Chitosan-based nanoscale systems for doxorubicin delivery: Exploring biomedical application in cancer therapy

. 2023 Jan ; 8 (1) : e10325. [epub] 20220913

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36684100

Grantová podpora
T32 EB009035 NIBIB NIH HHS - United States

Green chemistry has been a growing multidisciplinary field in recent years showing great promise in biomedical applications, especially for cancer therapy. Chitosan (CS) is an abundant biopolymer derived from chitin and is present in insects and fungi. This polysaccharide has favorable characteristics, including biocompatibility, biodegradability, and ease of modification by enzymes and chemicals. CS-based nanoparticles (CS-NPs) have shown potential in the treatment of cancer and other diseases, affording targeted delivery and overcoming drug resistance. The current review emphasizes on the application of CS-NPs for the delivery of a chemotherapeutic agent, doxorubicin (DOX), in cancer therapy as they promote internalization of DOX in cancer cells and prevent the activity of P-glycoprotein (P-gp) to reverse drug resistance. These nanoarchitectures can provide co-delivery of DOX with antitumor agents such as curcumin and cisplatin to induce synergistic cancer therapy. Furthermore, co-loading of DOX with siRNA, shRNA, and miRNA can suppress tumor progression and provide chemosensitivity. Various nanostructures, including lipid-, carbon-, polymeric- and metal-based nanoparticles, are modifiable with CS for DOX delivery, while functionalization of CS-NPs with ligands such as hyaluronic acid promotes selectivity toward tumor cells and prevents DOX resistance. The CS-NPs demonstrate high encapsulation efficiency and due to protonation of amine groups of CS, pH-sensitive release of DOX can occur. Furthermore, redox- and light-responsive CS-NPs have been prepared for DOX delivery in cancer treatment. Leveraging these characteristics and in view of the biocompatibility of CS-NPs, we expect to soon see significant progress towards clinical translation.

Belfer Center for Applied Cancer Science Dana Farber Cancer Institute Harvard Medical School Boston Massachusetts USA

Bioaraba NanoBioCel Research Group Vitoria Gasteiz Spain

Biorefining and Advanced Materials Research Center Scotland's Rural College Edinburgh UK

Commonwealth Scientific and Industrial Research Organisation Manufacturing Clayton Victoria Australia

Department of Biology Faculty of Science Islamic Azad University Science and Research Branch Tehran Iran

Department of Biomedical Engineering Faculty of Engineering and Natural Sciences Istinye University Istanbul Turkey

Department of Chemical Engineering Quchan University of Technology Quchan Iran

Department of Chemical Sciences University of Johannesburg Doornfontein Campus Johannesburg South Africa

Department of Food Hygiene and Quality Control Division of Epidemiology Faculty of Veterinary Medicine University of Tehran Tehran Iran

Department of Medicine Stanford University School of Medicine Stanford California USA

Department of Pharmacology Yong Loo Lin School of Medicine National University of Singapore Kent Ridge Singapore

Department of Tissue Engineering and Biomaterials School of Advanced Medical Sciences and Technologies Hamadan University of Medical Sciences Hamadan Iran

Faculty of Engineering and Natural Sciences Sabanci University Üniversite Caddesi Tuzla Istanbul Turkey

Institute of Polymers Composites and Biomaterials National Research Council Naples Italy

Istituto Italiano di Tecnologia Center for Materials Interfaces Pontedera Pisa Italy

Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility Clayton Victoria Australia

Monash Institute of Pharmaceutical Sciences Parkville Victoria Australia

NanoBioCel Research Group School of Pharmacy University of the Basque Country Vitoria Gasteiz Spain

NUS Centre for Cancer Research Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore

Regional Center of Advanced Technologies and Materials Czech Advanced Technology and Research Institute Palacky University Olomouc Czech Republic

School of Engineering Macquarie University Sydney New South Wales Australia

School of Engineering University of Petroleum and Energy Studies Dehradun Uttarakhand India

School of Resources and Environment University of Electronic Science and Technology of China Chengdu PR China

Singapore Eye Research Institute Singapore

Stanford Cardiovascular Institute Stanford University School of Medicine Stanford California USA

University Institute for Regenerative Medicine and Oral Implantology UIRMI Vitoria Gasteiz Spain

Xsphera Biosciences Inc Boston Massachusetts USA

Zobrazit více v PubMed

Kumar KSS, Girish YR, Ashrafizadeh M, et al. AIE‐featured tetraphenylethylene nanoarchitectures in biomedical application: bioimaging, drug delivery and disease treatment. Coord Chem Rev. 2021;447:214135.

