TRPV2 and TRPC5 are potential targets for astringent phytochemicals
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41586439
PubMed Central
PMC12830184
DOI
10.1016/j.crfs.2026.101306
PII: S2665-9271(26)00006-7
Knihovny.cz E-zdroje
- Klíčová slova
- Astringency, Genistein, TRP channel, Tannic acid, Theasinensin A, Transient receptor potential,
- Publikační typ
- časopisecké články MeSH
Astringency is a multimodal sensory experience resulting from complex interactions between chemical compounds and the oral environment, involving tactile, chemosensory and thermosensory pathways. Recent human studies have examined the role of the polymodal transient receptor potential (TRP) channels TRPV1 and TRPA1 in astringency perception; however, other thermo- and mechanosensitive TRP channels expressed in oral epithelial cells and in trigeminal neurons innervating the mouth and tongue may also contribute to this complex sensation. This study explored the effects of structurally distinct representatives of astringent compounds on TRPV2 and TRPC5 channels. Using patch-clamp electrophysiology, microfluorimetry, molecular modeling, and mutagenesis, we show that the auto-oxidation products of the most abundant green tea polyphenol (-)-epigallocatechin-3-gallate (oxi-EGCG) significantly increase the activation of rat TRPV2 while blocking the human orthologue. The plant-derived isoflavone genistein, but not its glycoside form genistin, potentiated human TRPV2 and sensitized TRPC5-mediated currents activated by depolarizing voltage and the alpha subunit of G-proteins. Tannic acid, another astringent substance, potentiated rat TRPV2 and inhibited human TRPV2 and TRPC5. Furthermore, we show that both channels can interact with mucin 1, a transmembrane glycoprotein present in the native oral environment. Our data also provide the first evidence of heat-induced activation of human TRPV2. Considering previous evidence for TRPV2 and TRPC5 expression in the oral cavity and their roles in oral pain and cancer, our findings indicate that these polymodal channels may participate not only in detecting specific astringent compounds, but also in mediating their broader health-related and anesthetic actions.
Faculty of Mathematics and Physics Institute of Physics Charles University Prague Czech Republic
Institute of Physiology Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Abbott G.W., Redford K.E., Yoshimura R.F., Manville R.W., Moreira L., Tran K., Arena G., Kookootsedes A., Lasky E., Gunnison E. KCNQ and KCNE isoform-dependent pharmacology rationalizes native American dual use of specific plants as both analgesics and gastrointestinal therapeutics. Front. Physiol. 2021;12 doi: 10.3389/fphys.2021.777057. PubMed DOI PMC
Al-Bataineh M.M., Kinlough C.L., Marciszyn A., Lam T., Ye L., Kidd K., Maggiore J.C., Poland P.A., Kmoch S., Bleyer A., et al. Influence of glycoprotein MUC1 on trafficking of the Ca(2+)-selective ion channels, TRPV5 and TRPV6, and on in vivo calcium homeostasis. J. Biol. Chem. 2023;299 doi: 10.1016/j.jbc.2023.102925. PubMed DOI PMC
Aybeke E.N., Ployon S., Brulé M., De Fonseca B., Bourillot E., Morzel M., Lesniewska E., Canon F. Nanoscale mapping of the physical surface properties of human buccal cells and changes induced by saliva. Langmuir. 2019;35:12647–12655. doi: 10.1021/acs.langmuir.9b01979. PubMed DOI
