TRPV2 and TRPC5 are potential targets for astringent phytochemicals

. 2026 ; 12 () : 101306. [epub] 20260110

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41586439
Odkazy

PubMed 41586439
PubMed Central PMC12830184
DOI 10.1016/j.crfs.2026.101306
PII: S2665-9271(26)00006-7
Knihovny.cz E-zdroje

Astringency is a multimodal sensory experience resulting from complex interactions between chemical compounds and the oral environment, involving tactile, chemosensory and thermosensory pathways. Recent human studies have examined the role of the polymodal transient receptor potential (TRP) channels TRPV1 and TRPA1 in astringency perception; however, other thermo- and mechanosensitive TRP channels expressed in oral epithelial cells and in trigeminal neurons innervating the mouth and tongue may also contribute to this complex sensation. This study explored the effects of structurally distinct representatives of astringent compounds on TRPV2 and TRPC5 channels. Using patch-clamp electrophysiology, microfluorimetry, molecular modeling, and mutagenesis, we show that the auto-oxidation products of the most abundant green tea polyphenol (-)-epigallocatechin-3-gallate (oxi-EGCG) significantly increase the activation of rat TRPV2 while blocking the human orthologue. The plant-derived isoflavone genistein, but not its glycoside form genistin, potentiated human TRPV2 and sensitized TRPC5-mediated currents activated by depolarizing voltage and the alpha subunit of G-proteins. Tannic acid, another astringent substance, potentiated rat TRPV2 and inhibited human TRPV2 and TRPC5. Furthermore, we show that both channels can interact with mucin 1, a transmembrane glycoprotein present in the native oral environment. Our data also provide the first evidence of heat-induced activation of human TRPV2. Considering previous evidence for TRPV2 and TRPC5 expression in the oral cavity and their roles in oral pain and cancer, our findings indicate that these polymodal channels may participate not only in detecting specific astringent compounds, but also in mediating their broader health-related and anesthetic actions.

Zobrazit více v PubMed

Abbott G.W., Redford K.E., Yoshimura R.F., Manville R.W., Moreira L., Tran K., Arena G., Kookootsedes A., Lasky E., Gunnison E. KCNQ and KCNE isoform-dependent pharmacology rationalizes native American dual use of specific plants as both analgesics and gastrointestinal therapeutics. Front. Physiol. 2021;12 doi: 10.3389/fphys.2021.777057. PubMed DOI PMC

Al-Bataineh M.M., Kinlough C.L., Marciszyn A., Lam T., Ye L., Kidd K., Maggiore J.C., Poland P.A., Kmoch S., Bleyer A., et al. Influence of glycoprotein MUC1 on trafficking of the Ca(2+)-selective ion channels, TRPV5 and TRPV6, and on in vivo calcium homeostasis. J. Biol. Chem. 2023;299 doi: 10.1016/j.jbc.2023.102925. PubMed DOI PMC

Aybeke E.N., Ployon S., Brulé M., De Fonseca B., Bourillot E., Morzel M., Lesniewska E., Canon F. Nanoscale mapping of the physical surface properties of human buccal cells and changes induced by saliva. Langmuir. 2019;35:12647–12655. doi: 10.1021/acs.langmuir.9b01979. PubMed DOI

Baez-Nieto D., Castillo J.P., Dragicevic C., Alvarez O., Latorre R. Thermo-TRP channels: biophysics of polymodal receptors. Adv. Exp. Med. Biol. 2011;704:469–490. doi: 10.1007/978-94-007-0265-3_26. PubMed DOI

Bajec M.R., Pickering G.J., DeCourville N. Influence of stimulus temperature on orosensory perception and variation with taste phenotype. Chemosensory Perception. 2012;5:243–265. doi: 10.1007/s12078-012-9129-5. DOI

Bajec M.R., Pickering G.J. Astringency: mechanisms and perception. Crit. Rev. Food Sci. Nutr. 2008;48:858–875. doi: 10.1080/10408390701724223. PubMed DOI

