Impact of aging on mitochondrial respiration in various organs
Language English Country Czech Republic Media print
Document type Journal Article
PubMed
36647911
PubMed Central
PMC9906668
DOI
10.33549/physiolres.934995
PII: 934995
Knihovny.cz E-resources
- MeSH
- Anesthesia MeSH
- Cell Respiration MeSH
- Respiration MeSH
- Muscle, Skeletal metabolism MeSH
- Rats MeSH
- Mitochondria * MeSH
- Oxygen Consumption physiology MeSH
- Aging MeSH
- Mitochondria, Muscle * metabolism MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Mitochondria are considered central regulator of the aging process; however, majority of studies dealing with the impact of age on mitochondrial oxygen consumption focused on skeletal muscle concluding (although not uniformly) a general declining trend with advancing age. In addition, gender related differences in mitochondrial respiration have not been satisfactorily described yet. The aim of the present study was to evaluate mitochondrial oxygen consumption in various organs of aging male and female Fischer 344 rats at the ages of 6, 12 and 24 months. Mitochondrial respiration of homogenized (skeletal muscle, left and right heart ventricle, hippocampus, cerebellum, kidney cortex), gently mechanically permeabilized (liver) tissue or intact cells (platelets) was determined using high-resolution respirometry (oxygraphs O2k, Oroboros, Austria). The pattern of age-related changes differed in each tissue: in the skeletal muscle and kidney cortex of both sexes and in female heart, parameters of mitochondrial respiration significantly declined with age. Resting respiration of intact platelets displayed an increasing trend and it did not correlate with skeletal muscle respiratory states. In the heart of male rats and brain tissues of both sexes, respiratory states remained relatively stable over analyzed age categories with few exceptions of lower mitochondrial oxygen consumption at the age of 24 months. In the liver, OXPHOS capacity was higher in females than in males with either no difference between the ages of 6 and 24 months or even significant increase at the age of 24 months in the male rats. In conclusion, the results of our study indicate that the concept of general pattern of age-dependent decline in mitochondrial oxygen consumption across different organs and tissues could be misleading. Also, the statement of higher mitochondrial respiration in females seems to be conflicting, since the gender-related differences may vary with the tissue studied, combination of substrates used and might be better detectable at younger ages than in old animals.
See more in PubMed
Anton SD, Woods AJ, Ashizawa T, Barb D, Buford TW, Carter CS, Clark DJ, et al. Successful aging: Advancing the science of physical independence in older adults. Ageing Res Rev. 2015;24:304–327. doi: 10.1016/j.arr.2015.09.005. PubMed DOI PMC
Jang JY, Blum A, Liu J, Finkel T. The role of mitochondria in aging. J Clin Invest. 2018;128:3662–3670. doi: 10.1172/JCI120842. PubMed DOI PMC
Son JM, Lee C. Mitochondria: multifaceted regulators of aging. BMB Rep. 2019;52:13–23. doi: 10.5483/BMBRep.2019.52.1.300. PubMed DOI PMC
Son JM, Lee C. Aging: All roads lead to mitochondria. Semin Cell Dev Biol. 2021;116:160–168. doi: 10.1016/j.semcdb.2021.02.006. PubMed DOI PMC
Weber TA, Reichert AS. Impaired quality control of mitochondria: aging from a new perspective. Exp Gerontol. 2010;45:503–511. doi: 10.1016/j.exger.2010.03.018. PubMed DOI
Zhou KI, Pincus Z, Slack FJ. Longevity and stress in Caenorhabditis elegans. Aging (Albany NY) 2011;3:733–753. doi: 10.18632/aging.100367. PubMed DOI PMC
Chabi B, Ljubicic V, Menzies KJ, Huang JH, Saleem A, Hood DA. Mitochondrial function and apoptotic susceptibility in aging skeletal muscle. Aging Cell. 2008;7:2–12. doi: 10.1111/j.1474-9726.2007.00347.x. PubMed DOI
