Concentration-dependent effect of plant secondary metabolites on bacterial and fungal microbiomes in caterpillar guts
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
GA22-29971S
Czech Science Foundation
PubMed
37991377
PubMed Central
PMC10783044
DOI
10.1128/spectrum.02994-23
Knihovny.cz E-zdroje
- Klíčová slova
- bacterial and fungal microbiomes, invertebrate–microbe interactions, network stability, plant secondary metabolite, salicylic acid, tannin, tannivin,
- MeSH
- Bacteria genetika MeSH
- mikrobiota * MeSH
- mykobiom * MeSH
- rostliny MeSH
- Publikační typ
- časopisecké články MeSH
The caterpillar gut is an excellent model system for studying host-microbiome interactions, as it represents an extreme environment for microbial life that usually has low diversity and considerable variability in community composition. Our study design combines feeding caterpillars on a natural and artificial diet with controlled levels of plant secondary metabolites and uses metabarcoding and quantitative PCR to simultaneously profile bacterial and fungal assemblages, which has never been performed. Moreover, we focus on multiple caterpillar species and consider diet breadth. Contrary to many previous studies, our study suggested the functional importance of certain microbial taxa, especially bacteria, and confirmed the previously proposed lower importance of fungi for caterpillar holobiont. Our study revealed the lack of differences between monophagous and polyphagous species in the responses of microbial assemblages to plant secondary metabolites, suggesting the limited role of the microbiome in the plasticity of the herbivore diet.
Department of Biology and Ecology Faculty of Science University of Ostrava Ostrava Czechia
Department of Zoology Faculty of Science Palacký University Olomouc Czechia
Institute of Microbiology Academy of Sciences of the Czech Republic Prague Czechia
Zobrazit více v PubMed
Kariñho-Betancourt E. 2019. Coevolution: plant-herbivore interactions and secondary metabolites of plants, p. 1–31. In Merillon, J-M , Ramawat, KG (eds.), Co-evolution of secondary metabolites. Springer International Publishing, Cham.
Dixit G, Praveen A, Tripathi T, Yadav VK, Verma PC. 2017. Herbivore-responsive cotton phenolics and their impact on insect performance and biochemistry. J Asia-Pac Entomol 20:341–351. doi:10.1016/j.aspen.2017.02.002 DOI
Pan L, Ren L, Chen F, Feng Y, Luo Y, Zhang Y. 2016. Antifeedant activity of GInkgo biloba secondary metabolites against Hyphantria cunea larvae: mechanisms and applications. PLoS One 11:e0155682. doi:10.1371/journal.pone.0155682 PubMed DOI PMC
Ceja-Navarro JA, Vega FE, Karaoz U, Hao Z, Jenkins S, Lim HC, Kosina P, Infante F, Northen TR, Brodie EL. 2015. Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee. Nat Commun 6:7618. doi:10.1038/ncomms8618 PubMed DOI PMC
Ge S-X, Shi F-M, Pei J-H, Hou Z-H, Zong S-X, Ren L-L. 2021. Gut bacteria associated with Monochamus saltuarius (coleoptera: cerambycidae) and their possible roles in host plant adaptations. Front Microbiol 12:687211. doi:10.3389/fmicb.2021.687211 PubMed DOI PMC
Mason CJ, Lowe-Power TM, Rubert-Nason KF, Lindroth RL, Raffa KF. 2016. Interactions between bacteria and aspen defense chemicals at the phyllosphere–herbivore interface. J Chem Ecol 42:193–201. doi:10.1007/s10886-016-0677-z PubMed DOI
Xia X, Gurr GM, Vasseur L, Zheng D, Zhong H, Qin B, Lin J, Wang Y, Song F, Li Y, Lin H, You M. 2017. Metagenomic sequencing of diamondback moth gut microbiome unveils key holobiont adaptations for herbivory. Front Microbiol 8:663. doi:10.3389/fmicb.2017.00663 PubMed DOI PMC
