Mycobiomes of two distinct clades of ambrosia gall midges (Diptera: Cecidomyiidae) are species-specific in larvae but similar in nutritive mycelia

. 2024 Jan 11 ; 12 (1) : e0283023. [epub] 20231214

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38095510

Grantová podpora
GA23-07026S Grantová Agentura České Republiky (GAČR)

Ambrosia gall midges are endophagous insect herbivores whose larvae live enclosed within a single gall for their entire development period. They may exhibit phytomycetophagy, a remarkable feeding mode that involves the consumption of plant biomass and mycelia of their cultivated gall symbionts. Thus, AGMs are ideal model organisms for studying the role of microorganisms in the evolution of host specificity in insects. However, compared to other fungus-farming insects, insect-fungus mutualism in AGMs has been neglected. Our study is the first to use DNA metabarcoding to characterize the complete mycobiome of the entire system of the gall-forming insects as we profiled gall surfaces, nutritive mycelia, and larvae. Interestingly, larval mycobiomes were significantly different from their nutritive mycelia, although Botryosphaeria dothidea dominated the nutritive mycelia, regardless of the evolutionary separation of the tribes studied. Therefore, we confirmed a long-time hypothesized paradigm for the important evolutionary association of this fungus with AGMs.

Zobrazit více v PubMed

Mamaev BM. 1975. Evolution of gall forming insects, gall midges. British Library Lending Division, Wetherby, UK.

Bissett J, Borkent A. 1988. Ambrosia galls: the significance of fungal nutrition in the evolution of the cecidomyiidae (Diptera), p 203–226. In Pirozynski KA, Hawksworth DL (ed), Coevolution of fungi with plants and animals. Academic Press, London.

Dorchin N, Harris KM, Stireman JO. 2019. Phylogeny of the gall midges (Diptera, Cecidomyiidae, Cecidomyiinae): systematics, evolution of feeding modes and diversification rates. Mol Phylogenet Evol 140:106602. doi:10.1016/j.ympev.2019.106602 PubMed DOI

Sikora T, Jaschhof M, Mantič M, Kaspřák D, ševčík J. 2019. Considerable congruence, enlightening conflict: molecular analysis largely supports morphology-based hypotheses on Cecidomyiidae (Diptera) phylogeny. Zool J Linn Soc 185:98–110. doi:10.1093/zoolinnean/zly029 DOI

Yukawa J, Rohfritsch O. 2005. Biology and ecology of gall-inducing Cecidomyiidae (Diptera), p 273–304. In Raman A (ed), Biology, ecology, and evolution of gall-inducing arthropods. Science Publishers, Inc, Enfield, USA.

Dentinger BT, Bills C. 2018. Fungal cultivation by insects, p 1–9. In eLS

Beaver RA. 1989. Insect-fungus relationships in the bark and ambrosia beetles, p 121–137. In Wilding N, Collins NM, Hammond PM, Webber JF (ed), Insect-fungus interactions. Academic Press, London, UK.

Gilbertson RL. 1984. Relationships between insects and wood-rotting Basidiomycetes, p 130–165. In Wheeler Q, Blackwell M (ed), Fungus-insect relationships, perspectives in ecology and evolution. Columbia University Press, New York.

Morgan FD. 1968. Bionomics of Siricidae. Annu Rev Entomol 13:239–256. doi:10.1146/annurev.en.13.010168.001323 DOI

Cherrett JM, Powell RJ, Strandling DJ. 1989. The mutualism between leaf-cutting ants and their fungus, p 93–116. In Wilding N, Collins NM, Hammond PM, Webber JF (ed), Insect-fungus interactions. Academic Press, London, UK.

Wood TG, Thomas RJ. 1989. The mutualistic association between Macrotermitinae and Termitomyces, p 69–88. In Wilding N, Collins NM, Hammond PM, Webber JF (ed), Insect-fungus interactions. Academic Press, London, UK.