Martin C, Dubouchaud H, Mosoni L, Chardigny JM, Oudot A, Fontaine E, Vergely C, et al. Abnormalities of mitochondrial functioning can partly explain the metabolic disorders encountered in sarcopenic gastrocnemius. Aging Cell. 2007;6:165–177. doi: 10.1111/j.1474-9726.2007.00271.x. PubMed DOI
Distefano G, Standley RA, Dubé JJ, Carnero EA, Ritov VB, Stefanovic-Racic M, Toledo FG, Piva SR, Goodpaster BH, Coen PM. Chronological age does not influence ex-vivo mitochondrial respiration and quality control in skeletal muscle. J Gerontol A Biol Sci Med Sci. 2017;72:535–542. doi: 10.1093/gerona/glw102. PubMed DOI PMC
Ventura B, Genova ML, Bovina C, Formiggini G, Lenaz G. Control of oxidative phosphorylation by Complex I in rat liver mitochondria: implications for aging. Biochim Biophys Acta. 2002;1553:249–260. doi: 10.1016/S0005-2728(01)00246-8. PubMed DOI
Navarro A, Boveris A. Rat brain and liver mitochondria develop oxidative stress and lose enzymatic activities on aging. Am J Physiol Regul Integr Comp Physiol. 2004;287:1244–1249. doi: 10.1152/ajpregu.00226.2004. PubMed DOI
Pokkunuri I, Ali Q, Asghar M. Grape powder improves age-related decline in mitochondrial and kidney functions in Fischer 344 rats. Oxid Med Cell Longev. 2016;2016:6135319. doi: 10.1155/2016/6135319. PubMed DOI PMC
Kwong LK, Sohal RS. Age-related changes in activities of mitochondrial electron transport complexes in various tissues of the mouse. Arch Biochem Biophys. 2000;373:16–22. doi: 10.1006/abbi.1999.1495. PubMed DOI
Petrus AT, Lighezan DL, Danila MD, Duicu OM, Sturza A, Muntean DM, Ionita I. Assessment of platelet respiration as emerging biomarker of disease. Physiol Res. 2019;68:347–363. doi: 10.33549/physiolres.934032. PubMed DOI
Jedlička J, Kunc R, Kuncová J. Mitochondrial respiration of human platelets in young adult and advanced age - Seahorse or O2k? Physiol Res. 2021;70:369–379. doi: 10.33549//physiolres.934812. PubMed DOI PMC
Lenaz G, Bovina C, Castelluccio C, Fato R, Formiggini G, Genova ML, Marchetti M, Pich MM, Pallotti F, Parenti Castelli G, Biagini G. Mitochondrial complex I defects in aging. Mol Cell Biochem. 1997;174:329–333. doi: 10.1023/A:1006854619336. PubMed DOI
Pesta D, Gnaiger E. High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol Biol. 2012;810:25–58. doi: 10.1007/978-1-61779-382-0_3. PubMed DOI
Braganza A, Corey CG, Santanasto AJ, Distefano G, Coen PM, Glynn NW, Nouraie SM, Goodpaster BH, Newman AB, Shiva S. Platelet bioenergetics correlate with muscle energetics and are altered in older adults. JCI Insight. 2019;5:e128248. doi: 10.1172/jci.insight.128248. PubMed DOI PMC
Tyrrell DJ, Bharadwaj MS, Jorgensen MJ, Register TC, Molina AJ. Blood cell respirometry is associated with skeletal and cardiac muscle bioenergetics: Implications for a minimally invasive biomarker of mitochondrial health. Redox Biol. 2016;10:65–77. doi: 10.1016/j.redox.2016.09.009. PubMed DOI PMC
Wu YS, Liang S, Li DY, Wen JH, Tang JX, Liu HF. Cell cycle dysregulation and renal fibrosis. Front Cell Dev Biol. 2021;9:714320. doi: 10.3389/fcell.2021.714320. PubMed DOI PMC
Holmes DJ. F344 Rat. Sci Aging Knowl Env. 2003;36:as2–as2. doi: 10.1126/sageke.2003.36.as2. DOI
Colom B, Alcolea MP, Valle A, Oliver J, Roca P, García-Palmer FJ. Skeletal muscle of female rats exhibit higher mitochondrial mass and oxidative-phosphorylative capacities compared to males. Cell Physiol Biochem. 2007;19:205–212. doi: 10.1159/000099208. PubMed DOI
Farhat F, Amérand A, Simon B, Guegueniat N, Moisan C. Gender-dependent differences of mitochondrial function and oxidative stress in rat skeletal muscle at rest and after exercise training. Redox Rep. 2017;22:508–514. doi: 10.1080/13510002.2017.1296637. PubMed DOI PMC