Douglas AE. 2015. Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol 60:17–34. doi:10.1146/annurev-ento-010814-020822 PubMed DOI PMC
Zilber-Rosenberg I, Rosenberg E. 2008. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735. doi:10.1111/j.1574-6976.2008.00123.x PubMed DOI
Dincă V, Dapporto L, Somervuo P, Vodă R, Cuvelier S, Gascoigne-Pees M, Huemer P, Mutanen M, Hebert PDN, Vila R. 2021. High resolution DNA barcode library for European butterflies reveals continental patterns of mitochondrial genetic diversity. Commun Biol 4:315. doi:10.1038/s42003-021-01834-7 PubMed DOI PMC
Smith TE, Moran NA. 2020. Coordination of host and symbiont gene expression reveals a metabolic tug-of-war between aphids and Buchnera. Proc Natl Acad Sci U S A 117:2113–2121. doi:10.1073/pnas.1916748117 PubMed DOI PMC
Hammer TJ, Janzen DH, Hallwachs W, Jaffe SP, Fierer N. 2017. Caterpillars lack a resident gut microbiome. Proc Natl Acad Sci U S A 114:9641–9646. doi:10.1073/pnas.1707186114 PubMed DOI PMC
Paniagua Voirol LR, Frago E, Kaltenpoth M, Hilker M, Fatouros NE. 2018. Bacterial symbionts in lepidoptera: their diversity, transmission, and impact on the host. Front Microbiol 9:556. doi:10.3389/fmicb.2018.00556 PubMed DOI PMC
Šigut M, Pyszko P, Šigutová H, Višňovská D, Kostovčík M, Kotásková N, Dorňák O, Kolařík M, Drozd P. 2022. Fungi are more transient than bacteria in caterpillar gut microbiomes. Sci Rep 12:15552. doi:10.1038/s41598-022-19855-5 PubMed DOI PMC
Shao Y, Mason CJ, Felton GW. 2023. Toward an integrated understanding of the lepidoptera microbiome. Annu Rev Entomol 69. doi:10.1146/annurev-ento-020723-102548 PubMed DOI
Šigutová H, Šigut M, Pyszko P, Kostovčík M, Kolařík M, Drozd P. 2023. Seasonal shifts in bacterial and fungal microbiomes of leaves and associated leaf-mining larvae reveal persistence of core taxa regardless of diet. Microbiol Spectr 11:e0316022. doi:10.1128/spectrum.03160-22 PubMed DOI PMC
Mason CJ, Rubert-Nason KF, Lindroth RL, Raffa KF. 2015. Aspen defense chemicals influence midgut bacterial community composition of gypsy moth. J Chem Ecol 41:75–84. doi:10.1007/s10886-014-0530-1 PubMed DOI
Khanbabaee K, van Ree T. 2001. Tannins: classification and definition. Nat Prod Rep 18:641–649. doi:10.1039/b101061l PubMed DOI
Mämmelä P, Savolainen H, Lindroos L, Kangas J, Vartiainen T. 2000. Analysis of oak tannins by liquid chromatography-electrospray Ionisation mass spectrometry. J Chromatogr A 891:75–83. doi:10.1016/s0021-9673(00)00624-5 PubMed DOI
Chen B, Du K, Sun C, Vimalanathan A, Liang X, Li Y, Wang B, Lu X, Li L, Shao Y. 2018. Gut bacterial and fungal communities of the domesticated silkworm (Bombyx mori) and wild mulberry-feeding relatives. ISME J 12:2252–2262. doi:10.1038/s41396-018-0174-1 PubMed DOI PMC
Kumbașlı M, Bauce É, Rochefort S, Crépin M. 2011. Effects of tree age and stand thinning related variations in balsam fir secondary compounds on spruce budworm Choristoneura fumiferana development, growth and food utilization. Agric For Entomol 13:131–141. doi:10.1007/BF00325888 DOI
Appel HM. 1993. Phenolics in ecological interactions: the importance of oxidation. J Chem Ecol 19:1521–1552. doi:10.1007/BF00984895 PubMed DOI
Appel HM, Martin MM. 1990. Gut redox conditions in herbivorous lepidopteran larvae. J Chem Ecol 16:3277–3290. doi:10.1007/BF00982098 PubMed DOI
Aruoma OI, Halliwell B, Williamson G.. 1997. In vitro methods for characterizing potential prooxidant and antioxidant actions of nonnutritive substances in plant foods, p. 173−204. In Aruoma, OI , Cuppett, SI (eds.), Antioxidant methodology. AOCS Press, Champaign, IL.