Adair RJ, Burgess T, Serdani M, Barber P. 2009. Fungal associations in Asphondylia (Diptera: Cecidomyiidae) galls from Australia and South Africa: implications for biological control of invasive acacias. Fungal Ecol 2:121–134. doi:10.1016/j.funeco.2009.02.003 DOI

Kobune S, Kajimura H, Masuya H, Kubono T. 2012. Symbiotic fungal flora in leaf galls induced by Illiciomyia yukawai (Diptera: Cecidomyiidae) and in its mycangia. Microb Ecol 63:619–627. doi:10.1007/s00248-011-9962-0 PubMed DOI

Pan L-Y, Chen W-N, Chiu S-T, Raman A, Chiang T-C, Yang M-M. 2015. Is a gall an extended phenotype of the inducing insect? A comparative study of selected morphological and physiological traits of leaf and stem galls on Machilus thunbergii (Lauraceae) induced by five species of Daphnephila (Diptera: Cecidomyiidae) in northeastern Taiwan. Zoolog Sci 32:314–321. doi:10.2108/zs140244 PubMed DOI

Rohfritsch O. 2008. Plants, gall midges, and fungi: a three-component system. Entomologia Exp Applicata 128:208–216. doi:10.1111/j.1570-7458.2008.00726.x DOI

Heath JJ, Stireman III JO. 2010. Dissecting the association between a gall midge, Asteromyia carbonifera, and its symbiotic fungus, Botryosphaeria dothidea. Entomologia Exp Applicata 137:36–49. doi:10.1111/j.1570-7458.2010.01040.x DOI

Janson EM, Peeden ER, Stireman III JO, Abbot P. 2010. Symbiont-mediated phenotypic variation without co-evolution in an insect–fungus association. J Evol Biol 23:2212–2228. doi:10.1111/j.1420-9101.2010.02082.x PubMed DOI

Park I, Sanogo S, Hanson SF, Thompson DC. 2019. Molecular identification of Botryosphaeria dothidea as a fungal associate of the gall midge Asphondylia prosopidis on mesquite in the United States. BioControl 64:209–219. doi:10.1007/s10526-019-09924-6 DOI

Meyer JB, Gallien L, Prospero S. 2015. Interaction between two invasive organisms on the European chestnut: does the chestnut blight fungus benefit from the presence of the gall wasp? FEMS Microbiol Ecol 91:fiv122. doi:10.1093/femsec/fiv122 PubMed DOI

Bernardo U, Nugnes F, Gualtieri L, Nicoletti R, Varricchio P, Sasso R, Viggiani G. 2018. A new gall midge species of Asphondylia (Diptera: Cecidomyiidae) inducing flower galls on Clinopodium nepeta (Lamiaceae) from Europe, its phenology, and associated fungi. Environ Entomol 47:609–622. doi:10.1093/ee/nvy028 PubMed DOI

Te Strake D, Keagy AH, Stiling PD. 2006. Fungi associated with Borrichia frutescens (Asteraceae): insect galls and endophytes. SIDA Contrib Bot 22:755–763.

Bon M-C, Guermache F, Simone D de, Cristofaro M, Vacek A, Goolsby J. 2018. Insights into the microbes and nematodes hosted by Pupae of the Arundo leaf miner, Lasioptera donacis (Diptera: Cecidomyiidae). Florida Entomologist 101:505–507. doi:10.1653/024.101.0309 DOI

Rohfritsch O. 1992. A fungus associated gall midge, Lasioptera arundinis (Schiner), on Phragmites australis (Cav.) Trin. Bull Société Bot Fr Lett Bot 139:45–49. doi:10.1080/01811797.1992.10824942 DOI

Batra LR, Lichtwardt RW. 1963. Association of fungi with some insect galls. J Kans Entomol Soc 36:262–278.