Gómez-Pérez Y, Amengual-Cladera E, Català-Niell A, Thomàs-Moyà E, Gianotti M, Proenza AM, Lladó I. Gender dimorphism in high-fat-diet-induced insulin resistance in skeletal muscle of aged rats. Cell Physiol Biochem. 2008;22:539–548. doi: 10.1159/000185538. PubMed DOI
Hepple RT. Mitochondrial involvement and impact in aging skeletal muscle. Front Aging Neurosci. 2014;6:211. doi: 10.3389/fnagi.2014.00211. PubMed DOI PMC
Picard M, Ritchie D, Thomas MM, Wright KJ, Hepple RT. Alterations in intrinsic mitochondrial function with aging are fiber type-specific and do not explain differential atrophy between muscles. Aging Cell. 2011;10:1047–1055. doi: 10.1111/j.1474-9726.2011.00745.x. PubMed DOI
Crescenzo R, Bianco F, Mazzoli A, Giacco A, Liverini G, Iossa S. Skeletal muscle mitochondrial energetic efficiency and aging. Int J Mol Sci. 2015;16:10674–10685. doi: 10.3390/ijms160510674. PubMed DOI PMC
Larsen RG, Callahan DM, Foulis SA, Kent-Braun JA. Age-related changes in oxidative capacity differ between locomotory muscles and are associated with physical activity behavior. Appl Physiol Nutr Metab. 2012;37:88–99. doi: 10.1139/h11-135. PubMed DOI PMC
Esselun C, Dilberger B, Silaidos CV, Koch E, Schebb NH, Eckert GP. A walnut diet in combination with enriched environment improves cognitive function and affects lipid metabolites in brain and liver of aged NMRI mice. Neuromolecular Med. 2021;23:140–160. doi: 10.1007/s12017-020-08639-7. PubMed DOI PMC
Brierly EJ, Johnson MA, Bowman A, Ford GA, Subhan F, Reed JW, James OF, Turnbull DM. Mitochondrial function in muscle from elderly athletes. Ann Neurol. 1997;41:114–116. doi: 10.1002/ana.410410120. PubMed DOI
Junker A, Wang J, Gouspillou G, Ehinger JK, Elmér E, Sjövall F, Fisher-Wellman KH, Neufer PD, Molina AJA, Ferrucci L, Picard M. Human studies of mitochondrial biology demonstrate an overall lack of binary sex differences: A multivariate meta-analysis. FASEB J. 2022;36:e22146. doi: 10.1096/fj.202101628R. PubMed DOI PMC
Lalia AZ, Dasari S, Robinson MM, Abid H, Morse DM, Klaus KA, Lanza IR. Influence of omega-3 fatty acids on skeletal muscle protein metabolism and mitochondrial bioenergetics in older adults. Aging (Albany NY) 2017;9:1096–1129. doi: 10.18632/aging.101210. PubMed DOI PMC
Fišar Z, Hroudová J, Hansíková H, Spáčilová J, Lelková P, Wenchich L, Jirák R, Zvěřová M, Zeman J, Martásek P, Raboch J. Mitochondrial Respiration in the Platelets of Patients with Alzheimer’s Disease. Curr Alzheimer Res. 2016;13:930–941. doi: 10.2174/1567205013666160314150856. PubMed DOI
Hedges CP, Woodhead JST, Wang HW, Mitchell CJ, Cameron-Smith D, Hickey AJR, Merry TL. Peripheral blood mononuclear cells do not reflect skeletal muscle mitochondrial function or adaptation to high-intensity interval training in healthy young men. J Appl Physiol (1985) 2019;126:454–461. doi: 10.1152/japplphysiol.00777.2018. PubMed DOI
Rose S, Carvalho E, Diaz EC, Cotter M, Bennuri SC, Azhar G, Frye RE, Adams SH, Børsheim E. A comparative study of mitochondrial respiration in circulating blood cells and skeletal muscle fibers in women. Am J Physiol Endocrinol Metab. 2019;317:503–512. doi: 10.1152/ajpendo.00084.2019. PubMed DOI
Sjövall F, Morota S, Hansson MJ, Friberg H, Gnaiger E, Elmér E. Temporal increase of platelet mitochondrial respiration is negatively associated with clinical outcome in patients with sepsis. Crit Care. 2010;14:214. doi: 10.1186/cc9337. PubMed DOI PMC
Ehinger JK, Morota S, Hansson MJ, Paul G, Elmér E. Mitochondrial dysfunction in blood cells from amyotrophic lateral sclerosis patients. J Neurol. 2015;262:1493–1503. doi: 10.1007/s00415-015-7737-0. PubMed DOI