Baez-Nieto D., Castillo J.P., Dragicevic C., Alvarez O., Latorre R. Thermo-TRP channels: biophysics of polymodal receptors. Adv. Exp. Med. Biol. 2011;704:469–490. doi: 10.1007/978-94-007-0265-3_26. PubMed DOI
Bajec M.R., Pickering G.J., DeCourville N. Influence of stimulus temperature on orosensory perception and variation with taste phenotype. Chemosensory Perception. 2012;5:243–265. doi: 10.1007/s12078-012-9129-5. DOI
Bajec M.R., Pickering G.J. Astringency: mechanisms and perception. Crit. Rev. Food Sci. Nutr. 2008;48:858–875. doi: 10.1080/10408390701724223. PubMed DOI
Bamps D., Vriens J., de Hoon J., Voets T. TRP channel cooperation for nociception: therapeutic opportunities. Annu. Rev. Pharmacol. Toxicol. 2021;61:655–677. doi: 10.1146/annurev-pharmtox-010919-023238. PubMed DOI
Bernal L., Sotelo-Hitschfeld P., Konig C., Sinica V., Wyatt A., Winter Z., Hein A., Touska F., Reinhardt S., Tragl A., et al. Odontoblast TRPC5 channels signal cold pain in teeth. Sci. Adv. 2021;7 doi: 10.1126/sciadv.abf5567. PubMed DOI PMC
Breslin P.A.S., Gilmore M.M., Beauchamp G.K., Green B.G. Psychophysical evidence that oral astringency is a tactile sensation. Chem. Senses. 1993;18:405–417. doi: 10.1093/chemse/18.4.405. DOI
Cai S., Fatherazi S., Presland R.B., Belton C.M., Izutsu K.T. TRPC channel expression during calcium-induced differentiation of human gingival keratinocytes. J. Dermatol. Sci. 2005;40:21–28. doi: 10.1016/j.jdermsci.2005.06.005. PubMed DOI
Canon F., Belloir C., Bourillot E., Brignot H., Briand L., Feron G., Lesniewska E., Nivet C., Septier C., Schwartz M., et al. Perspectives on astringency sensation: an alternative hypothesis on the molecular origin of astringency. J. Agric. Food Chem. 2021;69:3822–3826. doi: 10.1021/acs.jafc.0c07474. PubMed DOI
Carpenter G.H. Do transient receptor protein (Trp) channels play a role in oral astringency? J. Texture Stud. 2013;44:334–337. doi: 10.1111/jtxs.12015. DOI
Chalazias A., Plemmenos G., Evangeliou E., Piperi C. The pivotal role of transient receptor potential channels in oral physiology. Curr. Med. Chem. 2022;29:1408–1425. doi: 10.2174/0929867328666210806113132. PubMed DOI
Chen Y., Song K., Guo W., Wei M., Chen L. Mechanism of (-)-Englerin A and calcium binding on the human TRPC5 channel. Protein Sci. 2025;34 doi: 10.1002/pro.70218. PubMed DOI PMC
Cherkashin A.P., Rogachevskaja O.A., Khokhlov A.A., Kabanova N.V., Bystrova M.F., Kolesnikov S.S. Contribution of TRPC3-mediated Ca(2+) entry to taste transduction. Pflügers Archiv. 2023;475:1009–1024. doi: 10.1007/s00424-023-02834-8. PubMed DOI
Chinigò G., Fiorio Pla A., Gkika D. TRP channels and small GTPases interplay in the main hallmarks of metastatic cancer. Front. Pharmacol. 2020;11 doi: 10.3389/fphar.2020.581455. PubMed DOI PMC
Clapham D.E. TRP channels as cellular sensors. Nature. 2003;426:517–524. PubMed
Dittert I., Benedikt J., Vyklicky L., Zimmermann K., Reeh P.W., Vlachova V. Improved superfusion technique for rapid cooling or heating of cultured cells under patch-clamp conditions. J. Neurosci. Methods. 2006;151:178–185. doi: 10.1016/j.jneumeth.2005.07.005. PubMed DOI
Dixon R.A., Ferreira D. Genistein. Phytochemistry. 2002;60:205–211. doi: 10.1016/s0031-9422(02)00116-4. PubMed DOI