Sugiura S, Yamazaki K. 2009. Gall-attacking behavior in phytophagous insects, with emphasis on Coleoptera and Lepidoptera. Terr Arthropod Rev 2:41–61. doi:10.1163/187498309X435658 DOI

Veenstra AA, Lebel T, Milne J, Kolesik P. 2019. Two new species of Dactylasioptera (Diptera: Cecidomyiidae) inducing stem galls on Maireana (Chenopodiaceae). Austral Entomol 58:220–234. doi:10.1111/aen.12363 DOI

Zimowska B, Okoń S, Becchimanzi A, Krol ED, Nicoletti R. 2020. Phylogenetic characterization of Botryosphaeria strains associated with Asphondylia galls on species of Lamiaceae. Diversity 12:41. doi:10.3390/d12020041 DOI

Zimowska B, Viggiani G, Nicoletti R, Furmańczyk A, Becchimanzi A, Kot I. 2017. First report of the gall midge Asphondylia serpylli on thyme (Thymus vulgaris), and identification of the associated fungal symbiont. Ann Appl Biol 171:89–94. doi:10.1111/aab.12360 DOI

Amann RI, Ludwig W, Schleifer KH. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169. doi:10.1128/mr.59.1.143-169.1995 PubMed DOI PMC

Nagle FS, Casamatta DA, Rossi A. 2019. Genetic analysis of the fungal community resident in Asphondylia borrichiae (Diptera: Cecidomyiidae) galls. St. Louis, MO: ESA;

Gurung K, Wertheim B, Falcao Salles J. 2019. The microbiome of pest insects: it is not just bacteria. Entomol Exp Appli 167:156–170. doi:10.1111/eea.12768 DOI

Ravenscraft A, Berry M, Hammer T, Peay K, Boggs C. 2019. Structure and function of the bacterial and fungal gut microbiota of Neotropical butterflies. Ecol Monogr 89. doi:10.1002/ecm.1346 DOI

Šigut M, Pyszko P, Šigutová H, Višňovská D, Kostovčík M, Kotásková N, Dorňák O, Kolařík M, Drozd P. 2022. Fungi are more transient than bacteria in caterpillar gut microbiomes. Sci Rep 12:15552. doi:10.1038/s41598-022-19855-5 PubMed DOI PMC

Větrovský T, Soukup P, Stiblik P, Votýpková K, Chakraborty A, Larrañaga IO, Sillam-Dussès D, Lo N, Bourguignon T, Baldrian P, Šobotník J, Kolařík M. 2020. Termites host specific fungal communities that differ from those in their ambient environments. Fungal Ecol 48:100991. doi:10.1016/j.funeco.2020.100991 DOI

Višňovská D, Pyszko P, Šigut M, Kostovčík M, Kolařík M, Kotásková N, Drozd P. 2020. Caterpillar gut and host plant phylloplane mycobiomes differ: a new perspective on fungal involvement in insect guts. FEMS Microbiol Ecol 96:fiaa116. doi:10.1093/femsec/fiaa116 PubMed DOI

Bansal R, Hulbert SH, Reese JC, Whitworth RJ, Stuart JJ, Chen M-S. 2014. Pyrosequencing reveals the predominance of pseudomonadaceae in gut microbiome of a gall midge. Pathogens 3:459–472. doi:10.3390/pathogens3020459 PubMed DOI PMC

Hu H, da Costa RR, Pilgaard B, Schiøtt M, Lange L, Poulsen M. 2019. Fungiculture in termites is associated with a mycolytic gut bacterial community. mSphere 4:e00165-19. doi:10.1128/mSphere.00165-19 PubMed DOI PMC

Long Y-H, Xie L, Liu N, Yan X, Li M-H, Fan M-Z, Wang Q. 2010. Comparison of gut-associated and nest-associated microbial communities of a fungus-growing termite (Odontotermes yunnanensis). Insect Sci 17:265–276. doi:10.1111/j.1744-7917.2010.01327.x DOI

Ojha A, Sinha DK, Padmakumari AP, Bentur JS, Nair S. 2017. Bacterial community structure in the Asian rice gall midge reveals a varied microbiome rich in proteobacteria. Sci Rep 7:9424. doi:10.1038/s41598-017-09791-0 PubMed DOI PMC

Richards C, Otani S, Mikaelyan A, Poulsen M. 2017. Pycnoscelus surinamensis cockroach gut microbiota respond consistently to a fungal diet without mirroring those of fungus-farming termites. PLoS One 12:e0185745. doi:10.1371/journal.pone.0185745 PubMed DOI PMC