Bamps D., Vriens J., de Hoon J., Voets T. TRP channel cooperation for nociception: therapeutic opportunities. Annu. Rev. Pharmacol. Toxicol. 2021;61:655–677. doi: 10.1146/annurev-pharmtox-010919-023238. PubMed DOI

Bernal L., Sotelo-Hitschfeld P., Konig C., Sinica V., Wyatt A., Winter Z., Hein A., Touska F., Reinhardt S., Tragl A., et al. Odontoblast TRPC5 channels signal cold pain in teeth. Sci. Adv. 2021;7 doi: 10.1126/sciadv.abf5567. PubMed DOI PMC

Breslin P.A.S., Gilmore M.M., Beauchamp G.K., Green B.G. Psychophysical evidence that oral astringency is a tactile sensation. Chem. Senses. 1993;18:405–417. doi: 10.1093/chemse/18.4.405. DOI

Cai S., Fatherazi S., Presland R.B., Belton C.M., Izutsu K.T. TRPC channel expression during calcium-induced differentiation of human gingival keratinocytes. J. Dermatol. Sci. 2005;40:21–28. doi: 10.1016/j.jdermsci.2005.06.005. PubMed DOI

Canon F., Belloir C., Bourillot E., Brignot H., Briand L., Feron G., Lesniewska E., Nivet C., Septier C., Schwartz M., et al. Perspectives on astringency sensation: an alternative hypothesis on the molecular origin of astringency. J. Agric. Food Chem. 2021;69:3822–3826. doi: 10.1021/acs.jafc.0c07474. PubMed DOI

Carpenter G.H. Do transient receptor protein (Trp) channels play a role in oral astringency? J. Texture Stud. 2013;44:334–337. doi: 10.1111/jtxs.12015. DOI

Chalazias A., Plemmenos G., Evangeliou E., Piperi C. The pivotal role of transient receptor potential channels in oral physiology. Curr. Med. Chem. 2022;29:1408–1425. doi: 10.2174/0929867328666210806113132. PubMed DOI

Chen Y., Song K., Guo W., Wei M., Chen L. Mechanism of (-)-Englerin A and calcium binding on the human TRPC5 channel. Protein Sci. 2025;34 doi: 10.1002/pro.70218. PubMed DOI PMC

Cherkashin A.P., Rogachevskaja O.A., Khokhlov A.A., Kabanova N.V., Bystrova M.F., Kolesnikov S.S. Contribution of TRPC3-mediated Ca(2+) entry to taste transduction. Pflügers Archiv. 2023;475:1009–1024. doi: 10.1007/s00424-023-02834-8. PubMed DOI

Chinigò G., Fiorio Pla A., Gkika D. TRP channels and small GTPases interplay in the main hallmarks of metastatic cancer. Front. Pharmacol. 2020;11 doi: 10.3389/fphar.2020.581455. PubMed DOI PMC

Clapham D.E. TRP channels as cellular sensors. Nature. 2003;426:517–524. PubMed

Dittert I., Benedikt J., Vyklicky L., Zimmermann K., Reeh P.W., Vlachova V. Improved superfusion technique for rapid cooling or heating of cultured cells under patch-clamp conditions. J. Neurosci. Methods. 2006;151:178–185. doi: 10.1016/j.jneumeth.2005.07.005. PubMed DOI

Dixon R.A., Ferreira D. Genistein. Phytochemistry. 2002;60:205–211. doi: 10.1016/s0031-9422(02)00116-4. PubMed DOI

Dowling S., Regan F., Hughes H. The characterisation of structural and antioxidant properties of isoflavone metal chelates. J. Inorg. Biochem. 2010;104:1091–1098. doi: 10.1016/j.jinorgbio.2010.06.007. PubMed DOI

Duan J., Li J., Chen G.L., Ge Y., Liu J., Xie K., Peng X., Zhou W., Zhong J., Zhang Y., et al. Cryo-EM structure of TRPC5 at 2.8-A resolution reveals unique and conserved structural elements essential for channel function. Sci. Adv. 2019;5:eaaw7935. doi: 10.1126/sciadv.aaw7935. PubMed DOI PMC

