiyan S. 2009. Intercellular colonization and growth promoting effects of Methylobacterium sp. with plant-growth regulators on rice (Oryza sativa L. Cv CO-43). Microbiol Res 164:92–104. doi:10.1016/j.micres.2006.10.007. PubMed DOI
Ardanov P, Sessitsch A, Häggman H, Kozyrovska N, Pirttilä AM. 2012. Methylobacterium-induced endophyte community changes correspond with protection of plants against pathogen attack. PLoS One 7:e46802. doi:10.1371/journal.pone.0046802. PubMed DOI PMC
Jayashree S, Lalitha R, Vadivukkarasi P, Kato Y, Seshadri S. 2011. Cellulase production by pink pigmented facultative methylotrophic strains (PPFMs). Appl Biochem Biotechnol 164:666–680. doi:10.1007/s12010-011-9166-6. PubMed DOI
Martins AM, Latham JA, Martel PJ, Barr I, Iavarone AT, Klinman JP. 2019. A two-component protease in Methylorubrum extorquens with high activity toward the peptide precursor of the redox cofactor pyrroloquinoline quinone. J Biol Chem 294:15025–15036. doi:10.1074/jbc.RA119.009684. PubMed DOI PMC
Araya MA, Valenzuela T, Inostroza NG, Maruyama F, Jorquera MA, Acuña JJ. 2020. Isolation and characterization of cold-tolerant hyper-ACC-degrading bacteria from the rhizosphere, endosphere, and phyllosphere of Antarctic vascular plants. Microorganisms 8:1788. doi:10.3390/microorganisms8111788. PubMed DOI PMC
Mason CJ, Lowe-Power TM, Rubert-Nason KF, Lindroth RL, Raffa KF. 2016. Interactions between bacteria and aspen defense chemicals at the phyllosphere–herbivore interface. J Chem Ecol 42:193–201. doi:10.1007/s10886-016-0677-z. PubMed DOI
Wang Y, Gilbreath TM, Kukutla P, Yan G, Xu J. 2011. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS One 6:e24767. doi:10.1371/journal.pone.0024767. PubMed DOI PMC
Kumar V, Tyagi I, Tyagi K, Chandra K. 2020. Diversity and structure of bacterial communities in the gut of spider: Thomisidae and Oxyopidae. Front Ecol Evol 8:588102. doi:10.3389/fevo.2020.588102. DOI
Papadopoulos C, Karas PA, Vasileiadis S, Ligda P, Saratsis A, Sotiraki S, Karpouzas DG. 2020. Host species determines the composition of the prokaryotic microbiota in Phlebotomus sandflies. Pathogens 9:428. doi:10.3390/pathogens9060428. PubMed DOI PMC
Perry AL, Lambert PA. 2006. Propionibacterium acnes. Lett Appl Microbiol 42:185–188. doi:10.1111/j.1472-765X.2006.01866.x. PubMed DOI
Elad Y, Vivier M, Fillinger S. 2016. Botrytis, the good, the bad and the ugly, p 1–15. In Fillinger S, Elad Y (ed), Botrytis–the fungus, the pathogen and its management in agricultural systems. Springer International Publishing, Cham, Switzerland.
