Electrochemical, Biological, and Technological Properties of Anodized Titanium for Color Coded Implants
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008441
European Union
PubMed
36676374
PubMed Central
PMC9866561
DOI
10.3390/ma16020632
PII: ma16020632
Knihovny.cz E-zdroje
- Klíčová slova
- anodization, biocompatibility, corrosion properties, polarization, titanium,
- Publikační typ
- časopisecké články MeSH
Anodization coloring of titanium tools or implants is one of the common methods for the differentiation of each application by its size or type. Commercial purity titanium grade 4 plates (50 × 20 × 0.1 mm) were tested to obtain their electrochemical and other technological properties. The coloring process was done using the potential of 15, 30, 45, 60, and 75 Volts for 5 s in 1 wt. % citric acid in demineralized water solution. Organic acids solutions generally produce better surface quality compared to inorganic acids. The contact angle of colored surfaces was measured by the sessile drop method. Electrochemical impedance spectroscopy and potentiodynamic polarization were used for the determination of selected electrochemical and corrosion parameters of the tested surfaces. It was found that the anodization process decreases corrosion potential significantly. It was also confirmed that a higher potential used for anodization results in higher polarization resistance but also a decrease in corrosion potential. The anodization process at 75 V produces surfaces with the lowest corrosion rate under 1 nm/year and the noblest corrosion potential. It was confirmed that the anodization process in citric acid does not affect titanium cytotoxicity.
Faculty of Engineering Yokohama National University 79 5 Tokiwadai Hodogoaya Yokohama 240 8501 Japan
Institute of Emergency Medicine University of Ostrava Syllabova 19 703 00 Ostrava Czech Republic
Medin a s Vlachovicka 619 592 31 Nove Mesto na Morave Czech Republic
Trauma Center University Hospital Ostrava 17 Listopadu 1790 708 52 Ostrava Czech Republic
Zobrazit více v PubMed
Pruitt L.A., Chakravartula A.M. Mechanics of Biomaterials. Cambridge University Press; Cambridge, UK: 2012. Biocompatibility, sterilization, and materials selection for implant design; pp. 3–25. DOI
Ross A.P., Webster T.J. Anodizing color coded anodized Ti6Al4V medical devices for increasing bone cell functions. Int. J. Nanomed. 2013;8:109–117. doi: 10.2147/IJN.S36203. PubMed DOI PMC
Popovich A., Sufiiarov V., Polozov I., Borisov E., Masaylo D. Producing hip implants of titanium alloys by additive manufacturing. Int. J. Bioprint. 2016;946:990–995. doi: 10.18063/IJB.2016.02.004. DOI
Napoli G., Di Schino A., Paura M., Vela T. Colouring titanium alloys by anodic oxidation. Metalurgija. 2018;57:111–113.
Rodrigues D.C., Valderrama P., Wilson T.G., Palmer K., Thomas A., Sridhar S., Adapalli A., Burbano M., Wadhwani C. Titanium corrosion mechanisms in the oral environment: A retrieval study. Materials. 2013;6:5258–5274. doi: 10.3390/ma6115258. PubMed DOI PMC
Lauritano D., Moreo G., Lucchese A., Viganoni C., Limongelli L., Carinci F. The impact of implant-abutment connection on clinical outcomes and microbial colonization: A narrative review. Materials. 2020;13:1131. doi: 10.3390/ma13051131. PubMed DOI PMC
Carinci F., Lauritano D., Cura F., Lopez M.A., Bassi M.A., Confalone L., Pezzetti F. Prevention of bacterial leakage at implant-Abutment connection level: An in vitro study of the efficacy of three different implant systems. J. Biol. Regul. Homeost. Agents. 2016;30:69–73. PubMed
Lopez M.A., Bassi M.A., Confalone L., Gaudio R.M., Lombardo L., Lauritano D. The influence of “conical plus octagonal” internal connection on implant survival and success rate: A retrospective study of 66 fixtures. J. Biol. Regul. Homeost. Agents. 2016;30:49–54. PubMed
Costa R.C., Abdo V.L., Mendes P.H.C., Mota-Veloso I., Bertolini M., Mathew M.T., Barāo V.A.R., Souza J.G.S. Microbial Corrosion in Titanium-Based Dental Implants: How Tiny Bacteria Can Create a Big Problem? J. Bio-Tribo-Corros. 2021;7:136. doi: 10.1007/s40735-021-00575-8. DOI
Liu Z., Liu X., Donatus U., Thompson G.E., Skeldon P. Corrosion behaviour of the anodic oxide film on commercially pure titanium in NaCl environment. Int. J. Electrochem. Sci. 2014;9:3558–3573.