Fernández-Ballester G., Fernández-Carvajal A., Ferrer-Montiel A. Progress in the structural basis of thermoTRP channel polymodal gating. Int. J. Mol. Sci. 2023;24 doi: 10.3390/ijms24010743. PubMed DOI PMC

Fricke T.C., Echtermeyer F., Zielke J., de la Roche J., Filipovic M.R., Claverol S., Herzog C., Tominaga M., Pumroy R.A., Moiseenkova-Bell V.Y., et al. Oxidation of methionine residues activates the high-threshold heat-sensitive ion channel TRPV2. Proc. Natl. Acad. Sci. U. S. A. 2019;116:24359–24365. doi: 10.1073/pnas.1904332116. PubMed DOI PMC

Fricke T.C., Rämisch A., Pumroy R.A., Pantke S., Herzog C., Echtermeyer F.G., Al-Samir S., Endeward V., Moiseenkova-Bell V., Leffler A. Molecular determinants of 2-APB-sensitivity of TRPV2 - unexpected differences between two rodent orthologues. Mol. Pharmacol. 2025 doi: 10.1016/j.molpha.2025.100060. PubMed DOI PMC

Fricke T.C., Leffler A. TRPV2: a universal regulator in cellular physiology with a yet poorly defined thermosensitivity. J. Physiol. Sci. 2024;74:42. doi: 10.1186/s12576-024-00936-1. PubMed DOI PMC

Gochman A., Tan X.-F., Bae C., Chen H., Swartz K.J., Jara-Oseguera A. Cannabidiol sensitizes TRPV2 channels to activation by 2-APB. eLife. 2023;12 doi: 10.7554/eLife.86166. PubMed DOI PMC

Haug F.M., Pumroy R.A., Sridhar A., Pantke S., Dimek F., Fricke T.C., Hage A., Herzog C., Echtermeyer F.G., de la Roche J., et al. Functional and structural insights into activation of TRPV2 by weak acids. EMBO J. 2024;43:2264–2290. doi: 10.1038/s44318-024-00106-4. PubMed DOI PMC

He D.X., Ma X. Transient receptor potential channel C5 in cancer chemoresistance. Acta Pharmacol. Sin. 2016;37:19–24. doi: 10.1038/aps.2015.109. PubMed DOI PMC

Herman P., Holoubek A., Brodska B. Lifetime-based photoconversion of EGFP as a tool for FLIM. Biochim. Biophys. Acta Gen. Subj. 2019;1863:266–277. doi: 10.1016/j.bbagen.2018.10.016. PubMed DOI

Herman P., Lakowicz J.R. Biomedical Photonics Handbook: Fundamentals, Devices, and Techniques. second ed. CRC Press; 2014. Lifetime-Based imaging; p. 44. Vo-Dinh T.E.

Hironaka K., Ozaki N., Hattori H., Nagamine K., Nakashima H., Ueda M., Sugiura Y. Involvement of glial activation in trigeminal ganglion in a rat model of lower gingival cancer pain. Nagoya J. Med. Sci. 2014;76:323–332. PubMed PMC

Holoubek A., Strachotová D., Otevřelová P., Röselová P., Heřman P., Brodská B. AML-Related NPM mutations drive p53 delocalization into the cytoplasm with possible impact on p53-Dependent stress response. Cancers (Basel) 2021;13 doi: 10.3390/cancers13133266. PubMed DOI PMC

Huang R., Xu C. An overview of the perception and mitigation of astringency associated with phenolic compounds. Compr. Rev. Food Sci. Food Saf. 2021;20:1036–1074. doi: 10.1111/1541-4337.12679. PubMed DOI

Ingólfsson H.I., Thakur P., Herold K.F., Hobart E.A., Ramsey N.B., Periole X., de Jong D.H., Zwama M., Yilmaz D., Hall K., et al. Phytochemicals perturb membranes and promiscuously alter protein function. ACS Chem. Biol. 2014;9:1788–1798. doi: 10.1021/cb500086e. PubMed DOI PMC

Julius D. TRP channels and pain. Annu. Rev. Cell Dev. Biol. 2013;29:355–384. doi: 10.1146/annurev-cellbio-101011-155833. PubMed DOI