Ceriani-Nakamurakare E, Mc Cargo P, Gonzalez-Audino P, Ramos S, Carmarán C. 2020. New insights into fungal diversity associated with Megaplatypus mutatus: gut mycobiota. Symbiosis 81:127–137. doi:10.1007/s13199-020-00687-8 DOI

Gao G, Gao J, Hao C, Dai L, Chen H. 2018. Biodiversity and activity of gut fungal communities across the life history of Trypophloeus klimeschi (Coleoptera: Curculionidae: Scolytinae). Int J Mol Sci 19:2010. doi:10.3390/ijms19072010 PubMed DOI PMC

Šigutová H, Šigut M, Pyszko P, Kostovčík M, Kolařík M, Drozd P. 2023. Seasonal shifts in bacterial and fungal microbiomes of leaves and associated leaf-mining larvae reveal persistence of core taxa regardless of diet. Microbiol Spectr 11:e0316022. doi:10.1128/spectrum.03160-22 PubMed DOI PMC

Rodrigues A, Cable RN, Mueller UG, Bacci M, Pagnocca FC. 2009. Antagonistic interactions between garden yeasts and microfungal garden pathogens of leaf-cutting ants. Antonie Van Leeuwenhoek 96:331–342. doi:10.1007/s10482-009-9350-7 PubMed DOI

Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, Curtis TP. 2006. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ Microbiol 8:732–740. doi:10.1111/j.1462-2920.2005.00956.x PubMed DOI

Lebel T, Peele C, Veenstra A. 2012. Fungi associated with Asphondylia (Diptera: Cecidomyiidae) galls on Sarcocornia quinqueflora and Tecticornia arbuscula (Chenopodiaceae). Fungal Divers 55:143–154. doi:10.1007/s13225-012-0157-x DOI

Phillips AJL, Alves A, Abdollahzadeh J, Slippers B, Wingfield MJ, Groenewald JZ, Crous PW. 2013. The Botryosphaeriaceae: genera and species known from culture. Stud Mycol 76:51–167. doi:10.3114/sim0021 PubMed DOI PMC

Raman A, Suryanarayanan TS. 2017. Fungus–plant interaction influences plant-feeding insects. Fungal Ecol 29:123–132. doi:10.1016/j.funeco.2017.06.004 DOI

Tokuda M, Yukawa J. 2007. Biogeography and evolution of gall midges (Diptera: Cecidomyiidae) inhabiting broad-leaved evergreen forests in Oriental and eastern Palearctic regions. Oriental Insects 41:121–139. doi:10.1080/00305316.2007.10417502 DOI

Latinović J, Hrnčić S, Perović T, Latinović N. 2014. Botryosphaeria dothidea - causal agent of olive fruit rot - pathogen of wounds or not? Botryosphaeria dothidea - causal agent olive fruit rot. Pathog Wounds Not 108:35–38. doi:10.1016/j.cropro.2013.02.004 DOI

Marsberg A, Kemler M, Jami F, Nagel JH, Postma-Smidt A, Naidoo S, Wingfield MJ, Crous PW, Spatafora JW, Hesse CN, Robbertse B, Slippers B. 2017. Botryosphaeria dothidea: a latent pathogen of global importance to woody plant health. Mol Plant Pathol 18:477–488. doi:10.1111/mpp.12495 PubMed DOI PMC

Carroll GC. 1986. The biology of endophytism in plants with particular reference to woody perennials, p 203–222. In Microbiol Phyllosphere

Petrini LE, Petrini O, Laflamme G. 1989. Recovery of endophytes of Abies balsamea from needles and galls of Paradiplosis tumifex. Phytoprotection 70:97–103.

Buchner P. 1965. Endosymbiosis of animals with plant microorganisms. Interscience Publishers, New York. https://agris.fao.org/agris-search/search.do?recordID=US201300597419.

