Influence of glycoprotein MUC1 on trafficking of the Ca2+-selective ion channels, TRPV5 and TRPV6, and on in vivo calcium homeostasis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural
Grantová podpora
P30 DK079307
NIDDK NIH HHS - United States
K01 DK109038
NIDDK NIH HHS - United States
R03 DK131093
NIDDK NIH HHS - United States
K08 DK110332
NIDDK NIH HHS - United States
R01 DK038470
NIDDK NIH HHS - United States
T32 DK061296
NIDDK NIH HHS - United States
PubMed
36682497
PubMed Central
PMC9996365
DOI
10.1016/j.jbc.2023.102925
PII: S0021-9258(23)00057-1
Knihovny.cz E-zdroje
- Klíčová slova
- Ca homeostasis, MUC1, TRPV5, TRPV6, mucin 1,
- MeSH
- buněčná membrána metabolismus MeSH
- epitelové buňky metabolismus MeSH
- kationtové kanály TRPV * metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- mucin 1 * genetika metabolismus MeSH
- mutace MeSH
- myši MeSH
- sexuální faktory MeSH
- transport proteinů genetika MeSH
- vápník * krev metabolismus moč MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- kationtové kanály TRPV * MeSH
- MUC1 protein, human MeSH Prohlížeč
- mucin 1 * MeSH
- Trpv5 protein, mouse MeSH Prohlížeč
- Trpv6 protein, mouse MeSH Prohlížeč
- vápník * MeSH
Polymorphism of the gene encoding mucin 1 (MUC1) is associated with skeletal and dental phenotypes in human genomic studies. Animals lacking MUC1 exhibit mild reduction in bone density. These phenotypes could be a consequence of modulation of bodily Ca homeostasis by MUC1, as suggested by the previous observation that MUC1 enhances cell surface expression of the Ca2+-selective channel, TRPV5, in cultured unpolarized cells. Using biotinylation of cell surface proteins, we asked whether MUC1 influences endocytosis of TRPV5 and another Ca2+-selective TRP channel, TRPV6, in cultured polarized epithelial cells. Our results indicate that MUC1 reduces endocytosis of both channels, enhancing cell surface expression. Further, we found that mice lacking MUC1 lose apical localization of TRPV5 and TRPV6 in the renal tubular and duodenal epithelium. Females, but not males, lacking MUC1 exhibit reduced blood Ca2+. However, mice lacking MUC1 exhibited no differences in basal urinary Ca excretion or Ca retention in response to PTH receptor signaling, suggesting compensation by transport mechanisms independent of TRPV5 and TRPV6. Finally, humans with autosomal dominant tubulointerstitial kidney disease due to frame-shift mutation of MUC1 (ADTKD-MUC1) exhibit reduced plasma Ca concentrations compared to control individuals with mutations in the gene encoding uromodulin (ADTKD-UMOD), consistent with MUC1 haploinsufficiency causing reduced bodily Ca2+. In summary, our results provide further insight into the role of MUC1 in Ca2+-selective TRP channel endocytosis and the overall effects on Ca concentrations.
Department of Developmental Biology University of Pittsburgh Pittsburgh Pennsylvania USA
Department of Geology and Environmental Science University of Pittsburgh Pittsburgh Pennsylvania USA
Zobrazit více v PubMed
Nie M., Bal M.S., Yang Z., Liu J., Rivera C., Wenzel A., et al. Mucin-1 increases renal TRPV5 activity in vitro, and urinary level associates with calcium nephrolithiasis in patients. J. Am. Soc. Nephrol. 2016;27:3447–3458. PubMed PMC
Kim S.K. Identification of 613 new loci associated with heel bone mineral density and a polygenic risk score for bone mineral density, osteoporosis and fracture. PLoS One. 2018;13 PubMed PMC
Morris J.A., Kemp J.P., Youlten S.E., Laurent L., Logan J.G., Chai R.C., et al. An atlas of genetic influences on osteoporosis in humans and mice. Nat. Genet. 2019;51:258–266. PubMed PMC
Kemp J.P., Morris J.A., Medina-Gomez C., Forgetta V., Warrington N.M., Youlten S.E., et al. Identification of 153 new loci associated with heel bone mineral density and functional involvement of GPC6 in osteoporosis. Nat. Genet. 2017;49:1468–1475. PubMed PMC
Estrada K., Styrkarsdottir U., Evangelou E., Hsu Y.H., Duncan E.L., Ntzani E.E., et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat. Genet. 2012;44:491–501. PubMed PMC
Medina-Gomez C., Kemp J.P., Trajanoska K., Luan J., Chesi A., Ahluwalia T.S., et al. Life-course genome-wide association study meta-analysis of total body BMD and assessment of age-specific effects. Am. J. Hum. Genet. 2018;102:88–102. PubMed PMC
Watanabe K., Stringer S., Frei O., Umićević Mirkov M., de Leeuw C., Polderman T.J.C., et al. A global overview of pleiotropy and genetic architecture in complex traits. Nat. Genet. 2019;51:1339–1348. PubMed
Patton S., Gendler S.J., Spicer A.P. The epithelial mucin, MUC1, of milk, mammary gland and other tissues. Biochim. Biophys. Acta. 1995;1241:407–423. PubMed
Peng J.B., Suzuki Y., Gyimesi G., Hediger M.A. In: Calcium Entry Channels in Non-Excitable Cells. Kozak J.A., Putney J.W. Jr., editors. CRC Press/Taylor & Francis Group, LLC; Boca Raton, FL: 2018. TRPV5 and TRPV6 calcium-selective channels; pp. 241–274.