Juvin V., Penna A., Chemin J., Lin Y.L., Rassendren F.A. Pharmacological characterization and molecular determinants of the activation of transient receptor potential V2 channel orthologs by 2-aminoethoxydiphenyl borate. Mol. Pharmacol. 2007;72:1258–1268. PubMed

Karolkowski A., Belloir C., Briand L., Salles C. Non-Volatile compounds involved in bitterness and astringency of pulses: a review. Molecules. 2023;28:3298. PubMed PMC

Khare P., Chand J., Ptakova A., Liguori R., Ferrazzi F., Bishnoi M., Vlachova V., Zimmermann K. The TRPC5 receptor as pharmacological target for pain and metabolic disease. Pharmacol. Therapeut. 2024;263 doi: 10.1016/j.pharmthera.2024.108727. PubMed DOI

Kim M.S., Simons C.T. The role of TRPA1 and TRPV1 in the perception of astringency. Chem. Senses. 2024;49 doi: 10.1093/chemse/bjae031. PubMed DOI

Koivisto A.P., Belvisi M.G., Gaudet R., Szallasi A. Advances in TRP channel drug discovery: from target validation to clinical studies. Nat. Rev. Drug Discov. 2022;21:41–59. doi: 10.1038/s41573-021-00268-4. PubMed DOI PMC

Kufe D.W. MUC1-C in chronic inflammation and carcinogenesis; emergence as a target for cancer treatment. Carcinogenesis. 2020;41:1173–1183. doi: 10.1093/carcin/bgaa082. PubMed DOI PMC

Kurogi M., Kawai Y., Nagatomo K., Tateyama M., Kubo Y., Saitoh O. Auto-oxidation products of epigallocatechin gallate activate TRPA1 and TRPV1 in sensory neurons. Chem. Senses. 2015;40:27–46. doi: 10.1093/chemse/bju057. PubMed DOI

Kurogi M., Miyashita M., Emoto Y., Kubo Y., Saitoh O. Green tea polyphenol epigallocatechin gallate activates TRPA1 in an intestinal enteroendocrine cell line, STC-1. Chem. Senses. 2012;37:167–177. doi: 10.1093/chemse/bjr087. PubMed DOI

Li F., Wang Y., Li D., Chen Y., Qiao X., Fardous R., Lewandowski A., Liu J., Chan T.H., Dou Q.P. Perspectives on the recent developments with green tea polyphenols in drug discovery. Expet Opin. Drug Discov. 2018;13:643–660. doi: 10.1080/17460441.2018.1465923. PubMed DOI PMC

Lichtenegger M., Tiapko O., Svobodova B., Stockner T., Glasnov T.N., Schreibmayer W., Platzer D., de la Cruz G.G., Krenn S., Schober R., et al. An optically controlled probe identifies lipid-gating fenestrations within the TRPC3 channel. Nat. Chem. Biol. 2018;14:396–404. doi: 10.1038/s41589-018-0015-6. PubMed DOI PMC

Linne B., Simons C.T. Quantification of oral roughness perception and comparison with mechanism of astringency perception. Chem. Senses. 2017;42:525–535. doi: 10.1093/chemse/bjx029. PubMed DOI

Liu J., Cattaneo C., Papavasileiou M., Methven L., Bredie W.L.P. A review on oral tactile sensitivity: measurement techniques, influencing factors and its relation to food perception and preference. Food Qual. Prefer. 2022;100 doi: 10.1016/j.foodqual.2022.104624. DOI

Liu C., Montell C. Forcing open TRP channels: mechanical gating as a unifying activation mechanism. Biochem. Biophys. Res. Commun. 2015;460:22–25. doi: 10.1016/j.bbrc.2015.02.067. PubMed DOI PMC

Liu B., Qin F. Use dependence of heat sensitivity of Vanilloid receptor TRPV2. Biophys. J. 2016;110:1523–1537. doi: 10.1016/j.bpj.2016.03.005. PubMed DOI PMC