Dowling S., Regan F., Hughes H. The characterisation of structural and antioxidant properties of isoflavone metal chelates. J. Inorg. Biochem. 2010;104:1091–1098. doi: 10.1016/j.jinorgbio.2010.06.007. PubMed DOI
Duan J., Li J., Chen G.L., Ge Y., Liu J., Xie K., Peng X., Zhou W., Zhong J., Zhang Y., et al. Cryo-EM structure of TRPC5 at 2.8-A resolution reveals unique and conserved structural elements essential for channel function. Sci. Adv. 2019;5:eaaw7935. doi: 10.1126/sciadv.aaw7935. PubMed DOI PMC
Fernández-Ballester G., Fernández-Carvajal A., Ferrer-Montiel A. Progress in the structural basis of thermoTRP channel polymodal gating. Int. J. Mol. Sci. 2023;24 doi: 10.3390/ijms24010743. PubMed DOI PMC
Fricke T.C., Echtermeyer F., Zielke J., de la Roche J., Filipovic M.R., Claverol S., Herzog C., Tominaga M., Pumroy R.A., Moiseenkova-Bell V.Y., et al. Oxidation of methionine residues activates the high-threshold heat-sensitive ion channel TRPV2. Proc. Natl. Acad. Sci. U. S. A. 2019;116:24359–24365. doi: 10.1073/pnas.1904332116. PubMed DOI PMC
Fricke T.C., Rämisch A., Pumroy R.A., Pantke S., Herzog C., Echtermeyer F.G., Al-Samir S., Endeward V., Moiseenkova-Bell V., Leffler A. Molecular determinants of 2-APB-sensitivity of TRPV2 - unexpected differences between two rodent orthologues. Mol. Pharmacol. 2025 doi: 10.1016/j.molpha.2025.100060. PubMed DOI PMC
Fricke T.C., Leffler A. TRPV2: a universal regulator in cellular physiology with a yet poorly defined thermosensitivity. J. Physiol. Sci. 2024;74:42. doi: 10.1186/s12576-024-00936-1. PubMed DOI PMC
Gochman A., Tan X.-F., Bae C., Chen H., Swartz K.J., Jara-Oseguera A. Cannabidiol sensitizes TRPV2 channels to activation by 2-APB. eLife. 2023;12 doi: 10.7554/eLife.86166. PubMed DOI PMC
Haug F.M., Pumroy R.A., Sridhar A., Pantke S., Dimek F., Fricke T.C., Hage A., Herzog C., Echtermeyer F.G., de la Roche J., et al. Functional and structural insights into activation of TRPV2 by weak acids. EMBO J. 2024;43:2264–2290. doi: 10.1038/s44318-024-00106-4. PubMed DOI PMC
He D.X., Ma X. Transient receptor potential channel C5 in cancer chemoresistance. Acta Pharmacol. Sin. 2016;37:19–24. doi: 10.1038/aps.2015.109. PubMed DOI PMC
Herman P., Holoubek A., Brodska B. Lifetime-based photoconversion of EGFP as a tool for FLIM. Biochim. Biophys. Acta Gen. Subj. 2019;1863:266–277. doi: 10.1016/j.bbagen.2018.10.016. PubMed DOI
Herman P., Lakowicz J.R. Biomedical Photonics Handbook: Fundamentals, Devices, and Techniques. second ed. CRC Press; 2014. Lifetime-Based imaging; p. 44. Vo-Dinh T.E.
Hironaka K., Ozaki N., Hattori H., Nagamine K., Nakashima H., Ueda M., Sugiura Y. Involvement of glial activation in trigeminal ganglion in a rat model of lower gingival cancer pain. Nagoya J. Med. Sci. 2014;76:323–332. PubMed PMC
Holoubek A., Strachotová D., Otevřelová P., Röselová P., Heřman P., Brodská B. AML-Related NPM mutations drive p53 delocalization into the cytoplasm with possible impact on p53-Dependent stress response. Cancers (Basel) 2021;13 doi: 10.3390/cancers13133266. PubMed DOI PMC
Huang R., Xu C. An overview of the perception and mitigation of astringency associated with phenolic compounds. Compr. Rev. Food Sci. Food Saf. 2021;20:1036–1074. doi: 10.1111/1541-4337.12679. PubMed DOI