Aanen DK, Ros VID, de Fine Licht HH, Mitchell J, de Beer ZW, Slippers B, Rouland-Lefèvre C, Boomsma JJ. 2007. Patterns of interaction specificity of fungus-growing termites and Termitomyces symbionts in South Africa. BMC Evol Biol 7:115. doi:10.1186/1471-2148-7-115 PubMed DOI PMC

Pažoutová S, Šrůtka P, Holuša J, Chudíčková M, Kolařík M. 2010. Diversity of xylariaceous symbionts in Xiphydria woodwasps: role of vector and a host tree. Fungal Ecol 3:392–401. doi:10.1016/j.funeco.2010.07.002 DOI

Itoh H, Jang S, Takeshita K, Ohbayashi T, Ohnishi N, Meng X-Y, Mitani Y, Kikuchi Y. 2019. Host-symbiont specificity determined by microbe-microbe competition in an insect gut. Proc Natl Acad Sci U S A 116:22673–22682. doi:10.1073/pnas.1912397116 PubMed DOI PMC

Bronner N. 1992. The role of nutritive cells in the nutrition of cynipids and cecidomyiids, p 118–140. In Biology of insect-induced galls. Oxford University Press, Oxford.

Xiao J, Zhang Q, Gao Y-Q, Tang J-J, Zhang A-L, Gao J-M. 2014. Secondary metabolites from the endophytic Botryosphaeria dothidea of Melia azedarach and their antifungal, antibacterial, antioxidant, and cytotoxic activities. J Agric Food Chem 62:3584–3590. doi:10.1021/jf500054f PubMed DOI

Rohfritsch O. 1997. Morphological and behavioural adaptations of the gall midge Lasioptera arundinis (Schiner) (Diptera, Cecidomyiidae) to collect and transport conidia of its fungal symbiont. Tijdschr Voor Entomol 140:59–66.

Ryckegem G. 2005. Fungi on common reed (phragmites australis): fungal diversity, community structure and decomposition processes / Gunther Van Ryckegem Dissertation thesis, Universiteit Ghent, Ghent, Belgium:

Giraldo A, Gené J, Sutton DA, Madrid H, de Hoog GS, Cano J, Decock C, Crous PW, Guarro J. 2015. Phylogeny of Sarocladium (Hypocreales). Persoonia 34:10–24. doi:10.3767/003158515X685364 PubMed DOI PMC

Rashmi M, Kushveer J, Sarma V. 2019. A worldwide list of endophytic fungi with notes on ecology and diversity. Mycosphere 10:798–1079. doi:10.5943/mycosphere/10/1/19 DOI

Wijayawardene NN, Hyde KD, Rajeshkumar KC, Hawksworth DL, Madrid H, Kirk PM, Braun U, Singh RV, Crous PW, Kukwa M, et al. . 2017. Notes for genera: ascomycota. Fungal Divers 86:1–594. doi:10.1007/s13225-017-0386-0 DOI

Borkent A, Bissett J. 1985. Gall midges (Diptera: Cecidomyiidae) are vectors for their fungal symbionts. Symbiosis 1:185–194.

Malagaris P. 2011. Biology and ecology of Asphondylia coridothymi (Diptera: Cecidomyiidae) inducing galls on Coridothymus capitatus on the island of Samos, Greece. Acta Soc Zool Bohemicae 75:239–251.

Herman RP, Bynum HG, Alexander AB. 1993. Interaction between the black yeast Aureobasidium pullulans and the gall midge Lasioptera ephedricola in gall formation on the desert shrub Ephedra trifurca. Ecography 16:261–268. doi:10.1111/j.1600-0587.1993.tb00215.x DOI

Schena L, Nigro F, Pentimone I, Ligorio A, Ippolito A. 2003. Control of postharvest rots of sweet cherries and table grapes with endophytic isolates of Aureobasidium pullulans. Postharvest Biol Technol 30:209–220. doi:10.1016/S0925-5214(03)00111-X DOI

Wang Y, Yang M-H, Wang X-B, Li T-X, Kong L-Y. 2014. Bioactive metabolites from the endophytic fungus Alternaria alternata. Fitoterapia 99:153–158. doi:10.1016/j.fitote.2014.09.015 PubMed DOI