Macikova L., Vyklicka L., Barvik I., Sobolevsky A.I., Vlachova V. Cytoplasmic inter-subunit interface controls use-dependence of thermal activation of TRPV3 channel. Int. J. Mol. Sci. 2019;20 doi: 10.3390/ijms20163990. PubMed DOI PMC

Mercado J., Gordon-Shaag A., Zagotta W.N., Gordon S.E. Ca2+-dependent desensitization of TRPV2 channels is mediated by hydrolysis of phosphatidylinositol 4,5-bisphosphate. J. Neurosci. 2010;30:13338–13347. doi: 10.1523/jneurosci.2108-10.2010. PubMed DOI PMC

Miles B.L., Van Simaeys K., Whitecotton M., Simons C.T. Comparative tactile sensitivity of the fingertip and apical tongue using complex and pure tactile tasks. Physiol. Behav. 2018;194:515–521. doi: 10.1016/j.physbeh.2018.07.002. PubMed DOI

Mugo A., Chou R., Chin F., Liu B., Jiang Q.X., Qin F. A suicidal mechanism for the exquisite temperature sensitivity of TRPV1. Proc. Natl. Acad. Sci. U. S. A. 2023;120 doi: 10.1073/pnas.2300305120. PubMed DOI PMC

Mugo A.N., Chou R., Qin F. Protein dynamics underlies strong temperature dependence of heat receptors. Proc. Natl. Acad. Sci. U. S. A. 2025;122 doi: 10.1073/pnas.2406318121. PubMed DOI PMC

Naponelli V., Piscazzi A., Mangieri D. Cellular and molecular mechanisms modulated by genistein in cancer. Int. J. Mol. Sci. 2025;26 doi: 10.3390/ijms26031114. PubMed DOI PMC

Naylor J., Minard A., Gaunt H.J., Amer M.S., Wilson L.A., Migliore M., Cheung S.Y., Rubaiy H.N., Blythe N.M., Musialowski K.E., et al. Natural and synthetic flavonoid modulation of TRPC5 channels. Br. J. Pharmacol. 2016;173:562–574. doi: 10.1111/bph.13387. PubMed DOI PMC

Neeper M.P., Liu Y., Hutchinson T.L., Wang Y., Flores C.M., Qin N. Activation properties of heterologously expressed mammalian TRPV2: evidence for species dependence. J. Biol. Chem. 2007;282:15894–15902. PubMed

Nilius B., Prenen J., Droogmans G., Voets T., Vennekens R., Freichel M., Wissenbach U., Flockerzi V. Voltage dependence of the Ca2+-activated cation channel TRPM4. J. Biol. Chem. 2003;278:30813–30820. doi: 10.1074/jbc.M305127200. PubMed DOI

Nilius B., Szallasi A. Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine. Pharmacol. Rev. 2014;66:676–814. doi: 10.1124/pr.113.008268. PubMed DOI

Novakova-Tousova K., Vyklicky L., Susankova K., Benedikt J., Samad A., Teisinger J., Vlachova V. Functional changes in the vanilloid receptor subtype 1 channel during and after acute desensitization. Neuroscience. 2007;149:144–154. PubMed

Nowak S., Di Pizio A., Levit A., Niv M.Y., Meyerhof W., Behrens M. Reengineering the ligand sensitivity of the broadly tuned human bitter taste receptor TAS2R14. Biochim. Biophys. Acta Gen. Subj. 2018;1862:2162–2173. doi: 10.1016/j.bbagen.2018.07.009. PubMed DOI

Oto T., Urata K., Hayashi Y., Hitomi S., Shibuta I., Iwata K., Iinuma T., Shinoda M. Age-Related differences in transient receptor potential vanilloid 1 and 2 expression patterns in the trigeminal ganglion neurons contribute to changes in the palatal mucosal heat pain sensitivity. Tohoku J. Exp. Med. 2022;256:283–290. doi: 10.1620/tjem.2022.J004. PubMed DOI

Passaro S., Corso G., Wohlwend J., Reveiz M., Thaler S., Somnath V.R., Getz N., Portnoi T., Roy J., Stark H., et al. Boltz-2: towards accurate and efficient binding affinity prediction. bioRxiv. 2025 doi: 10.1101/2025.06.14.659707. DOI

Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI

Pires M.A., Pastrana L.M., Fuciños P., Abreu C.S., Oliveira S.M. Sensorial perception of astringency: oral mechanisms and current analysis methods. Foods. 2020;9 doi: 10.3390/foods9081124. PubMed DOI PMC

Porav S.A., Ptakova A., Bauer C.C., Hammond K.L.R., Beech D.J., Vlachova V., Muench S.P., Bon R.S. (-)-Englerin A binds a conserved lipid site of TRPC5 and exposes a Met-aromatic motif in channel activation. bioRxiv. 2025 doi: 10.1101/2025.07.09.663840. 2025.2007.2009.663840. DOI

Ptakova A., Mitro M., Zimova L., Vlachova V. Cellular context determines primary characteristics of human TRPC5 as a cold-activated channel. J. Cell. Physiol. 2022;237:3614–3626. doi: 10.1002/jcp.30821. PubMed DOI

Pumroy R.A., Protopopova A.D., Fricke T.C., Lange I.U., Haug F.M., Nguyen P.T., Gallo P.N., Sousa B.B., Bernardes G.J.L., Yarov-Yarovoy V., et al. Structural insights into TRPV2 activation by small molecules. Nat. Commun. 2022;13:2334. doi: 10.1038/s41467-022-30083-3. PubMed DOI PMC

Ricci S., Kim M.S., Simons C.T. The impact of temperature and a chemesthetic cooling agent on lingual roughness sensitivity. Chem. Senses. 2024;49 doi: 10.1093/chemse/bjae013. PubMed DOI

Roland W.S., Vincken J.P., Gouka R.J., van Buren L., Gruppen H., Smit G. Soy isoflavones and other isoflavonoids activate the human bitter taste receptors hTAS2R14 and hTAS2R39. J. Agric. Food Chem. 2011;59:11764–11771. doi: 10.1021/jf202816u. PubMed DOI

Rosenbaum T., Morales-Lázaro S.L., Islas L.D. TRP channels: a journey towards a molecular understanding of pain. Nat. Rev. Neurosci. 2022;23:596–610. doi: 10.1038/s41583-022-00611-7. PubMed DOI

Sadler K.E., Moehring F., Shiers S.I., Laskowski L.J., Mikesell A.R., Plautz Z.R., Brezinski A.N., Mecca C.M., Dussor G., Price T.J., et al. Transient receptor potential canonical 5 mediates inflammatory mechanical and spontaneous pain in mice. Sci. Transl. Med. 2021;13:eabd7702. doi: 10.1126/scitranslmed.abd7702. PubMed DOI PMC

Sakakibara A., Sakakibara S., Kusumoto J., Takeda D., Hasegawa T., Akashi M., Minamikawa T., Hashikawa K., Terashi H., Komori T. Upregulated expression of transient receptor potential cation channel subfamily V receptors in mucosae of patients with oral squamous cell carcinoma and patients with a history of alcohol consumption or smoking. PLoS One. 2017;12 doi: 10.1371/journal.pone.0169723. PubMed DOI PMC

Sasaki R., Sato T., Yajima T., Kano M., Suzuki T., Ichikawa H. The distribution of TRPV1 and TRPV2 in the rat pharynx. Cell. Mol. Neurobiol. 2013;33:707–714. doi: 10.1007/s10571-013-9938-3. PubMed DOI PMC

Shimohira D., Kido M.A., Danjo A., Takao T., Wang B., Zhang J.Q., Yamaza T., Masuko S., Goto M., Tanaka T. TRPV2 expression in rat oral mucosa. Histochem. Cell Biol. 2009;132:423–433. doi: 10.1007/s00418-009-0616-y. PubMed DOI

Simon S.A., Gutierrez R. In: Neurobiology of TRP Channels. 124. Emir T.L.R., editor. 2017. TRP channels at the periphery of the taste and trigeminal systems; p. 113. Boca Raton (FL) PubMed