Barbehenn RV, Jones CP, Hagerman AE, Karonen M, Salminen J-P. 2006. Ellagitannins have greater oxidative activities than condensed tannins and galloyl glucoses at high pH: potential impact on caterpillars. J Chem Ecol 32:2253–2267. doi:10.1007/s10886-006-9143-7 PubMed DOI
Aguilar CN, Rodríguez R, Gutiérrez-Sánchez G, Augur C, Favela-Torres E, Prado-Barragan LA, Ramírez-Coronel A, Contreras-Esquivel JC. 2007. Microbial tannases: advances and perspectives. Appl Microbiol Biotechnol 76:47–59. doi:10.1007/s00253-007-1000-2 PubMed DOI
Barbehenn RV, Jaros A, Lee G, Mozola C, Weir Q, Salminen J-P. 2009. Tree resistance to Lymantria dispar caterpillars: importance and limitations of foliar tannin composition. Oecologia 159:777–788. doi:10.1007/s00442-008-1268-7 PubMed DOI
Barbehenn RV, Walker AC, Uddin F. 2003. Antioxidants in the midgut fluids of a tannin-tolerant and a tannin-sensitive cterpillar: effects of seasonal changes in tree leaves. J Chem Ecol 29:1099–1116. doi:10.1023/A:1023873321494 PubMed DOI
Tan M, Wu H, Yan S, Jiang D. 2022. Evaluating the toxic effects of tannic acid treatment on Hyphantria cunea larvae. Insects 13:872. doi:10.3390/insects13100872 PubMed DOI PMC
Walenciak O, Zwisler W, Gross EM. 2002. Influence of Myriophyllum spicatum-derived tannins on gut microbiota of its herbivore Acentria ephemerella. J Chem Ecol 28:2045–2056. doi:10.1023/A:1020754012785 PubMed DOI
Yi X, Guo J, Wang M, Xue C, Ju M. 2021. Inter-trophic interaction of gut microbiota in a tripartite system. Microb Ecol 81:1075–1087. doi:10.1007/s00248-020-01640-4 PubMed DOI
Peng K, Zhao H, Wang G, Chen B, Mo W, Huang Y. 2021. Effect of condensed tannins on growth performance, intestinal immune capacity and bacterial microbiomes of Lateolabrax japonicus. Aquac Res 52:5321–5331. doi:10.1111/are.15402 DOI
Molino S, Lerma-Aguilera A, Jiménez-Hernández N, Gosalbes MJ, Rufián-Henares JÁ, Francino MP. 2021. Enrichment of food with tannin extracts promotes healthy changes in the human gut microbiota. Front Microbiol 12:625782. doi:10.3389/fmicb.2021.625782 PubMed DOI PMC
Barbehenn RV, Peter Constabel C. 2011. Tannins in plant–herbivore interactions. Phytochemistry 72:1551–1565. doi:10.1016/j.phytochem.2011.01.040 PubMed DOI
Mason CJ, Couture JJ, Raffa KF. 2014. Plant-associated bacteria degrade defense chemicals and reduce their adverse effects on an insect defoliator. Oecologia 175:901–910. doi:10.1007/s00442-014-2950-6 PubMed DOI
Pandiarajan J, Krishnan M. 2021. Portrayal of an effective tannase producer in the gut of silkworm Bombyx mori. L. Ecol Genet Genom 20:100092. doi:10.1016/j.egg.2021.100092 DOI
Zhang S, Shu J, Xue H, Zhang W, Zhang Y, Liu Y, Fang L, Wang Y, Wang H, Heck M. 2020. The gut microbiota in camellia weevils are influenced by plant secondary metabolites and contribute to saponin degradation. mSystems 5:e00692-19. doi:10.1128/mSystems.00692-19 PubMed DOI PMC
Mason CJ, St Clair A, Peiffer M, Gomez E, Jones AG, Felton GW, Hoover K. 2020. Diet influences proliferation and stability of gut bacterial populations in herbivorous lepidopteran larvae. PLoS One 15:e0229848. doi:10.1371/journal.pone.0229848 PubMed DOI PMC