Ingólfsson H.I., Thakur P., Herold K.F., Hobart E.A., Ramsey N.B., Periole X., de Jong D.H., Zwama M., Yilmaz D., Hall K., et al. Phytochemicals perturb membranes and promiscuously alter protein function. ACS Chem. Biol. 2014;9:1788–1798. doi: 10.1021/cb500086e. PubMed DOI PMC
Julius D. TRP channels and pain. Annu. Rev. Cell Dev. Biol. 2013;29:355–384. doi: 10.1146/annurev-cellbio-101011-155833. PubMed DOI
Juvin V., Penna A., Chemin J., Lin Y.L., Rassendren F.A. Pharmacological characterization and molecular determinants of the activation of transient receptor potential V2 channel orthologs by 2-aminoethoxydiphenyl borate. Mol. Pharmacol. 2007;72:1258–1268. PubMed
Karolkowski A., Belloir C., Briand L., Salles C. Non-Volatile compounds involved in bitterness and astringency of pulses: a review. Molecules. 2023;28:3298. PubMed PMC
Khare P., Chand J., Ptakova A., Liguori R., Ferrazzi F., Bishnoi M., Vlachova V., Zimmermann K. The TRPC5 receptor as pharmacological target for pain and metabolic disease. Pharmacol. Therapeut. 2024;263 doi: 10.1016/j.pharmthera.2024.108727. PubMed DOI
Kim M.S., Simons C.T. The role of TRPA1 and TRPV1 in the perception of astringency. Chem. Senses. 2024;49 doi: 10.1093/chemse/bjae031. PubMed DOI
Koivisto A.P., Belvisi M.G., Gaudet R., Szallasi A. Advances in TRP channel drug discovery: from target validation to clinical studies. Nat. Rev. Drug Discov. 2022;21:41–59. doi: 10.1038/s41573-021-00268-4. PubMed DOI PMC
Kufe D.W. MUC1-C in chronic inflammation and carcinogenesis; emergence as a target for cancer treatment. Carcinogenesis. 2020;41:1173–1183. doi: 10.1093/carcin/bgaa082. PubMed DOI PMC
Kurogi M., Kawai Y., Nagatomo K., Tateyama M., Kubo Y., Saitoh O. Auto-oxidation products of epigallocatechin gallate activate TRPA1 and TRPV1 in sensory neurons. Chem. Senses. 2015;40:27–46. doi: 10.1093/chemse/bju057. PubMed DOI
Kurogi M., Miyashita M., Emoto Y., Kubo Y., Saitoh O. Green tea polyphenol epigallocatechin gallate activates TRPA1 in an intestinal enteroendocrine cell line, STC-1. Chem. Senses. 2012;37:167–177. doi: 10.1093/chemse/bjr087. PubMed DOI
Li F., Wang Y., Li D., Chen Y., Qiao X., Fardous R., Lewandowski A., Liu J., Chan T.H., Dou Q.P. Perspectives on the recent developments with green tea polyphenols in drug discovery. Expet Opin. Drug Discov. 2018;13:643–660. doi: 10.1080/17460441.2018.1465923. PubMed DOI PMC
Lichtenegger M., Tiapko O., Svobodova B., Stockner T., Glasnov T.N., Schreibmayer W., Platzer D., de la Cruz G.G., Krenn S., Schober R., et al. An optically controlled probe identifies lipid-gating fenestrations within the TRPC3 channel. Nat. Chem. Biol. 2018;14:396–404. doi: 10.1038/s41589-018-0015-6. PubMed DOI PMC
Linne B., Simons C.T. Quantification of oral roughness perception and comparison with mechanism of astringency perception. Chem. Senses. 2017;42:525–535. doi: 10.1093/chemse/bjx029. PubMed DOI
Liu J., Cattaneo C., Papavasileiou M., Methven L., Bredie W.L.P. A review on oral tactile sensitivity: measurement techniques, influencing factors and its relation to food perception and preference. Food Qual. Prefer. 2022;100 doi: 10.1016/j.foodqual.2022.104624. DOI