Singha Roy A., Tripathy D.R., Chatterjee A., Dasgupta S. The influence of common metal ions on the interactions of the isoflavone genistein with bovine serum albumin. Spectrochim. Acta Mol. Biomol. Spectrosc. 2013;102:393–402. doi: 10.1016/j.saa.2012.09.053. PubMed DOI

Siveen K.S., Nizamuddin P.B., Uddin S., Al-Thani M., Frenneaux M.P., Janahi I.A., Steinhoff M., Azizi F. TRPV2: a cancer biomarker and potential therapeutic target. Dis. Markers. 2020;2020 doi: 10.1155/2020/8892312. PubMed DOI PMC

Song K., Wei M., Guo W., Quan L., Kang Y., Wu J.X., Chen L. Structural basis for human TRPC5 channel inhibition by two distinct inhibitors. eLife. 2021;10 doi: 10.7554/eLife.63429. PubMed DOI PMC

Storch U., Mederos Y.S.M., Gudermann T. A greasy business: identification of a diacylglycerol binding site in human TRPC5 channels by cryo-EM. Cell Calcium. 2021;97 doi: 10.1016/j.ceca.2021.102414. PubMed DOI

Takahashi S., Kurogi M., Saitoh O. The diversity in sensitivity of TRPA1 and TRPV1 of various animals to polyphenols. Biomed. Res. 2021;42:43–51. doi: 10.2220/biomedres.42.43. PubMed DOI

Thibodeau M., Bajec M., Saliba A., Pickering G. Homogeneity of thermal tasters and implications for mechanisms and classification. Physiol. Behav. 2020;227 doi: 10.1016/j.physbeh.2020.113160. PubMed DOI

Trott O., Olson A.J. AutoDock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC

Trulsson M., Essick G.K. Low-threshold mechanoreceptive afferents in the human lingual nerve. J. Neurophysiol. 1997;77:737–748. doi: 10.1152/jn.1997.77.2.737. PubMed DOI

Tsai T.-Y., Leong I.-L., Shiao L.-R., Wong K.-L., Shao L., Chan P., Leung Y.-M. Tannic acid, a vasodilator present in wines and beverages, stimulates Ca2+ influx via TRP channels in bEND.3 endothelial cells. Biochem. Biophys. Res. Commun. 2020;526:117–121. doi: 10.1016/j.bbrc.2020.03.078. PubMed DOI

Uchino M., Sashide Y., Takeda M. Suppression of the excitability of rat nociceptive secondary sensory neurons following local administration of the phytochemical, (-)-Epigallocatechin-3-gallate. Brain Res. 2023;1813 doi: 10.1016/j.brainres.2023.148426. PubMed DOI

Urata K., Shinoda M., Ikutame D., Iinuma T., Iwata K. Involvement of transient receptor potential vanilloid 2 in intra-oral incisional pain. Oral Dis. 2018;24:1093–1100. doi: 10.1111/odi.12853. PubMed DOI

Utugi S., Chida R., Yamaguchi S., Sashide Y., Takeda M. Local administration of (-)-Epigallocatechin-3-Gallate as a local anesthetic agent inhibits the excitability of rat nociceptive primary sensory neurons. Cells. 2025;14 doi: 10.3390/cells14010052. PubMed DOI PMC

Utugi S., Sashide Y., Takeda M. (-)-Epigallocatechin-3-Gallate suppresses hyperexcitability in rat primary nociceptive neurons innervating inflamed tissues: a comparison with lidocaine. Metabolites. 2025;15 doi: 10.3390/metabo15070439. PubMed DOI PMC

Vlachova V., Teisinger J., Sušánková K., Lyfenko A., Ettrich R., Vyklicky L. Functional role of C-terminal cytoplasmic tail of rat vanilloid receptor 1. J. Neurosci. 2003;23:1340–1350. PubMed PMC

Wang B., Danjo A., Kajiya H., Okabe K., Kido M.A. Oral epithelial cells are activated via TRP channels. J. Dent. Res. 2011;90:163–167. doi: 10.1177/0022034510385459. PubMed DOI