Agrawal AA, Petschenka G, Bingham RA, Weber MG, Rasmann S. 2012. Toxic cardenolides: chemical ecology and coevolution of specialized plant–herbivore interactions. New Phytol 194:28–45. doi:10.1111/j.1469-8137.2011.04049.x PubMed DOI
Huang K, Wang J, Huang J, Zhang S, Vogler AP, Liu Q, Li Y, Yang M, Li Y, Zhou X. 2021. Host phylogeny and diet shape gut microbial communities within bamboo-feeding insects. Front Microbiol 12:633075. doi:10.3389/fmicb.2021.633075 PubMed DOI PMC
Leite-Mondin M, DiLegge MJ, Manter DK, Weir TL, Silva-Filho MC, Vivanco JM. 2021. The gut microbiota composition of Trichoplusia nI is altered by diet and may influence its polyphagous behavior. Sci Rep 11:5786. doi:10.1038/s41598-021-85057-0 PubMed DOI PMC
Smilanich AM, Langus TC, Doan L, Dyer LA, Harrison JG, Hsueh J, Teglas MB. 2018. Host plant associated enhancement of immunity and survival in virus infected caterpillars. J Invertebr Pathol 151:102–112. doi:10.1016/j.jip.2017.11.006 PubMed DOI
Fabbrini M, D’Amico F, Barone M, Conti G, Mengoli M, Brigidi P, Turroni S. 2022. Polyphenol and tannin nutraceuticals and their metabolites: how the human gut microbiota influences their properties. Biomolecules 12:875. doi:10.3390/biom12070875 PubMed DOI PMC
Marasco R, Fusi M, Callegari M, Jucker C, Mapelli F, Borin S, Savoldelli S, Daffonchio D, Crotti E. 2022. Destabilization of the bacterial interactome identifies nutrient restriction-induced dysbiosis in insect guts. Microbiol Spectr 10:e0158021. doi:10.1128/spectrum.01580-21 PubMed DOI PMC
Cornell HV, Hawkins BA. 2003. Herbivore responses to plant secondary compounds: a test of phytochemical coevolution theory. Am Nat 161:507–522. doi:10.1086/368346 PubMed DOI
Ali JG, Agrawal AA. 2012. Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci 17:293–302. doi:10.1016/j.tplants.2012.02.006 PubMed DOI
Mason CJ. 2020. Complex relationships at the intersection of insect gut microbiomes and plant defenses. J Chem Ecol 46:793–807. doi:10.1007/s10886-020-01187-1 PubMed DOI
Babst BA, Harding SA, Tsai C-J. 2010. Biosynthesis of phenolic glycosides from phenylpropanoid and benzenoid precursors in populus. J Chem Ecol 36:286–297. doi:10.1007/s10886-010-9757-7 PubMed DOI
Whitaker MRL, Salzman S, Sanders J, Kaltenpoth M, Pierce NE. 2016. Microbial communities of lycaenid butterflies do not correlate with larval diet. Front Microbiol 7:1920. doi:10.3389/fmicb.2016.01920 PubMed DOI PMC
Zhang S-K, Wang Y, Li Z-K, Xue H-J, Zhou X-D, Huang J-H. 2022. Two Apriona species sharing a host niche have different gut microbiome diversity. Microb Ecol 83:1059–1072. doi:10.1007/s00248-021-01799-4 PubMed DOI
Penn CD, Daniel SL. 2013. Salicylate degradation by the fungal plant pathogen Sclerotinia sclerotiorum. Curr Microbiol 67:218–225. doi:10.1007/s00284-013-0349-y PubMed DOI
Rocheleau H, Al-Harthi R, Ouellet T. 2019. Degradation of salicylic acid by Fusarium graminearum. Fungal Biol 123:77–86. doi:10.1016/j.funbio.2018.11.002 PubMed DOI