Liu C., Montell C. Forcing open TRP channels: mechanical gating as a unifying activation mechanism. Biochem. Biophys. Res. Commun. 2015;460:22–25. doi: 10.1016/j.bbrc.2015.02.067. PubMed DOI PMC
Liu B., Qin F. Use dependence of heat sensitivity of Vanilloid receptor TRPV2. Biophys. J. 2016;110:1523–1537. doi: 10.1016/j.bpj.2016.03.005. PubMed DOI PMC
Macikova L., Vyklicka L., Barvik I., Sobolevsky A.I., Vlachova V. Cytoplasmic inter-subunit interface controls use-dependence of thermal activation of TRPV3 channel. Int. J. Mol. Sci. 2019;20 doi: 10.3390/ijms20163990. PubMed DOI PMC
Mercado J., Gordon-Shaag A., Zagotta W.N., Gordon S.E. Ca2+-dependent desensitization of TRPV2 channels is mediated by hydrolysis of phosphatidylinositol 4,5-bisphosphate. J. Neurosci. 2010;30:13338–13347. doi: 10.1523/jneurosci.2108-10.2010. PubMed DOI PMC
Miles B.L., Van Simaeys K., Whitecotton M., Simons C.T. Comparative tactile sensitivity of the fingertip and apical tongue using complex and pure tactile tasks. Physiol. Behav. 2018;194:515–521. doi: 10.1016/j.physbeh.2018.07.002. PubMed DOI
Mugo A., Chou R., Chin F., Liu B., Jiang Q.X., Qin F. A suicidal mechanism for the exquisite temperature sensitivity of TRPV1. Proc. Natl. Acad. Sci. U. S. A. 2023;120 doi: 10.1073/pnas.2300305120. PubMed DOI PMC
Mugo A.N., Chou R., Qin F. Protein dynamics underlies strong temperature dependence of heat receptors. Proc. Natl. Acad. Sci. U. S. A. 2025;122 doi: 10.1073/pnas.2406318121. PubMed DOI PMC
Naponelli V., Piscazzi A., Mangieri D. Cellular and molecular mechanisms modulated by genistein in cancer. Int. J. Mol. Sci. 2025;26 doi: 10.3390/ijms26031114. PubMed DOI PMC
Naylor J., Minard A., Gaunt H.J., Amer M.S., Wilson L.A., Migliore M., Cheung S.Y., Rubaiy H.N., Blythe N.M., Musialowski K.E., et al. Natural and synthetic flavonoid modulation of TRPC5 channels. Br. J. Pharmacol. 2016;173:562–574. doi: 10.1111/bph.13387. PubMed DOI PMC
Neeper M.P., Liu Y., Hutchinson T.L., Wang Y., Flores C.M., Qin N. Activation properties of heterologously expressed mammalian TRPV2: evidence for species dependence. J. Biol. Chem. 2007;282:15894–15902. PubMed
Nilius B., Prenen J., Droogmans G., Voets T., Vennekens R., Freichel M., Wissenbach U., Flockerzi V. Voltage dependence of the Ca2+-activated cation channel TRPM4. J. Biol. Chem. 2003;278:30813–30820. doi: 10.1074/jbc.M305127200. PubMed DOI
Nilius B., Szallasi A. Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine. Pharmacol. Rev. 2014;66:676–814. doi: 10.1124/pr.113.008268. PubMed DOI
Novakova-Tousova K., Vyklicky L., Susankova K., Benedikt J., Samad A., Teisinger J., Vlachova V. Functional changes in the vanilloid receptor subtype 1 channel during and after acute desensitization. Neuroscience. 2007;149:144–154. PubMed
Nowak S., Di Pizio A., Levit A., Niv M.Y., Meyerhof W., Behrens M. Reengineering the ligand sensitivity of the broadly tuned human bitter taste receptor TAS2R14. Biochim. Biophys. Acta Gen. Subj. 2018;1862:2162–2173. doi: 10.1016/j.bbagen.2018.07.009. PubMed DOI
Oto T., Urata K., Hayashi Y., Hitomi S., Shibuta I., Iwata K., Iinuma T., Shinoda M. Age-Related differences in transient receptor potential vanilloid 1 and 2 expression patterns in the trigeminal ganglion neurons contribute to changes in the palatal mucosal heat pain sensitivity. Tohoku J. Exp. Med. 2022;256:283–290. doi: 10.1620/tjem.2022.J004. PubMed DOI