Lee J.W., Chou C.L., Knepper M.A. Deep sequencing in microdissected renal tubules identifies nephron segment-specific transcriptomes. J. Am. Soc. Nephrol. 2015;26:2669–2677. PubMed PMC
Nijenhuis T., Hoenderop J.G., van der Kemp A.W., Bindels R.J. Localization and regulation of the epithelial Ca2+ channel TRPV6 in the kidney. J. Am. Soc. Nephrol. 2003;14:2731–2740. PubMed
McAuley J.L., Linden S.K., Png C.W., King R.M., Pennington H.L., Gendler S.J., et al. MUC1 cell surface mucin is a critical element of the mucosal barrier to infection. J. Clin. Invest. 2007;117:2313–2324. PubMed PMC
Hoenderop J.G., van Leeuwen J.P., van der Eerden B.C., Kersten F.F., van der Kemp A.W., Merillat A.M., et al. Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. J. Clin. Invest. 2003;112:1906–1914. PubMed PMC
Bianco S.D., Peng J.B., Takanaga H., Suzuki Y., Crescenzi A., Kos C.H., et al. Marked disturbance of calcium homeostasis in mice with targeted disruption of the Trpv6 calcium channel gene. J. Bone Miner. Res. 2007;22:274–285. PubMed PMC
Cha S.-K., Wu T., Huang C.-L. Protein kinase C inhibits caveolae-mediated endocytosis of TRPV5. Am. J. Physiol. Renal Physiol. 2008;294:F1212–F1221. PubMed
Yates A.J., Gutierrez G.E., Smolens P., Travis P.S., Katz M.S., Aufdemorte T.B., et al. Effects of a synthetic peptide of a parathyroid hormone-related protein on calcium homeostasis, renal tubular calcium reabsorption, and bone metabolism in vivo and in vitro in rodents. J. Clin. Invest. 1988;81:932–938. PubMed PMC
Bleyer A.J., Kidd K., Zivna M., Kmoch S. Autosomal dominant tubulointerstitial kidney disease. Adv. Chronic Kidney Dis. 2017;24:86–93. PubMed PMC
Brum A.M., van der Leije C.S., Schreuders-Koedam M., Chaibi S., van Leeuwen J.P., van der Eerden B.C. Mucin 1 (Muc1) deficiency in female mice leads to temporal skeletal changes during aging. JBMR Plus. 2018;2:341–350. PubMed PMC
Christou M.A., Ntritsos G., Markozannes G., Koskeridis F., Nikas S.N., Karasik D., et al. A genome-wide scan for pleiotropy between bone mineral density and nonbone phenotypes. Bone Res. 2020;8:26. PubMed PMC
Meyer T.E., Verwoert G.C., Hwang S.J., Glazer N.L., Smith A.V., van Rooij F.J., et al. Genome-wide association studies of serum magnesium, potassium, and sodium concentrations identify six loci influencing serum magnesium levels. PLoS Genet. 2010;6 PubMed PMC
Liu Y., El-Achkar T.M., Wu X.-R. Tamm-Horsfall protein regulates circulating and renal cytokines by affecting glomerular filtration rate and acting as a urinary cytokine trap. J. Biol. Chem. 2012;287:16365–16378. PubMed PMC
Duarte C.G. Effects of ethacrynic acid and furosemide on urinary calcium, phosphate and magnesium. Metabolism. 1968;17:867–876. PubMed
Rejnmark L., Vestergaard P., Heickendorff L., Andreasen F., Mosekilde L. Effects of long-term treatment with loop diuretics on bone mineral density, calcitropic hormones and bone turnover. J. Intern. Med. 2005;257:176–184. PubMed
Dumic J., Dabelic S., Flögel M. Galectin-3: an open-ended story. Biochim. Biophys. Acta. 2006;1760:616–635. PubMed
Shan M., Gentile M., Yeiser J.R., Walland A.C., Bornstein V.U., Chen K., et al. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science. 2013;342:447–453. PubMed PMC