Mason CJ, Ray S, Shikano I, Peiffer M, Jones AG, Luthe DS, Hoover K, Felton GW. 2019. Plant defenses interact with insect enteric bacteria by initiating a leaky gut syndrome. Proc Natl Acad Sci U S A 116:15991–15996. doi:10.1073/pnas.1908748116 PubMed DOI PMC
Wei J, Segraves KA, Li W-Z, Yang X-K, Xue H-J. 2020. Gut bacterial communities and their contribution to performance of specialist Altica flea beetles. Microb Ecol 80:946–959. doi:10.1007/s00248-020-01590-x PubMed DOI
Hooks KB, O’Malley MA. 2017. Dysbiosis and its discontents. mBio 8:e01492-17. doi:10.1128/mBio.01492-17 PubMed DOI PMC
Lin X-L, Kang Z-W, Pan Q-J, Liu T-X. 2015. Evaluation of five antibiotics on larval gut bacterial diversity of Plutella xylostella (lepidoptera: plutellidae). Insect Sci 22:619–628. doi:10.1111/1744-7917.12168 PubMed DOI
Raymann K, Shaffer Z, Moran NA, Gore J. 2017. Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS Biol 15:e2001861. doi:10.1371/journal.pbio.2001861 PubMed DOI PMC
Xia X, Lan B, Tao X, Lin J, You M. 2020. Characterization of Spodoptera litura gut bacteria and their role in feeding and growth of the host. Front Microbiol 11:1492. doi:10.3389/fmicb.2020.01492 PubMed DOI PMC
Yun J-H, Roh SW, Whon TW, Jung M-J, Kim M-S, Park D-S, Yoon C, Nam Y-D, Kim Y-J, Choi J-H, Kim J-Y, Shin N-R, Kim S-H, Lee W-J, Bae J-W. 2014. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl Environ Microbiol 80:5254–5264. doi:10.1128/AEM.01226-14 PubMed DOI PMC
Erb Downward JR, Falkowski NR, Mason KL, Muraglia R, Huffnagle GB. 2013. Modulation of post-antibiotic bacterial community reassembly and host response by Candida albicans. Sci Rep 3:2191. doi:10.1038/srep02191 PubMed DOI PMC
Kapitan M, Niemiec MJ, Steimle A, Frick JS, Jacobsen ID. 2019. Fungi as part of the microbiota and interactions with intestinal bacteria. Curr Top Microbiol Immunol 422:265–301. doi:10.1007/82_2018_117 PubMed DOI
Sam QH, Chang MW, Chai LYA. 2017. The fungal mycobiome and its interaction with gut bacteria in the host. Int J Mol Sci 18:330. doi:10.3390/ijms18020330 PubMed DOI PMC
Zaneveld JR, McMinds R, Vega Thurber R. 2017. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat Microbiol 2:1–8. doi:10.1038/nmicrobiol.2017.121 PubMed DOI
Broderick NA, Raffa KF, Goodman RM, Handelsman J. 2004. Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl Environ Microbiol 70:293–300. doi:10.1128/AEM.70.1.293-300.2004 PubMed DOI PMC
Osawa R, Mitsuoka T. 1990. Selective medium for enumeration of tannin-protein complex-degrading Streptococcus spp. in feces of koalas. Appl Environ Microbiol 56:3609–3611. doi:10.1128/aem.56.11.3609-3611.1990 PubMed DOI PMC
Visôtto LE, Oliveira MGA, Ribon AOB, Mares-Guia TR, Guedes RNC. 2009. Characterization and identification of proteolytic bacteria from the gut of the velvetbean caterpillar (lepidoptera: noctuidae). Environ Entomol 38:1078–1085. doi:10.1603/022.038.0415 PubMed DOI
Mukherjee A, Bhanwar S, Ganguli A. 2014. Characterization of tannase production by Lactococcus lactis subsp lactis and its potential in enhancing nutritional value of a composite sourdough. J Genet Eng Biotechnol 5:77–84. https://www.ripublication.com/irph/ijgeb-spl/ijgebv5n1_11.pdf.