Passaro S., Corso G., Wohlwend J., Reveiz M., Thaler S., Somnath V.R., Getz N., Portnoi T., Roy J., Stark H., et al. Boltz-2: towards accurate and efficient binding affinity prediction. bioRxiv. 2025 doi: 10.1101/2025.06.14.659707. DOI
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Pires M.A., Pastrana L.M., Fuciños P., Abreu C.S., Oliveira S.M. Sensorial perception of astringency: oral mechanisms and current analysis methods. Foods. 2020;9 doi: 10.3390/foods9081124. PubMed DOI PMC
Porav S.A., Ptakova A., Bauer C.C., Hammond K.L.R., Beech D.J., Vlachova V., Muench S.P., Bon R.S. (-)-Englerin A binds a conserved lipid site of TRPC5 and exposes a Met-aromatic motif in channel activation. bioRxiv. 2025 doi: 10.1101/2025.07.09.663840. 2025.2007.2009.663840. DOI
Ptakova A., Mitro M., Zimova L., Vlachova V. Cellular context determines primary characteristics of human TRPC5 as a cold-activated channel. J. Cell. Physiol. 2022;237:3614–3626. doi: 10.1002/jcp.30821. PubMed DOI
Pumroy R.A., Protopopova A.D., Fricke T.C., Lange I.U., Haug F.M., Nguyen P.T., Gallo P.N., Sousa B.B., Bernardes G.J.L., Yarov-Yarovoy V., et al. Structural insights into TRPV2 activation by small molecules. Nat. Commun. 2022;13:2334. doi: 10.1038/s41467-022-30083-3. PubMed DOI PMC
Ricci S., Kim M.S., Simons C.T. The impact of temperature and a chemesthetic cooling agent on lingual roughness sensitivity. Chem. Senses. 2024;49 doi: 10.1093/chemse/bjae013. PubMed DOI
Roland W.S., Vincken J.P., Gouka R.J., van Buren L., Gruppen H., Smit G. Soy isoflavones and other isoflavonoids activate the human bitter taste receptors hTAS2R14 and hTAS2R39. J. Agric. Food Chem. 2011;59:11764–11771. doi: 10.1021/jf202816u. PubMed DOI
Rosenbaum T., Morales-Lázaro S.L., Islas L.D. TRP channels: a journey towards a molecular understanding of pain. Nat. Rev. Neurosci. 2022;23:596–610. doi: 10.1038/s41583-022-00611-7. PubMed DOI
Sadler K.E., Moehring F., Shiers S.I., Laskowski L.J., Mikesell A.R., Plautz Z.R., Brezinski A.N., Mecca C.M., Dussor G., Price T.J., et al. Transient receptor potential canonical 5 mediates inflammatory mechanical and spontaneous pain in mice. Sci. Transl. Med. 2021;13:eabd7702. doi: 10.1126/scitranslmed.abd7702. PubMed DOI PMC
Sakakibara A., Sakakibara S., Kusumoto J., Takeda D., Hasegawa T., Akashi M., Minamikawa T., Hashikawa K., Terashi H., Komori T. Upregulated expression of transient receptor potential cation channel subfamily V receptors in mucosae of patients with oral squamous cell carcinoma and patients with a history of alcohol consumption or smoking. PLoS One. 2017;12 doi: 10.1371/journal.pone.0169723. PubMed DOI PMC
Sasaki R., Sato T., Yajima T., Kano M., Suzuki T., Ichikawa H. The distribution of TRPV1 and TRPV2 in the rat pharynx. Cell. Mol. Neurobiol. 2013;33:707–714. doi: 10.1007/s10571-013-9938-3. PubMed DOI PMC
Shimohira D., Kido M.A., Danjo A., Takao T., Wang B., Zhang J.Q., Yamaza T., Masuko S., Goto M., Tanaka T. TRPV2 expression in rat oral mucosa. Histochem. Cell Biol. 2009;132:423–433. doi: 10.1007/s00418-009-0616-y. PubMed DOI
Simon S.A., Gutierrez R. In: Neurobiology of TRP Channels. 124. Emir T.L.R., editor. 2017. TRP channels at the periphery of the taste and trigeminal systems; p. 113. Boca Raton (FL) PubMed