McLeod JM. 1969. On the habits of a jack pine needle-miner, Eucordylea canusella (Lepidoptera : Gelechiidae), with special reference to its association with a fungus, Aureobasidium pullulans (Maniliales (Deuteromycetes) dematiaceae). Can Entomol 101:166–179. doi:10.4039/Ent101166-2 DOI

Barcoto MO, Carlos-Shanley C, Fan H, Ferro M, Nagamoto NS, Bacci M, Currie CR, Rodrigues A. 2020. Fungus-growing insects host a distinctive microbiota apparently adapted to the fungiculture environment. Sci Rep 10:12384. doi:10.1038/s41598-020-68448-7 PubMed DOI PMC

Janson EM, Grebenok RJ, Behmer ST, Abbot P. 2009. Same host-plant, different sterols: variation in sterol metabolism in an insect herbivore community. J Chem Ecol 35:1309–1319. doi:10.1007/s10886-009-9713-6 PubMed DOI

Stireman JO, Devlin H, Carr TG, Abbot P. 2010. Evolutionary diversification of the gall midge genus Asteromyia (Cecidomyiidae) in a multitrophic ecological context. Mol Phylogenet Evol 54:194–210. doi:10.1016/j.ympev.2009.09.010 PubMed DOI

Hammon KE, Faeth SH. 1992. Ecology of plant-herbivore communities: a fungal component? Nat Toxins 1:197–208. doi:10.1002/nt.2620010307 PubMed DOI

Ma L-J, Geiser DM, Proctor RH, Rooney AP, O’Donnell K, Trail F, Gardiner DM, Manners JM, Kazan K. 2013. Fusarium pathogenomics. Annu Rev Microbiol 67:399–416. doi:10.1146/annurev-micro-092412-155650 PubMed DOI

Pyszko P, Višňovská D, Drgová M, Šigut M, Drozd P. 2020. Effect of bacterial and fungal microbiota removal on the survival and development of bryophagous beetles. Environ Entomol 49:902–911. doi:10.1093/ee/nvaa060 PubMed DOI

Fotso J, Leslie JF, Smith JS. 2002. Production of beauvericin, moniliformin, fusaproliferin, and fumonisins B1, B2, and B3 by fifteen ex-type strains of Fusarium species. Appl Environ Microbiol 68:5195–5197. doi:10.1128/AEM.68.10.5195-5197.2002 PubMed DOI PMC

Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M. 2008. Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144. doi:10.2174/157341308784340804 DOI

Wang Q, Xu L. 2012. Beauvericin, a bioactive compound produced by fungi: a short review. Molecules 17:2367–2377. doi:10.3390/molecules17032367 PubMed DOI PMC

Frago E, Dicke M, Godfray HCJ. 2012. Insect symbionts as hidden players in insect–plant interactions. Trends Ecol Evol 27:705–711. doi:10.1016/j.tree.2012.08.013 PubMed DOI

Santos AC da S, Diniz AG, Tiago PV, de Oliveira NT. 2020. Entomopathogenic Fusarium species: a review of their potential for the biological control of insects, implications and prospects. Fungal Biology Reviews 34:41–57. doi:10.1016/j.fbr.2019.12.002 DOI

Molnár O, Wuczkowski M, Prillinger H. 2008. Yeast biodiversity in the guts of several pests on maize; comparison of three methods: classical isolation, cloning and DGGE. Mycol Prog 7:111–123. doi:10.1007/s11557-008-0558-0 DOI

Majumder R, Sutcliffe B, Taylor PW, Chapman TA. 2020. Microbiome of the Queensland fruit fly through metamorphosis. Microorganisms 8:795. doi:10.3390/microorganisms8060795 PubMed DOI PMC

Vitanović E, Aldrich JR, Boundy-Mills K, Čagalj M, Ebeler SE, Burrack H, Zalom FG. 2020. Olive fruit fly, Bactrocera oleae (Diptera: Tephritidae), attraction to volatile compounds produced by host and insect-associated yeast strains. J Econ Entomol 113:752–759. doi:10.1093/jee/toz341 PubMed DOI

Glushakova AM, Kachalkin AV. 2017. Endophytic yeasts in Malus domestica and Pyrus communis fruits under anthropogenic impact. Microbiology 86:114–122. doi:10.1134/S0026261716060102 PubMed DOI

Garas LS, Uzabakiriho JD, Chimwamurombe PM. 2012. Isolation and identification of fungal species associated with gall formation on Acacia mellifera in the western Windhoek. J Pure Appl Microbiol 6:713–716.