Do M.T., Gauquelin N., Nguyen M.D., Wang J., Verbeeck J., Blom F., Koster G., Houwman E.P., Rijnders G. Interfacial dielectric layer as an origin of polarization fatigue in ferroelectric capacitors. Sci. Rep. 2020;10:7310. doi: 10.1038/s41598-020-64451-0. PubMed DOI PMC
Diamanti M.V., Pedeferri M.P. Effect of anodic oxidation parameters on the titanium oxides formation. Corros. Sci. 2007;49:939–948. doi: 10.1016/j.corsci.2006.04.002. DOI
Yan Z.M., Guo T.W., Pan H.B., Yu J.J. Influences of electrolyzing voltage on chromatics of anodized titanium dentures. Mater. Trans. 2002;43:3142–3145. doi: 10.2320/matertrans.43.3142. DOI
Karambakhsh A., Afshar A., Ghahramani S., Malekinejad P. Pure commercial titanium color anodizing and corrosion resistance. J. Mater. Eng. Perform. 2011;20:1690–1696. doi: 10.1007/s11665-011-9860-0. DOI
Oldani C., Dominguez A. Recent Advances in Arthroplasty. InTechOpen; London, UK: 2012. Titanium as a Biomaterial for Implants.
Standard Specification for Titanium and Titanium Alloy. ASTM; West Conshohocken, PA, USA: 2013. ASTM Book of Standards.
ASTM Standard Test Method for Determining the Hiding Power of Paint by Visual Evaluation of Spray Applied Coatings 1. ASTM; West Conshohocken, PA, USA: 2015.
Kohonen O., Parkkinen J., Jääskeläinen T. Databases for spectral color science. Color Res. Appl. 2006;31:381–390. doi: 10.1002/col.20244. DOI
Kam D.H., Bhattacharya S., Mazumder J. Control of the wetting properties of an AISI 316L stainless steel surface by femtosecond laser-induced surface modification. J. Micromech. Microeng. 2012;22:105019. doi: 10.1088/0960-1317/22/10/105019. DOI
Calvimontes A. The Measurement of the Surface Energy of Solids by Sessile Drop Accelerometry. Microgravity Sci. Technol. 2018;30:277–293. doi: 10.1007/s12217-018-9596-7. DOI
Mohd Shafiee M.A., Muhamad Asri M.A., Syed Alwi S.S. Review on the in vitro cytotoxicity assessment in accordance to the international organization for standardization (ISO) Malays. J. Med. Health Sci. 2021;17:261–269.
Diamanti M.V., Pozzi P., Randone F., Del Curto B., Pedeferri M.P. Robust anodic colouring of titanium: Effect of electrolyte and colour durability. Mater. Des. 2016;90:1085–1091. doi: 10.1016/j.matdes.2015.11.063. DOI
Żenkiewicz M. Methods for the calculation of surface free energy of solids. J. Achiev. Mater. Manuf. Eng. 2007;24:137–145.
Itagaki M., Suzuki S., Shitanda I., Watanabe K. Electrochemical impedance and complex capacitance to interpret electrochemical capacitor. Electrochemistry. 2007;75:649–655. doi: 10.5796/electrochemistry.75.649. DOI
Zhang X.L., Jiang Z.H., Yao Z.P., Song Y., Wu Z.D. Effects of scan rate on the potentiodynamic polarization curve obtained to determine the Tafel slopes and corrosion current density. Corros. Sci. 2009;51:581–587. doi: 10.1016/j.corsci.2008.12.005. DOI
Orazem M.E., Tribollet B. Electrochemical Impedance Spectroscopy. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2008.
Yeh T.K., Wu P.I., Tsai C.H. Corrosion of ZrO2 treated type 304 stainless steels in high temperature pure water with various amounts of hydrogen peroxide. Prog. Nucl. Energy. 2012;57:62–70. doi: 10.1016/j.pnucene.2011.12.014. DOI
Papavinasam S. Trends in Oil and Gas Corrosion Research and Technologies: Production and Transmission. Elsevier; Amsterdam, The Netherlands: 2017. Pitting corrosion.