No MH, Heo JW, Yoo SZ, Kim CJ, Park DH, Kang JH, Seo DY, Han J, Kwak HB. Effects of aging and exercise training on mitochondrial function and apoptosis in the rat heart. Pflugers Arch. 2020;472:179–193. doi: 10.1007/s00424-020-02357-6. PubMed DOI
Khalifa AR, Abdel-Rahman EA, Mahmoud AM, Ali MH, Noureldin M, Saber SH, Mohsen M, Ali SS. Sex-specific differences in mitochondria biogenesis, morphology, respiratory function, and ROS homeostasis in young mouse heart and brain. Physiol Rep. 2017;5:e13125. doi: 10.14814/phy2.13125. PubMed DOI PMC
Sanz A, Hiona A, Kujoth GC, Seo AY, Hofer T, Kouwenhoven E, Kalani R, Prolla TA, Barja G, Leeuwenburgh C. Evaluation of sex differences on mitochondrial bioenergetics and apoptosis in mice. Exp Gerontol. 2007;42:173–182. doi: 10.1016/j.exger.2006.10.003. PubMed DOI PMC
Švíglerová J, Kuncová J, Nalos L, Holas J, Tonar Z, Rajdl D, Stengl M, editors. Cardiac remodeling in rats with renal failure shows interventricular differences. Exp Biol Med (Maywood) 2012;237:1056–1067. doi: 10.1258/ebm.2012.012045. PubMed DOI
Havlenova T, Skaroupkova P, Miklovic M, Behounek M, Chmel M, Jarkovska D, Sviglerova J, et al. Right versus left ventricular remodeling in heart failure due to chronic volume overload. Sci Rep. 2021;11:17136. doi: 10.1038/s41598-021-96618-8. PubMed DOI PMC
Wang Y, Xu E, Musich PR, Lin F. Mitochondrial dysfunction in neurodegenerative diseases and the potential countermeasure. CNS Neurosci Ther. 2019;25:816–824. doi: 10.1111/cns.13116. PubMed DOI PMC
Navarro A, López-Cepero JM, Bández MJ, Sánchez-Pino MJ, Gómez C, Cadenas E, Boveris A. Hippocampal mitochondrial dysfunction in rat aging. Am J Physiol Regul Integr Comp Physiol. 2008;294:501–509. doi: 10.1152/ajpregu.00492.2007. PubMed DOI
Popa-Wagner A, Sandu RE, Cristin C, Uzoni A, Welle KA, Hryhorenko JR, Ghaemmaghami S. Increased degradation rates in the components of the mitochondrial oxidative phosphorylation chain in the cerebellum of old mice. Front Aging Neurosci. 2018;10:32. doi: 10.3389/fnagi.2018.00032. PubMed DOI PMC
Tichanek F, Salomova M, Jedlicka J, Kuncova J, Pitule P, Macanova T, Petrankova Z, Tuma Z, Cendelin J. Hippocampal mitochondrial dysfunction and psychiatric-relevant behavioral deficits in spinocerebellar ataxia 1 mouse model. Sci Rep. 2020;10:5418. doi: 10.1038/s41598-020-62308-0. PubMed DOI PMC
Tieland M, Trouwborst I, Clark BC. Skeletal muscle performance and ageing. J Cachexia Sarcopenia Muscle. 2018;9:3–19. doi: 10.1002/jcsm.12238. PubMed DOI PMC
O’Toole JF, Patel HV, Naples CJ, Fujioka H, Hoppel CL. Decreased cytochrome c mediates an age-related decline of oxidative phosphorylation in rat kidney mitochondria. Biochem J. 2010;427:105–112. doi: 10.1042/BJ20091373. PubMed DOI PMC
Reijne AC, Ciapaite J, van Dijk TH, Havinga R, van der Zee EA, Groen AK, Reijngoud D-J, et al. Whole-body vibration partially reverses aging-induced increases in visceral adiposity and hepatic lipid storage in mice. PLoS One. 2016;11:e0149419. doi: 10.1371/journal.pone.0149419. PubMed DOI PMC
Pandya JD, Valdez M, Royland JE, MacPhail RC, Sullivan PG, Kodavanti PRS. Age- and organ-specific differences in mitochondrial bioenergetics in Brown Norway Rats. J Aging Res. 2020;2020:7232614. doi: 10.1155/2020/7232614. PubMed DOI PMC
Justo R, Boada J, Frontera M, Oliver J, Bermúdez J, Gianotti M. Gender dimorphism in rat liver mitochondrial oxidative metabolism and biogenesis. Am J Physiol Cell Physiol. 2005;289:372–378. doi: 10.1152/ajpcell.00035.2005. PubMed DOI
Ventura-Clapier R, Moulin M, Piquereau J, Lemaire C, Mericskay M, Veksler V, Garnier A. Mitochondria: a central target for sex differences in pathologies. Clin Sci (Lond) 2017;131:803–822. doi: 10.1042/CS20160485. PubMed DOI