Morales-Rodriguez C, Sferrazza I, Aleandri M, Dalla Valle M, Mazzetto T, Speranza S, Contarini M, Vannini A. 2019. Fungal community associated with adults of the chestnut gall wasp Dryocosmus kuriphilus after emergence from galls: taxonomy and functional ecology. Fungal Biol 123:905–912. doi:10.1016/j.funbio.2019.09.009 PubMed DOI

Tóth P, Tóthová M, Váňová M. 2006. First records of Resseliella theobaldi (Diptera, Cecidomyiidae), an important pest of raspberry from Slovakia. Biologia 61:239–240. doi:10.2478/s11756-006-0044-6 DOI

Bartlett L, Connor EF. 2014. Exogenous phytohormones and the induction of plant galls by insects. Arthropod-Plant Interact 8:339–348. doi:10.1007/s11829-014-9309-0 DOI

Giron D, Glevarec G. 2014. Cytokinin-induced phenotypes in plant-insect interactions: learning from the bacterial world. J Chem Ecol 40:826–835. doi:10.1007/s10886-014-0466-5 PubMed DOI

Arduin M, Kraus JE. 2001. Anatomy of Ambrosia leaf galls in Baccharis concinna and Baccharis dracunculifolia (Asteraceae). Braz J Bot 24:63–72. doi:10.1590/S0100-84042001000100007 DOI

Barke J, Seipke RF, Grüschow S, Heavens D, Drou N, Bibb MJ, Goss RJM, Yu DW, Hutchings MI. 2010. A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus. BMC Biol 8:109. doi:10.1186/1741-7007-8-109 PubMed DOI PMC

Cafaro MJ, Currie CR. 2005. Phylogenetic analysis of mutualistic filamentous bacteria associated with fungus-growing ants. Can J Microbiol 51:441–446. doi:10.1139/w05-023 PubMed DOI

Cardoza YJ, Vasanthakumar A, Suazo A, Raffa KF. 2009. Survey and phylogenetic analysis of culturable microbes in the oral secretions of three bark beetle species. Entomol Exp Appl 131:138–147. doi:10.1111/j.1570-7458.2009.00844.x DOI

Cardoza YJ, Klepzig KD, Raffa KF. 2006. Bacteria in oral secretions of an endophytic insect inhibit antagonistic fungi. Ecol Entomol 31:636–645. doi:10.1111/j.1365-2311.2006.00829.x DOI

Currie CR, Poulsen M, Mendenhall J, Boomsma JJ, Billen J. 2006. Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants. Science 311:81–83. doi:10.1126/science.1119744 PubMed DOI

Um S, Fraimout A, Sapountzis P, Oh D-C, Poulsen M. 2013. The fungus-growing termite Macrotermes natalensis harbors bacillaene-producing Bacillus sp. that inhibit potentially antagonistic fungi. Sci Rep 3:3250. doi:10.1038/srep03250 PubMed DOI PMC

Bittleston LS, Pierce NE, Ellison AM, Pringle A. 2016. Convergence in multispecies interactions. Trends Ecol Evol 31:269–280. doi:10.1016/j.tree.2016.01.006 PubMed DOI

Bansal R, Hulbert S, Schemerhorn B, Reese JC, Whitworth RJ, Stuart JJ, Chen M-S, Ho PL. 2011. Hessian fly-associated bacteria: transmission, essentiality, and composition. PLoS One 6:e23170. doi:10.1371/journal.pone.0023170 PubMed DOI PMC

Bateman C, Šigut M, Skelton J, Smith KE, Hulcr J. 2016. Fungal associates of the Xylosandrus compactus (Coleoptera: Curculionidae, Scolytinae) are spatially segregated on the insect body. Environ Entomol 45:883–890. doi:10.1093/ee/nvw070 PubMed DOI