Osawa R, Fujisawa T, Pukall R. 2006. Lactobacillus apodemi sp. nov., a tannase-producing species isolated from wild mouse faeces. Int J Syst Evol Microbiol 56:1693–1696. doi:10.1099/ijs.0.64147-0 PubMed DOI
Sasaki E, Shimada T, Osawa R, Nishitani Y, Spring S, Lang E. 2005. Isolation of tannin-degrading bacteria isolated from feces of the Japanese large wood mouse, Apodemus speciosus, feeding on tannin-rich acorns. Syst Appl Microbiol 28:358–365. doi:10.1016/j.syapm.2005.01.005 PubMed DOI
Jorjão AL, de Oliveira FE, Leão MVP, Jorge AOC, de Oliveira LD. 2018. Effect of Lactobacillus rhamnosus on the response of Galleria mellonella against Staphylococcus aureus and Escherichia coli infections. Arch Microbiol 200:383–389. doi:10.1007/s00203-017-1441-7 PubMed DOI
Fraune S, Anton-Erxleben F, Augustin R, Franzenburg S, Knop M, Schröder K, Willoweit-Ohl D, Bosch TCG. 2015. Bacteria–bacteria interactions within the microbiota of the ancestral metazoan Hydra contribute to fungal resistance. ISME J 9:1543–1556. doi:10.1038/ismej.2014.239 PubMed DOI PMC
Kim S-J, Moon J-Y, Weon H-Y, Hong S-B, Seok S-J, Kwon S-W. 2014. Undibacterium jejuense sp. nov. and Undibacterium seohonense sp. nov., isolated from soil and freshwater, respectively. Int J Syst Evol Microbiol 64:236–241. doi:10.1099/ijs.0.056846-0 PubMed DOI
Lehosmaa K, Muotka T, Pirttilä AM, Jaakola I, Rossi PM, Jyväsjärvi J. 2021. Bacterial communities at a groundwater-surface water ecotone: gradual change or abrupt transition points along a contamination gradient? Environ Microbiol 23:6694–6706. doi:10.1111/1462-2920.15708 PubMed DOI
Perry AL, Lambert PA. 2006. Propionibacterium acnes. Lett Appl Microbiol 42:185–188. doi:10.1111/j.1472-765X.2006.01866.x PubMed DOI
Mitsuhashi S. 2014. Current topics in the biotechnological production of essential amino acids, functional amino acids, and dipeptides. Curr Opin Biotechnol 26:38–44. doi:10.1016/j.copbio.2013.08.020 PubMed DOI
Bhat TK, Singh B, Sharma OP. 1998. Microbial degradation of tannins – a current perspective. Biodegradation 9:343–357. doi:10.1023/a:1008397506963 PubMed DOI
Bandani A, Maleki F, Rahmani S, Fazeli-Dinan M. 2010. Characterization of α-amylase in the alimentary canal of Naranga aenescens Moore (Lepidoptera: noctuidae), the rice green caterpillar. Munis Entomol Zool 5:716–725.
Moran NA, Ochman H, Hammer TJ. 2019. Evolutionary and ecological consequences of gut microbial communities. Annu Rev Ecol Evol Syst 50:451–475. doi:10.1146/annurev-ecolsys-110617-062453 PubMed DOI PMC
Iancu L, Angelescu IR, Paun VI, Henríquez-Castillo C, Lavin P, Purcarea C. 2021. Microbiome pattern of Lucilia sericata (meigen) (diptera: calliphoridae) and feeding substrate in the presence of the foodborne pathogen Salmonella enterica. Sci Rep 11:15296. doi:10.1038/s41598-021-94761-w PubMed DOI PMC
Wielkopolan B, Krawczyk K, Szabelska-Beręsewicz A, Obrępalska-Stęplowska A. 2021. The structure of the cereal leaf beetle (Oulema melanopus) microbiome depends on the insect's developmental stage, host plant, and origin. Sci Rep 11:20496. doi:10.1038/s41598-021-99411-9 PubMed DOI PMC
Kandi V, Palange P, Vaish R, Bhatti AB, Kale V, Kandi MR, Bhoomagiri MR. 2016. Emerging bacterial infection: identification and clinical significance of Kocuria species. Cureus. doi:10.7759/cureus.731 PubMed DOI PMC
van der Hoeven R, Betrabet G, Forst S. 2008. Characterization of the gut bacterial community in Manduca sexta and effect of antibiotics on bacterial diversity and nematode reproduction. FEMS Microbiol Lett 286:249–256. doi:10.1111/j.1574-6968.2008.01277.x PubMed DOI
Takarada H, Sekine M, Kosugi H, Matsuo Y, Fujisawa T, Omata S, Kishi E, Shimizu A, Tsukatani N, Tanikawa S, Fujita N, Harayama S. 2008. Complete genome sequence of the soil actinomycete Kocuria rhizophila. J Bacteriol 190:4139–4146. doi:10.1128/JB.01853-07 PubMed DOI PMC