International Organization for Standardization Biological Evaluation of Medical Devices Part 5: Tests for In Vitro Cytotoxicity. ISO; Geneva, Switzerland: 2009. pp. 1–52.
Liu Z.J., Zhong X., Walton J., Thompson G.E. Anodic Film Growth of Titanium Oxide Using the 3-Electrode Electrochemical Technique: Effects of Oxygen Evolution and Morphological Characterizations. J. Electrochem. Soc. 2016;163:E75–E82. doi: 10.1149/2.0181603jes. DOI
Diamanti M.V., Del Curto B., Masconale V., Passaro C., Pedeferri M.P. Anodic coloring of titanium and its alloy for jewels production. Color Res. Appl. 2012;37:384–390. doi: 10.1002/col.20683. DOI
Napoli G., Zitelli C., Corapi D., Di Schino A. Titanium alloys anodic oxidation: Effect of experimental parameters on surface colouring. Mater. Sci. Forum. 2018;941:730–734. doi: 10.4028/www.scientific.net/MSF.941.730. DOI
International United States Standard Test Method for ASTM Color of Petroleum Products (ASTM Color Scale) ASTM; West Conshohocken, PA, USA: 2011.
Vera M.L., Avalos M.C., Rosenberger M.R., Bolmaro R.E., Schvezov C.E., Ares A.E. Evaluation of the influence of texture and microstructure of titanium substrates on TiO2anodic coatings at 60 V. Mater. Charact. 2017;131:348–358. doi: 10.1016/j.matchar.2017.07.005. DOI
Monteiro E.D.S., Moura de Souza Soares F., Nunes L.F., Santana A.I.C., de Biasi R.S., Elias C.N. Comparison of the wettability and corrosion resistance of two biomedical Ti alloys free of toxic elements with those of the commercial ASTM F136 (Ti–6Al–4V) alloy. J. Mater. Res. Technol. 2020;9:16329–16338. doi: 10.1016/j.jmrt.2020.11.068. DOI
Shah F.A., Trobos M., Thomsen P., Palmquist A. Commercially pure titanium (cp-Ti) versus titanium alloy (Ti6Al4V) materials as bone anchored implants—Is one truly better than the other? Mater. Sci. Eng. C. 2016;62:960–966. doi: 10.1016/j.msec.2016.01.032. PubMed DOI
Krawczyk J., Gallardo-Moreno A.M., González-Martín M.L. Effect of Spontaneous and Water-Based Passivation on Components and Parameters of Ti6Al4V (ELI Grade) Surface Tension and Its Wettability by an Aqueous Solution of Sucrose Ester Surfactants. Molecules. 2021;27:179. doi: 10.3390/molecules27010179. PubMed DOI PMC
Wei J., Igarashi T., Okumori N., Igarashi T., Maetani T., Liu B., Yoshinari M. Influence of surface wettability on competitive protein adsorption and initial attachment of osteoblasts. Biomed. Mater. 2009;4:045002. doi: 10.1088/1748-6041/4/4/045002. PubMed DOI
Shim I.K., Chung H.J., Jung M.R., Nam S.Y., Lee S.Y., Lee H., Heo S.J., Lee S.J. Biofunctional porous anodized titanium implants for enhanced bone regeneration. J. Biomed. Mater. Res. Part A. 2013;102:3639–3648. doi: 10.1002/jbm.a.35026. PubMed DOI
Ehlinger M., Adam P., Simon P., Bonnomet F. Technical difficulties in hardware removal in titanium compression plates with locking screws. Orthop. Traumatol. Surg. Res. 2009;95:373–376. doi: 10.1016/j.otsr.2009.03.020. PubMed DOI
Tavana H., Neumann A.W. Recent progress in the determination of solid surface tensions from contact angles. Adv. Colloid Interface Sci. 2007;132:1–32. doi: 10.1016/j.cis.2006.11.024. PubMed DOI
Chen X., Mao S.S. Titanium dioxide nanomaterials: Synthesis, properties, modifications and applications. Chem. Rev. 2007;107:2891–2959. doi: 10.1021/cr0500535. PubMed DOI
De Assis S.L., Wolynec S., Costa I. Corrosion characterization of titanium alloys by electrochemical techniques. Electrochim. Acta. 2006;51:1815–1819. doi: 10.1016/j.electacta.2005.02.121. DOI
Pajkossy T., Jurczakowski R. Electrochemical impedance spectroscopy in interfacial studies. Curr. Opin. Electrochem. 2017;1:53–58. doi: 10.1016/j.coelec.2017.01.006. DOI
Chulkin P., Data P. Electrochemical Impedance Spectroscopy as a Tool for Electrochemical Rate Constant Estimation. J. Vis. Exp. 2018;140:e56611. doi: 10.3791/56611. PubMed DOI PMC
Pour-Ali S., Dehghanian C., Kosari A. In situ synthesis of polyaniline-camphorsulfonate particles in an epoxy matrix for corrosion protection of mild steel in NaCl solution. Corros. Sci. 2014;85:204–214. doi: 10.1016/j.corsci.2014.04.018. DOI
Hlinka J., Lasek S., Faisal N. Corrosion properties of anodized titanium. Acta Metall. Slovaca. 2017;23:270–275. doi: 10.12776/ams.v23i3.982. DOI
Fredriksson W., Petrini D., Edström K., Björefors F., Nyholm L. Corrosion resistances and passivation of powder metallurgical and conventionally cast 316L and 2205 stainless steels. Corros. Sci. 2013;67:268–280. doi: 10.1016/j.corsci.2012.10.021. DOI
Bhola R., Bhola S.M., Mishra B., Olson D.L. Corrosion in titanium dental implants/prostheses—A review. Trends Biomater. Artif. Organs. 2011;25:34–46.