Toju H, Tanabe AS, Yamamoto S, Sato H. 2012. High-coverage ITS primers for the DNA-based identification of Ascomycetes and Basidiomycetes in environmental samples. PLoS One 7:e40863. doi:10.1371/journal.pone.0040863 PubMed DOI PMC

Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet C, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, et al. . 2018. QIIME 2: reproducible, interactive, scalable, and extensible microbiome data science. PeerJ 6:e27295v2. doi:10.7287/peerj.preprints.27295v2 PubMed DOI PMC

Rivers AR, Weber KC, Gardner TG, Liu S, Armstrong SD. 2018. ITSxpress: software to rapidly trim internally transcribed spacer sequences with quality scores for marker gene analysis. F1000Res 7:1418. doi:10.12688/f1000research.15704.1 PubMed DOI PMC

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. doi:10.1038/nmeth.3869 PubMed DOI PMC

Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Gregory Caporaso J. 2018. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6:90. doi:10.1186/s40168-018-0470-z PubMed DOI PMC

Nilsson RH, Larsson K-H, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, Kennedy P, Picard K, Glöckner FO, Tedersoo L, Saar I, Kõljalg U, Abarenkov K. 2019. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res 47:D259–D264. doi:10.1093/nar/gky1022 PubMed DOI PMC

R Core Team . 2022. R: a language and environment for statistical computing (4.2.1). R foundation for statistical computing. Vienna, Austria.

Ter Braak CJF, Šmilauer P. 2012. CANOCO reference manual and CanoDraw for windows user’s guide: software for Canonical community ordination (version 5.01). Microcomputer Power, Ithaca, NY.

Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. 2018. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6:226. doi:10.1186/s40168-018-0605-2 PubMed DOI PMC

Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens M, Szoecs E, Wagner H. 2019. vegan: community ecology package. R package version 2.4-5

Anderson MJ. 2006. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245–253. doi:10.1111/j.1541-0420.2005.00440.x PubMed DOI

Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, Ellison AM. 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 84:45–67. doi:10.1890/13-0133.1 DOI

Hsieh TC, Ma KH, Chao A. 2022. iNEXT: iNterpolation and EXTrapolation for species diversity. R package version 3.0.0

Clarke KR, Warwick RM. 2001. A further biodiversity index applicable to species lists: variation in taxonomic distinctness. Mar Ecol Prog Ser 216:265–278. doi:10.3354/meps216265 DOI

Clarke KR, Warwick RM. 1998. A taxonomic distinctness index and its statistical properties. J Appl Ecol 35:523–531. doi:10.1046/j.1365-2664.1998.3540523.x DOI

Coleman BD, Mares MA, Willig MR, Hsieh Y-H. 1982. Randomness, area, and species richness. Ecology 63:1121–1133. doi:10.2307/1937249 DOI

Pérez-Silva JG, Araujo-Voces M, Quesada V. 2018. nVenn: generalized, quasi-proportional Venn and Euler diagrams. Bioinformatics 34:2322–2324. doi:10.1093/bioinformatics/bty109 PubMed DOI

Sprockett D. 2022. reltools: microbiome amplicon analysis and visualization. R package version 0.1.0

McMurdie PJ, Holmes S. 2013. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. doi:10.1371/journal.pone.0061217 PubMed DOI PMC

Chen J, Zhang X, Yang L. 2022. GUniFrac: generalized Unifrac distances, distance-based multivariate methods and feature-based univariate methods for microbiome data analysis. R package version 1.7

Dufrêne M, Legendre P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366. doi:10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2 DOI

De Cáceres M, Legendre P. 2009. Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566–3574. doi:10.1890/08-1823.1 PubMed DOI

Roberts DW. 2019. Ordination and multivariate analysis for ecology. R package version 2.0-1

Kolařík M, Stępniewska H, Jankowiak R. 2021. Taxonomic revision of the acidophilic genus Acidiella (Dothideomycetes, Capnodiales) with a description of new species from Poland. Plant Syst Evol 307:38. doi:10.1007/s00606-021-01753-4 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...