Wang Q, Yin M, Yuan C, Liu X, Jiang H, Wang M, Zou Z, Hu Z. 2022. The Micrococcus luteus infection activates a novel melanization pathway of cSp10, cSp4, and cSp8 in Helicoverpa armigera. Insect Biochem Mol Biol 147:103775. doi:10.1016/j.ibmb.2022.103775 PubMed DOI
Vilanova C, Marco G, Domínguez-Escribà L, Genovés S, Sentandreu V, Bataller E, Ramón D, Porcar M. 2012. Bacteria from acidic to strongly alkaline insect midguts: potential sources of extreme cellulolytic enzymes. Biomass Bioenergy 45:288–294. doi:10.1016/j.biombioe.2012.06.017 DOI
Dematheis F, Kurtz B, Vidal S, Smalla K. 2012. Microbial communities associated with the larval gut and eggs of the western corn rootworm. PLoS One 7:e44685. doi:10.1371/journal.pone.0044685 PubMed DOI PMC
Zeng J-Y, Vuong T-M-D, Shi J-H, Shi Z-B, Guo J-X, Zhang G-C, Bi B. 2020. Avermectin stress varied structure and function of gut microbial community in Lymantria dispar asiatica (lepidoptera: lymantriidae) larvae. Pestic Biochem Physiol 164:196–202. doi:10.1016/j.pestbp.2020.01.013 PubMed DOI
Kaur J, Sharma A, Sharma M, Kumari Manhas R, Kaur S, Kaur A. 2019. Effect of α-glycosidase inhibitors from endophytic fungus Alternaria destruens on survival and development of insect pest Spodoptera litura Fab. and fungal phytopathogens. Sci Rep 9:11400. doi:10.1038/s41598-019-47838-6 PubMed DOI PMC
Rastogi G, Sbodio A, Tech JJ, Suslow TV, Coaker GL, Leveau JHJ. 2012. Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce. ISME J 6:1812–1822. doi:10.1038/ismej.2012.32 PubMed DOI PMC
Jaber S, Mercier A, Knio K, Brun S, Kambris Z. 2016. Isolation of fungi from dead arthropods and identification of a new mosquito natural pathogen. Parasit Vectors 9:491. doi:10.1186/s13071-016-1763-3 PubMed DOI PMC
Martignoni ME, Iwai PJ, Wickerham LJ. 1969. A candidiasis in larvae of the douglas-fir tussock moth, Hemerocampa pseudotsugata. J Invertebr Pathol 14:108–110. doi:10.1016/0022-2011(69)90019-6 DOI
Youssef FS, Singab ANB. 2021. An updated review on the secondary metabolites and biological activities of Aspergillus ruber and Aspergillus flavus and exploring the cytotoxic potential of their isolated compounds using virtual screening. Evid Based Complement Alternat Med 2021:8860784. doi:10.1155/2021/8860784 PubMed DOI PMC
Bergin D, Murphy L, Keenan J, Clynes M, Kavanagh K. 2006. Pre-exposure to yeast protects larvae of Galleria mellonella from a subsequent lethal infection by Candida albicans and is mediated by the increased expression of antimicrobial peptides. Microbes Infect 8:2105–2112. doi:10.1016/j.micinf.2006.03.005 PubMed DOI
Gupta P, Samant K, Sahu A. 2012. Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential. Int J Microbiol 2012:578925. doi:10.1155/2012/578925 PubMed DOI PMC
Hammer TJ, Sanders JG, Fierer N. 2019. Not all animals need a microbiome. FEMS Microbiol Lett 366:117. doi:10.1093/femsle/fnz117 PubMed DOI
Hervet VAD, Laird RA, Floate KD. 2016. A review of the McMorran diet for rearing lepidoptera species with addition of a further 39 species. J Insect Sci 16:19. doi:10.1093/jisesa/iev151 PubMed DOI PMC
Julkunen-Tiitto R, Sorsa S. 2001. Testing the effects of drying methods on willow flavonoids, tannins, and salicylates. J Chem Ecol 27:779–789. doi:10.1023/A:1010358120482 PubMed DOI
Chelius MK, Triplett EW. 2001. The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb Ecol 41:252–263. doi:10.1007/s002480000087 PubMed DOI
Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N. 2010. The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol 12:2885–2893. doi:10.1111/j.1462-2920.2010.02258.x PubMed DOI PMC
Toju H, Tanabe AS, Yamamoto S, Sato H. 2012. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS One 7:e40863. doi:10.1371/journal.pone.0040863 PubMed DOI PMC