Singha Roy A., Tripathy D.R., Chatterjee A., Dasgupta S. The influence of common metal ions on the interactions of the isoflavone genistein with bovine serum albumin. Spectrochim. Acta Mol. Biomol. Spectrosc. 2013;102:393–402. doi: 10.1016/j.saa.2012.09.053. PubMed DOI
Siveen K.S., Nizamuddin P.B., Uddin S., Al-Thani M., Frenneaux M.P., Janahi I.A., Steinhoff M., Azizi F. TRPV2: a cancer biomarker and potential therapeutic target. Dis. Markers. 2020;2020 doi: 10.1155/2020/8892312. PubMed DOI PMC
Song K., Wei M., Guo W., Quan L., Kang Y., Wu J.X., Chen L. Structural basis for human TRPC5 channel inhibition by two distinct inhibitors. eLife. 2021;10 doi: 10.7554/eLife.63429. PubMed DOI PMC
Storch U., Mederos Y.S.M., Gudermann T. A greasy business: identification of a diacylglycerol binding site in human TRPC5 channels by cryo-EM. Cell Calcium. 2021;97 doi: 10.1016/j.ceca.2021.102414. PubMed DOI
Takahashi S., Kurogi M., Saitoh O. The diversity in sensitivity of TRPA1 and TRPV1 of various animals to polyphenols. Biomed. Res. 2021;42:43–51. doi: 10.2220/biomedres.42.43. PubMed DOI
Thibodeau M., Bajec M., Saliba A., Pickering G. Homogeneity of thermal tasters and implications for mechanisms and classification. Physiol. Behav. 2020;227 doi: 10.1016/j.physbeh.2020.113160. PubMed DOI
Trott O., Olson A.J. AutoDock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Trulsson M., Essick G.K. Low-threshold mechanoreceptive afferents in the human lingual nerve. J. Neurophysiol. 1997;77:737–748. doi: 10.1152/jn.1997.77.2.737. PubMed DOI
Tsai T.-Y., Leong I.-L., Shiao L.-R., Wong K.-L., Shao L., Chan P., Leung Y.-M. Tannic acid, a vasodilator present in wines and beverages, stimulates Ca2+ influx via TRP channels in bEND.3 endothelial cells. Biochem. Biophys. Res. Commun. 2020;526:117–121. doi: 10.1016/j.bbrc.2020.03.078. PubMed DOI
Uchino M., Sashide Y., Takeda M. Suppression of the excitability of rat nociceptive secondary sensory neurons following local administration of the phytochemical, (-)-Epigallocatechin-3-gallate. Brain Res. 2023;1813 doi: 10.1016/j.brainres.2023.148426. PubMed DOI
Urata K., Shinoda M., Ikutame D., Iinuma T., Iwata K. Involvement of transient receptor potential vanilloid 2 in intra-oral incisional pain. Oral Dis. 2018;24:1093–1100. doi: 10.1111/odi.12853. PubMed DOI
Utugi S., Chida R., Yamaguchi S., Sashide Y., Takeda M. Local administration of (-)-Epigallocatechin-3-Gallate as a local anesthetic agent inhibits the excitability of rat nociceptive primary sensory neurons. Cells. 2025;14 doi: 10.3390/cells14010052. PubMed DOI PMC
Utugi S., Sashide Y., Takeda M. (-)-Epigallocatechin-3-Gallate suppresses hyperexcitability in rat primary nociceptive neurons innervating inflamed tissues: a comparison with lidocaine. Metabolites. 2025;15 doi: 10.3390/metabo15070439. PubMed DOI PMC
Vlachova V., Teisinger J., Sušánková K., Lyfenko A., Ettrich R., Vyklicky L. Functional role of C-terminal cytoplasmic tail of rat vanilloid receptor 1. J. Neurosci. 2003;23:1340–1350. PubMed PMC
Wang B., Danjo A., Kajiya H., Okabe K., Kido M.A. Oral epithelial cells are activated via TRP channels. J. Dent. Res. 2011;90:163–167. doi: 10.1177/0022034510385459. PubMed DOI