Makvandi P, Chen M, Sartorius R, et al. Endocytosis of abiotic nanomaterials and nanobiovectors: inhibition of membrane trafficking. Nano Today. 2021;40:101279. doi:10.1016/j.nantod.2021.101279 PubMed DOI PMC

Mirzaei S, Mohammadi AT, Gholami MH, et al. Nrf2 signaling pathway in cisplatin chemotherapy: potential involvement in organ protection and chemoresistance. Pharmacol Res. 2021;167:105575. PubMed

Ashrafizaveh S, Ashrafizadeh M, Zarrabi A, et al. Long non‐coding RNAs in the doxorubicin resistance of cancer cells. Cancer Lett. 2021;508:104‐114. PubMed

Mirzaei S, Gholami MH, Hushmandi K, et al. The long and short non‐coding RNAs modulating EZH2 signaling in cancer. J Heamto Oncol. 2022;15(1):1‐34. PubMed PMC

Ashrafizadeh M, Mirzaei S, Hashemi F, et al. New insight towards development of paclitaxel and docetaxel resistance in cancer cells: EMT as a novel molecular mechanism and therapeutic possibilities. Biomed Pharmacother. 2021;141:111824. PubMed

Mirzaei S, Gholami MH, Zabolian A, et al. Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: new hope in the fight against cancer. Pharmacol Res. 2021;171:105759. doi:10.1016/j.phrs.2021.105759 PubMed DOI

Ashrafizadeh M, Zarrabi A, Hashemipour M, et al. Sensing the scent of death: modulation of microRNAs by curcumin in gastrointestinal cancers. Pharmacol Res. 2020;160:105199. doi:10.1016/j.phrs.2020.105199 PubMed DOI

Akbari E, Mousazadeh H, Hanifehpour Y, et al. Co‐loading of cisplatin and methotrexate in nanoparticle‐based PCL‐PEG system enhances lung cancer chemotherapy effects. J Cluster Sci. 2021;1‐12. doi:10.1007/s10876-021-02101-9 DOI

Rabiee N, Bagherzadeh M, Ghadiri AM, et al. Calcium‐based nanomaterials and their interrelation with chitosan: optimization for pCRISPR delivery. J Nanostructure Chem. 2021;1‐14. doi:10.1007/s40097-021-00446-1 PubMed DOI PMC

Ward RA, Fawell S, Floc'h N, et al. Challenges and opportunities in cancer drug resistance. Chem Rev. 2020;121(6):3297‐3351. PubMed

Kirtonia A, Ashrafizadeh M, Zarrabi A, et al. Long noncoding RNAs: a novel insight in the leukemogenesis and drug resistance in acute myeloid leukemia. J Cell Physiol. 2021;237(1):450‐65. PubMed

Mirzaei S, Zarrabi A, Hashemi F, et al. Regulation of nuclear factor‐KappaB (NF‐κB) signaling pathway by non‐coding RNAs in cancer: inhibiting or promoting carcinogenesis? Cancer Lett. 2021;509:63‐80. PubMed

Ashrafizadeh M, Zarrabi A, Hushmandi K, et al. Association of the epithelial–mesenchymal transition (EMT) with cisplatin resistance. Int J Mol Sci. 2020;21(11):4002. PubMed PMC

Mostafavi E, Soltantabar P, Webster TJ. Nanotechnology and picotechnology: a new arena for translational medicine. Biomaterials in Translational Medicine. Elsevier; 2019:191‐212.

Dehshahri A, Ashrafizadeh M, Ghasemipour Afshar E, et al. Topoisomerase inhibitors: pharmacology and emerging nanoscale delivery systems. Pharmacol Res. 2020;151:104551. doi:10.1016/j.phrs.2019.104551 PubMed DOI

Jahangirian H, Ghasemian lemraski E, Webster TJ, Rafiee‐Moghaddam R, Abdollahi Y. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int J Nanomed. 2017;12:2957‐2978. PubMed PMC

Makvandi P, Ghomi M, Ashrafizadeh M, et al. A review on advances in graphene‐derivative/polysaccharide bionanocomposites: therapeutics, pharmacogenomics and toxicity. Carbohydr Polym. 2020;250:116952. doi:10.1016/j.carbpol.2020.116952 PubMed DOI