Rizvi SZM, Raman A. 2015. Epiphyas postvittana (Lepidoptera: Tortricidae)—Botrytis cinerea (Helotiales: sclerotiniaceae)—Vitis vinifera (Vitales: Vitaceae) interaction: the role of B. cinerea on the development of E. postvittana in synthetic nutritional media. J Econ Entomol 108:1646–1654. doi:10.1093/jee/tov131. PubMed DOI
Risely A. 2020. Applying the core microbiome to understand host–microbe systems. J Anim Ecol 89:1549–1558. doi:10.1111/1365-2656.13229. PubMed DOI
Xia X, Gurr GM, Vasseur L, Zheng D, Zhong H, Qin B, You M. 2017. Metagenomic sequencing of diamondback moth gut microbiome unveils key holobiont adaptations for herbivory. Front Microbiol 8:663. doi:10.3389/fmicb.2017.00663. PubMed DOI PMC
Shade A, Stopnisek N. 2019. Abundance-occupancy distributions to prioritize plant core microbiome membership. Curr Opin Microbiol 49:50–58. doi:10.1016/j.mib.2019.09.008. PubMed DOI
Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W. 2004. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 101:14812–14817. doi:10.1073/pnas.0406166101. PubMed DOI PMC
Bateman C, Šigut M, Skelton J, Smith KE, Hulcr J. 2016. Fungal associates of the Xylosandrus compactus (Coleoptera: Curculionidae, Scolytinae) are spatially segregated on the insect body. Environ Entomol 45:883–890. doi:10.1093/ee/nvw070. PubMed DOI
Toju H, Tanabe AS, Yamamoto S, Sato H. 2012. High-coverage ITS primers for the DNA-based identification of Ascomycetes and Basidiomycetes in environmental samples. PLoS One 7:e40863. doi:10.1371/journal.pone.0040863. PubMed DOI PMC
Chelius MK, Triplett EW. 2001. The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb Ecol 41:252–263. doi:10.1007/s002480000087. PubMed DOI
Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N. 2010. The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol 12:2885–2893. doi:10.1111/j.1462-2920.2010.02258.x. PubMed DOI PMC
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, et al. . 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. doi:10.1038/s41587-019-0209-9. PubMed DOI PMC
Rivers AR, Weber KC, Gardner TG, Liu S, Armstrong SD. 2018. ITSxpress: software to rapidly trim internally transcribed spacer sequences with quality scores for marker gene analysis. F1000Res 7:1418. doi:10.12688/f1000research.15704.1. PubMed DOI PMC
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. doi:10.1038/nmeth.3869. PubMed DOI PMC
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. doi:10.1093/nar/gks1219. PubMed DOI PMC
Nilsson RH, Larsson K-H, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, Kennedy P, Picard K, Glöckner FO, Tedersoo L, Saar I, Kõljalg U, Abarenkov K. 2019. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res 47:D259–D264. doi:10.1093/nar/gky1022. PubMed DOI PMC
UNITE Community. 2019. UNITE QIIME release for Fungi 2. https://doi.plutof.ut.ee/doi/10.15156/BIO/786349. Retrieved 22 February 2022. DOI
Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Gregory Caporaso J. 2018. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6:90. doi:10.1186/s40168-018-0470-z. PubMed DOI PMC
Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. 2018. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6:226. doi:10.1186/s40168-018-0605-2. PubMed DOI PMC
R Core Team. 2021. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Ter Braak CJF, Šmilauer P. 2012. CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 5.01). Microcomputer Power, Ithaca, NY.
Ondov BD, Bergman NH, Phillippy AM. 2011. Interactive metagenomic visualization in a web browser. BMC Bioinformatics 12:385. doi:10.1186/1471-2105-12-385. PubMed DOI PMC
Chrostek E, Pelz-Stelinski K, Hurst GDD, Hughes GL. 2017. Horizontal transmission of intracellular insect symbionts via plants. Front Microbiol 8:2237. doi:10.3389/fmicb.2017.02237. PubMed DOI PMC
Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG. 2016. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248. doi:10.1016/j.funeco.2015.06.006. DOI
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens M, Szoecs E, Wagner H. 2020. vegan: community ecology package. R package version 2.5–7. https://CRAN.R-project.org/package=vegan. Retrieved 15 May 2022.
Renkonen O. 1938. Statistisch-ökologische Untersuchungen über die terrestrische Käferwelt der finnischen Bruchmoore. Doctoral dissertation. Societas zoologica-botanica Fennica Vanamo, Helsinki, Finland.
Anderson MJ. 2006. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245–253. doi:10.1111/j.1541-0420.2005.00440.x. PubMed DOI
Sprockett D. 2022. reltools: microbiome amplicon analysis and visualization. R package version 0.1.0. https://github.com/DanielSprockett/reltools. Retrieved 15 May 2022.
McMurdie PJ, Holmes S. 2013. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. doi:10.1371/journal.pone.0061217. PubMed DOI PMC
Chen J, Zhang X, Yang L. 2022. GUniFrac: generalized UniFrac distances, distance-based multivariate methods and feature-based univariate methods for microbiome data analysis. R package version 1.7. https://cran.r-project.org/web/packages/GUniFrac/index.html. Retrieved 10 November 2022.
Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, Curtis TP. 2006. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ Microbiol 8:732–740. doi:10.1111/j.1462-2920.2005.00956.x. PubMed DOI