Wang M., Pan M., Li Y., Lu T., Wang Z., Liu C., Hu G. ANXA6/TRPV2 axis promotes lymphatic metastasis in head and neck squamous cell carcinoma by inducing autophagy. Exp. Hematol. Oncol. 2023;12:43. doi: 10.1186/s40164-023-00406-1. PubMed DOI PMC
Wang S., Smyth H.E., Olarte Mantilla S.M., Stokes J.R., Smith P.A. Astringency and its sub-qualities: a review of astringency mechanisms and methods for measuring saliva lubrication. Chem. Senses. 2024;49 doi: 10.1093/chemse/bjae016. PubMed DOI
Wei F., Wang J., Luo L., Tayyab Rashid M., Zeng L. The perception and influencing factors of astringency, and health-promoting effects associated with phytochemicals: a comprehensive review. Food Res. Int. 2023;170 doi: 10.1016/j.foodres.2023.112994. PubMed DOI
Wohlwend J., Corso G., Passaro S., Getz N., Reveiz M., Leidal K., Swiderski W., Atkinson L., Portnoi T., Chinn I., et al. Boltz-1 democratizing biomolecular interaction modeling. bioRxiv. 2025;2024 doi: 10.1101/2024.11.19.624167. 2011.2019.624167. DOI
Won J., Kim J., Jeong H., Kim J., Feng S., Jeong B., Kwak M., Ko J., Im W., So I., et al. Molecular architecture of the galpha(i)-bound TRPC5 ion channel. Nat. Commun. 2023;14:2550. doi: 10.1038/s41467-023-38281-3. PubMed DOI PMC
Wong C.O., Huang Y., Yao X. Genistein potentiates activity of the cation channel TRPC5 independently of tyrosine kinases. Br. J. Pharmacol. 2010;159:1486–1496. doi: 10.1111/j.1476-5381.2010.00636.x. PubMed DOI PMC
Wright D.J., Simmons K.J., Johnson R.M., Beech D.J., Muench S.P., Bon R.S. Human TRPC5 structures reveal interaction of a xanthine-based TRPC1/4/5 inhibitor with a conserved lipid binding site. Commun. Biol. 2020;3:704. doi: 10.1038/s42003-020-01437-8. PubMed DOI PMC
Yang Y., Wei M., Chen L. Structural identification of riluzole-binding site on human TRPC5. Cell Discovery. 2022;8:67. doi: 10.1038/s41421-022-00410-5. PubMed DOI PMC
Ye Q.Q., Chen G.S., Pan W., Cao Q.Q., Zeng L., Yin J.F., Xu Y.Q. A predictive model for astringency based on in vitro interactions between salivary proteins and (-)-Epigallocatechin gallate. Food Chem. 2021;340 doi: 10.1016/j.foodchem.2020.127845. PubMed DOI
Yu S., Deng R., Wang W., Zou D., He L., Wei Z., Pan Y., Li X., Wu Y., Wang A., et al. Pharmacological manipulation of TRPC5 by kaempferol attenuates metastasis of gastrointestinal cancer via inhibiting calcium involved in the formation of filopodia. Int. J. Biol. Sci. 2024;20:4922–4940. doi: 10.7150/ijbs.87829. PubMed DOI PMC
Zhang L., Nagel M., Olson W.P., Chesler A.T., O'Connor D.H. Trigeminal innervation and tactile responses in mouse tongue. Cell Rep. 2024;43 doi: 10.1016/j.celrep.2024.114665. PubMed DOI PMC
Zimmermann K., Lennerz J.K., Hein A., Link A.S., Kaczmarek J.S., Delling M., Uysal S., Pfeifer J.D., Riccio A., Clapham D.E. Transient receptor potential cation channel, subfamily C, member 5 (TRPC5) is a cold-transducer in the peripheral nervous system. Proc. Natl. Acad. Sci. U. S. A. 2011;108:18114–18119. doi: 10.1073/pnas.1115387108. PubMed DOI PMC
Zimova L., Ptakova A., Mitro M., Krusek J., Vlachova V. Activity dependent inhibition of TRPC1/4/5 channels by duloxetine involves voltage sensor-like domain. Biomed. Pharmacother. 2022;152 doi: 10.1016/j.biopha.2022.113262. PubMed DOI