Fujii M., Seri O. Polarization curve and its analysis of titanium in a mixture solution of hydrogen peroxide and ammonia. Keikinzoku/J. Jpn. Inst. Light Met. 2016;66:352–358. doi: 10.2464/jilm.66.352. DOI
Hiromoto S. Metals for Biomedical Devices. Woodhead Publishing; Southen, UK: 2010. Corrosion of metallic biomaterials; pp. 99–121. DOI
Manivasagam G., Dhinasekaran D., Rajamanickam A. Biomedical Implants: Corrosion and its Prevention—A Review. Recent Pat. Corros. Sci. 2010;2:40–54. doi: 10.2174/1877610801002010040. DOI
Mohanty M., Baby S., Menon K.V. Spinal fixation device: A 6-year postimplantation study. J. Biomater. Appl. 2003;18:109–121. doi: 10.1177/088532803034746. PubMed DOI
Li W., Zhou J., Xu Y. Study of the in vitro cytotoxicity testing of medical devices. Biomed. Rep. 2015;3:617–620. doi: 10.3892/br.2015.481. PubMed DOI PMC
Soenen S.J., Manshian B., Montenegro J.M., Amin F., Meermann B., Thiron T., Cornelissen M., Vanhaecke F., Doak S., Parak W.J., et al. Cytotoxic effects of gold nanoparticles: A multiparametric study. ACS Nano. 2012;6:5767–5783. doi: 10.1021/nn301714n. PubMed DOI
Syam S., Wu C.J., Lan W.C., Ou K.L., Huang B.H., Lin Y.Y., Saito T., Tsai H.Y., Chuo Y.C., Yen M.L., et al. The potential of a surface-modified titanium implant with tetrapeptide for osseointegration enhancement. Appl. Sci. 2021;11:2616. doi: 10.3390/app11062616. DOI
Velasco-Ortega E., Alfonso-Rodríguez C.A., Monsalve-Guil L., España-López A., Jiménez-Guerra A., Garzón I., Alaminos M., Gil F.J. Relevant aspects in the surface properties in titanium dental implants for the cellular viability. Mater. Sci. Eng. C. 2016;64:1–10. doi: 10.1016/j.msec.2016.03.049. PubMed DOI
Chandar S., Kotian R., Madhyastha P., Kabekkodu S., Rao P. In vitro evaluation of cytotoxicity and corrosion behavior of commercially pure titanium and Ti-6Al-4V alloy for dental implants. J. Indian Prosthodont. Soc. 2017;17:35–40. doi: 10.4103/0972-4052.197936. PubMed DOI PMC
Delgado-Ruiz R., Romanos G. Potential causes of titanium particle and ion release in implant dentistry: A systematic review. Int. J. Mol. Sci. 2018;19:3585. doi: 10.3390/ijms19113585. PubMed DOI PMC
Kanematu N., Shibata K.I., Kurenuma S., Watanabe K., Yamagami A., Nishio Y., Fujii T. Cytotoxicity of oxide anodized titanium alloy evaluated by cell and organic culture study. Gifu Shika Gakkai Zasshi J. Gifu Dent. Soc. 1990;17:583–591. PubMed