Wang M., Pan M., Li Y., Lu T., Wang Z., Liu C., Hu G. ANXA6/TRPV2 axis promotes lymphatic metastasis in head and neck squamous cell carcinoma by inducing autophagy. Exp. Hematol. Oncol. 2023;12:43. doi: 10.1186/s40164-023-00406-1. PubMed DOI PMC

Wang S., Smyth H.E., Olarte Mantilla S.M., Stokes J.R., Smith P.A. Astringency and its sub-qualities: a review of astringency mechanisms and methods for measuring saliva lubrication. Chem. Senses. 2024;49 doi: 10.1093/chemse/bjae016. PubMed DOI

Wei F., Wang J., Luo L., Tayyab Rashid M., Zeng L. The perception and influencing factors of astringency, and health-promoting effects associated with phytochemicals: a comprehensive review. Food Res. Int. 2023;170 doi: 10.1016/j.foodres.2023.112994. PubMed DOI

Wohlwend J., Corso G., Passaro S., Getz N., Reveiz M., Leidal K., Swiderski W., Atkinson L., Portnoi T., Chinn I., et al. Boltz-1 democratizing biomolecular interaction modeling. bioRxiv. 2025;2024 doi: 10.1101/2024.11.19.624167. 2011.2019.624167. DOI

Won J., Kim J., Jeong H., Kim J., Feng S., Jeong B., Kwak M., Ko J., Im W., So I., et al. Molecular architecture of the galpha(i)-bound TRPC5 ion channel. Nat. Commun. 2023;14:2550. doi: 10.1038/s41467-023-38281-3. PubMed DOI PMC

Wong C.O., Huang Y., Yao X. Genistein potentiates activity of the cation channel TRPC5 independently of tyrosine kinases. Br. J. Pharmacol. 2010;159:1486–1496. doi: 10.1111/j.1476-5381.2010.00636.x. PubMed DOI PMC

Wright D.J., Simmons K.J., Johnson R.M., Beech D.J., Muench S.P., Bon R.S. Human TRPC5 structures reveal interaction of a xanthine-based TRPC1/4/5 inhibitor with a conserved lipid binding site. Commun. Biol. 2020;3:704. doi: 10.1038/s42003-020-01437-8. PubMed DOI PMC

Yang Y., Wei M., Chen L. Structural identification of riluzole-binding site on human TRPC5. Cell Discovery. 2022;8:67. doi: 10.1038/s41421-022-00410-5. PubMed DOI PMC

Ye Q.Q., Chen G.S., Pan W., Cao Q.Q., Zeng L., Yin J.F., Xu Y.Q. A predictive model for astringency based on in vitro interactions between salivary proteins and (-)-Epigallocatechin gallate. Food Chem. 2021;340 doi: 10.1016/j.foodchem.2020.127845. PubMed DOI

Yu S., Deng R., Wang W., Zou D., He L., Wei Z., Pan Y., Li X., Wu Y., Wang A., et al. Pharmacological manipulation of TRPC5 by kaempferol attenuates metastasis of gastrointestinal cancer via inhibiting calcium involved in the formation of filopodia. Int. J. Biol. Sci. 2024;20:4922–4940. doi: 10.7150/ijbs.87829. PubMed DOI PMC

Zhang L., Nagel M., Olson W.P., Chesler A.T., O'Connor D.H. Trigeminal innervation and tactile responses in mouse tongue. Cell Rep. 2024;43 doi: 10.1016/j.celrep.2024.114665. PubMed DOI PMC

Zimmermann K., Lennerz J.K., Hein A., Link A.S., Kaczmarek J.S., Delling M., Uysal S., Pfeifer J.D., Riccio A., Clapham D.E. Transient receptor potential cation channel, subfamily C, member 5 (TRPC5) is a cold-transducer in the peripheral nervous system. Proc. Natl. Acad. Sci. U. S. A. 2011;108:18114–18119. doi: 10.1073/pnas.1115387108. PubMed DOI PMC

Zimova L., Ptakova A., Mitro M., Krusek J., Vlachova V. Activity dependent inhibition of TRPC1/4/5 channels by duloxetine involves voltage sensor-like domain. Biomed. Pharmacother. 2022;152 doi: 10.1016/j.biopha.2022.113262. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...