Poland P.A., Rondanino C., Kinlough C.L., Heimburg-Molinaro J., Arthur C.M., Stowell S.R., et al. Identification and characterization of endogenous galectins expressed in Madin Darby canine kidney cells. J. Biol. Chem. 2011;286:6780–6790. PubMed PMC
Lim H., Yu C.Y., Jou T.S. Galectin-8 regulates targeting of Gp135/podocalyxin and lumen formation at the apical surface of renal epithelial cells. FASEB J. 2017;31:4917–4927. PubMed
Wolf M.T., Wu X.-R., Huang C.-L. Uromodulin upregulates TRPV5 by impairing caveolin-mediated endocytosis. Kidney Int. 2013;84:130–137. PubMed PMC
Lang T., Hansson G.C., Samuelsson T. Gel-forming mucins appeared early in metazoan evolution. Proc. Natl. Acad. Sci. U. S. A. 2007;104:16209–16214. PubMed PMC
Duraisamy S., Kufe T., Ramasamy S., Kufe D. Evolution of the human MUC1 oncoprotein. Int. J. Oncol. 2007;31:671–677. PubMed
Peng J.-B. TRPV5 and TRPV6 in transcellular Ca 2+ transport: regulation, gene duplication, and polymorphisms in African populations. Adv. Exp. Med. Biol. 2011;704:239–275. PubMed
Kinlough C.L., Poland P.A., Gendler S.J., Mattila P.E., Mo D., Weisz O.A., et al. Core-glycosylated mucin-like repeats from MUC1 are an apical targeting signal. J. Biol. Chem. 2011;286:39072–39081. PubMed PMC
Hanisch F.G., Kinlough C.L., Staubach S., Hughey R.P. MUC1 membrane trafficking: protocols for assessing biosynthetic delivery, endocytosis, recycling, and release through exosomes. Methods Mol. Biol. 2012;842:123–140. PubMed
Croce M.V., Isla-Larrain M., Remes-Lenicov F., Colussi A.G., Lacunza E., Kim K.C., et al. MUC1 cytoplasmic tail detection using CT33 polyclonal and CT2 monoclonal antibodies in breast and colorectal tissue. Histol. Histopathol. 2006;21:849–855. PubMed
Montalbetti N., Carattino M.D. Acid-sensing ion channels modulate bladder nociception. Am. J. Physiol. Renal Physiol. 2021;321:F587–F599. PubMed PMC
Montalbetti N., Rooney J.G., Marciszyn A.L., Carattino M.D. ASIC3 fine-tunes bladder sensory signaling. Am. J. Physiol. Renal Physiol. 2018;315:F870–F879. PubMed PMC
Kovacs G., Montalbetti N., Franz M.C., Graeter S., Simonin A., Hediger M.A. Human TRPV5 and TRPV6: key players in cadmium and zinc toxicity. Cell Calcium. 2013;54:276–286. PubMed
Kovacs G., Montalbetti N., Simonin A., Danko T., Balazs B., Zsembery A., et al. Inhibition of the human epithelial calcium channel TRPV6 by 2-aminoethoxydiphenyl borate (2-APB) Cell Calcium. 2012;52:468–480. PubMed
Spicer A.P., Rowse G.J., Lidner T.K., Gendler S.J. Delayed mammary tumor progression in Muc-1 null mice. J. Biol. Chem. 1995;270:30093–30101. PubMed
Bouley R., Pastor-Soler N., Cohen O., McLaughlin M., Breton S., Brown D. Stimulation of AQP2 membrane insertion in renal epithelial cells in vitro and in vivo by the cGMP phosphodiesterase inhibitor sildenafil citrate (viagra) Am. J. Physiol. Renal Physiol. 2005;288:F1103–F1112. PubMed
Al-bataineh M.M., Gong F., Marciszyn A.L., Myerburg M.M., Pastor-Soler N.M. Regulation of proximal tubule vacuolar H(+)-ATPase by PKA and AMP-activated protein kinase. Am. J. Physiol. Renal Physiol. 2014;306:F981–F995. PubMed PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. PubMed PMC