Ashrafizadeh M, Ahmadi Z, Mohamadi N, et al. Chitosan‐based advanced materials for docetaxel and paclitaxel delivery: recent advances and future directions in cancer theranostics. Int J Biol Macromol. 2020;145:282‐300. doi:10.1016/j.ijbiomac.2019.12.145 PubMed DOI

Takeshita S, Zhao S, Malfait WJ, Koebel MM. Chemistry of chitosan aerogels: three‐dimensional pore control for tailored applications. Angew Chem. 2021;60(18):9828‐9851. PubMed

Jin T, Liu T, Lam E, Moores A. Chitin and chitosan on the nanoscale. Nanoscale Horizon. 2021;6(7):505‐542. PubMed

Sharifi E, Chehelgerdi M, Fatahian‐Kelishadrokhi A, Yazdani‐Nafchi F, Ashrafi‐Dehkordi K. Comparison of therapeutic effects of encapsulated mesenchymal stem cells in Aloe vera gel and chitosan‐based gel in healing of grade‐II burn injuries. Regen Ther. 2021;18:30‐37. doi:10.1016/j.reth.2021.02.007 PubMed DOI PMC

Kumar MR, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ. Chitosan chemistry and pharmaceutical perspectives. ACS Publ. 2004;104(12):6017‐6084. PubMed

Ifuku SJM. Chitin and chitosan nanofibers: preparation and chemical modifications. Molecules. 2014;19(11):18367‐18380. PubMed PMC

Zafari M, Boroujeni MM, Omidghaemi S, et al. Physical and biological properties of blend‐electrospun polycaprolactone/chitosan‐based wound dressings loaded with N‐decyl‐N, N‐dimethyl‐1‐decanaminium chloride: an in vitro and in vivo study. J Biomed Mater Res. 2020;108(8):3084‐3098. PubMed

Yan N, Chen XJNN. Sustainability: don't waste seafood waste. Nature. 2015;524(7564):155. PubMed

Prashanth KVH, Tharanathan RN. Chitin/chitosan: modifications and their unlimited application potential ‐ an overview. Trends Food Sci Technol. 2007;18(3):117‐131. doi:10.1016/j.tifs.2006.10.022 DOI

Bellich B, D'Agostino I, Semeraro S, Gamini A, Cesàro A. “The good, the bad and the ugly” of chitosans. Mar Drugs. 2016;14(5):99. PubMed PMC

Verma S, Nadagouda MN, Varma RS. Porous nitrogen‐enriched carbonaceous material from marine waste: chitosan‐derived carbon nitride catalyst for aerial oxidation of 5‐hydroxymethylfurfural (HMF) to 2,5‐furandicarboxylic acid. Sci Rep. 2017;7(1):13596. PubMed PMC

Varma RS. Biomass‐derived renewable carbonaceous materials for sustainable chemical and environmental applications. ACS Sustain Chem Eng. 2019;7(7):6458‐6470. doi:10.1021/acssuschemeng.8b06550 DOI

Nik AB, Zare H, Razavi S, et al. Smart drug delivery: capping strategies for mesoporous silica nanoparticles. Microporous Mesoporous Mater. 2020;299:110115.

Maghsoudi S, Shahraki BT, Rabiee N, et al. Burgeoning polymer nano blends for improved controlled drug release: a review. Int J Nanomed. 2020;15:4363. PubMed PMC

Özel N, Elibol MJCP. A review on the potential uses of deep eutectic solvents in chitin and chitosan related processes. 2021;262:117942. doi:10.1016/j.carbpol.2021.117942 PubMed DOI

Kadokawa J‐I. Dissolution, derivatization, and functionalization of chitin in ionic liquid. Int J Biol Macromol. 2019;123:732‐737. PubMed

Shahidi F, Abuzaytoun R. Chitin, chitosan, and co‐products: chemistry, production, applications, and health effects. Advances in Food and Nutrition Research. Academic Press; 2005:93‐135. PubMed

Kim S‐K. Chitin, Chitosan, Oligosaccharides and their Derivatives: Biological Activities and Applications. CRC Press; 2010.

Reys L, Silva SS, Oliveira JM, et al. Revealing the potential of squid chitosan‐based structures for biomedical applications. Biomed Mater. 2013;8(4):045002. PubMed

Ferreira LM, Dos Santos AM, Boni FI, et al. Design of chitosan‐based particle systems: a review of the physicochemical foundations for tailored properties. Carbohydr Polym. 2020;250:116968. doi:10.1016/j.carbpol.2020.116968 PubMed DOI

Aranaz I, Harris R, Heras A. Chitosan amphiphilic derivatives. Chemistry and applications. Curr Organ Chem. 2010;14(3):308‐330.