Bolyen E, Rideout JR, Dillon MR, Caporaso JG. 2018. QIIME 2: reproducible, interactive, scalable, and extensible microbiome data science. Nat Biotechnol 37:852–857. doi:10.7287/peerj.preprints.27295v1 PubMed DOI PMC
Rivers AR, Weber KC, Gardner TG, Liu S, Armstrong SD. 2018. ITSxpress: software to rapidly trim internally transcribed spacer sequences with quality scores for marker gene analysis. F1000Res 7:1418. doi:10.12688/f1000research.15704.1 PubMed DOI PMC
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. doi:10.1038/nmeth.3869 PubMed DOI PMC
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. doi:10.1093/nar/gks1219 PubMed DOI PMC
Nilsson RH, Larsson K-H, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, Kennedy P, Picard K, Glöckner FO, Tedersoo L, Saar I, Kõljalg U, Abarenkov K. 2019. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res 47:D259–D264. doi:10.1093/nar/gky1022 PubMed DOI PMC
UNITE Community . 2019. UNITE QIIME release for fungi 2. Available from: https://doi.plutof.ut.ee/doi/10.15156/BIO/786349 DOI
Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Gregory Caporaso J. 2018. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6:90. doi:10.1186/s40168-018-0470-z PubMed DOI PMC
Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. 2018. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6:226. doi:10.1186/s40168-018-0605-2 PubMed DOI PMC
R Core Team . 2022. R: a language and environment for statistical computing (4.2.1). R foundation for statistical computing. Vienna, Austria.
Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, Ellison AM. 2014. Rarefaction and extrapolation with hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 84:45–67. doi:10.1890/13-0133.1 DOI
Renkonen O. 1938. Statistisch-ökologische Untersuchungen über die terrestrische Käferwelt der finnischen Bruchmoore. Doctoral dissertation. Societas zoologica-botanica Fennica Vanamo.
Oksanen J, Simpson G, Blanchet F, Kindt R, Legendre P, Minchin P, O’Hara R, Solymos P, Stevens M, Szoecs` E, et al. . 2022. Vegan: community ecology package. R package version 2.6–4
Anderson MJ, Ellingsen KE, McArdle BH. 2006. Multivariate dispersion as a measure of beta diversity. Ecol Lett 9:683–693. doi:10.1111/j.1461-0248.2006.00926.x PubMed DOI
Ter Braak CJF, Šmilauer P. 2012. CANOCO reference manual and CanoDraw for windows user’s guide: software for canonical community ordination (version 5.01). Microcomputer Power, Ithaca, NY.
Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, Curtis TP. 2006. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ Microbiol 8:732–740. doi:10.1111/j.1462-2920.2005.00956.x PubMed DOI
Chen J, Zhang X, Yang L.. 2022. GUniFrac: generalized UniFrac distances, distance-based multivariate methods and feature-based univariate methods for microbiome data analysis. R package version 1.7.
McMurdie PJ, Holmes S. 2013. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. doi:10.1371/journal.pone.0061217 PubMed DOI PMC
Sprockett D. 2022. reltools: microbiome amplicon analysis and visualization. R package version 0.1.0.
Baker M, King R, Kahle D.. 2020. TITAN2: threshold indicator taxa analysis. R package version 2.4.1.
Dufrêne M, Legendre P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366. doi:10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2 DOI
Friedman J, Alm EJ, von Mering C. 2012. Inferring correlation networks from genomic survey data. PLoS Comput Biol 8:e1002687. doi:10.1371/journal.pcbi.1002687 PubMed DOI PMC
Nagpal S, Haque MM, Singh R, Mande SS. 2018. iVikodak—a platform and standard workflow for Inferring, analyzing, comparing, and visualizing the functional potential of microbial communities. Front Microbiol 9:3336. doi:10.3389/fmicb.2018.03336 PubMed DOI PMC