Domard A. pH and c.d. measurements on a fully deacetylated chitosan: application to CuII—polymer interactions. Int J Biol Macromol. 1987;9(2):98‐104.

Rinaudc M, Pavlov G, Desbrières J. Solubilization of chitosan in strong acid medium. Int J Polymer Anal Charact. 1999;5(3):267‐276.

Chattopadhyay D, Inamdar MS. Aqueous behaviour of chitosan. Int J Polym Sci. 2010. doi:10.1155/2010/939536 DOI

Wang W, Xu D. Viscosity and flow properties of concentrated solutions of chitosan with different degrees of deacetylation. Int J Biol Macromol. 1994;16(3):149‐152. PubMed

Bagheri M, Validi M, Gholipour A, Makvandi P, Sharifi E. Chitosan nanofiber biocomposites for potential wound healing applications: antioxidant activity with synergic antibacterial effect. Bioeng Transl Med. 2022;7(1):e10254. PubMed PMC

Abadehie FS, Dehkordib AH, Zafaric M, et al. Lawsone‐encapsulated chitosan/polyethylene oxide nanofibrous mat as a potential antibacterial biobased wound dressing. Eng Reg. 2021;2:219‐226.

Nikbakht M, Karbasi S, Rezayat SM, Tavakol S, Sharifi E. Evaluation of the effects of hyaluronic acid on poly (3‐hydroxybutyrate)/chitosan/carbon nanotubes electrospun scaffold: structure and mechanical properties. Polym‐Plast. Technol Mater. 2019;58(18):2031‐2040.

Jhaveri J, Raichura Z, Khan T, Momin M, Omri A. Chitosan nanoparticles‐insight into properties, functionalization and applications in drug delivery and theranostics. Molecules. 2021;26(2):272. PubMed PMC

Hajebi S, Hajebi S, Bagherzadeh M, et al. Stimulus‐responsive polymeric nanogels as smart drug delivery systems. Acta Biomater. 2019;92:1‐18. PubMed PMC

Rabiee N, Bagherzadeh M, Ghadiri AM, et al. Turning toxic nanomaterials into a safe and bioactive nanocarrier for co‐delivery of DOX/pCRISPR. ACS Appl Bio Mater. 2021;4:5336‐5351. doi:10.1021/acsabm.1c00447 PubMed DOI

Nasseri B, Kosemehmetoglu K, Kaya M, Piskin E, Rabiee N, Webster TJ. The pimpled gold nanosphere: a superior candidate for plasmonic photothermal therapy. Int J Nanomed. 2020;15:2903. PubMed PMC

Rabiee N, Yaraki MT, Garakani SM, et al. Recent advances in porphyrin‐based nanocomposites for effective targeted imaging and therapy. Biomaterials. 2020;232:119707. PubMed PMC

Lee S, Jo G, Jung JS, Yang DH, Hyun H. Near‐infra‐red fluorescent chitosan oligosaccharide lactate for targeted cancer imaging and photothermal therapy. Artif Cells Nanomed Biotechnol. 2020;48(1):1144‐1152. doi:10.1080/21691401.2020.1817054 PubMed DOI

Ma K, Cheng Y, Wei X, Chen D, Zhao X, Jia P. Gold embedded chitosan nanoparticles with cell membrane mimetic polymer coating for pH‐sensitive controlled drug release and cellular fluorescence imaging. J Biomater Appl. 2021;35(7):857‐868. doi:10.1177/0885328220952594 PubMed DOI

Dai X, Zhao X, Liu Y, et al. Controlled synthesis and surface engineering of Janus chitosan‐gold nanoparticles for photoacoustic imaging‐guided synergistic gene/photothermal therapy. Small. 2021;17(11):e2006004. doi:10.1002/smll.202006004 PubMed DOI

Rasul RM, Tamilarasi Muniandy M, Zakaria Z, et al. A review on chitosan and its development as pulmonary particulate anti‐infective and anti‐cancer drug carriers. Carbohydr Polym. 2020;250:116800. doi:10.1016/j.carbpol.2020.116800 PubMed DOI PMC

Miao YQ, Chen MS, Zhou X, et al. Chitosan oligosaccharide modified liposomes enhance lung cancer delivery of paclitaxel. Acta Pharmacol Sin. 2021;42(10):1714‐1722. doi:10.1038/s41401-020-00594-0 PubMed DOI PMC

Vikas, Viswanadh MK, Mehata AK, et al. Bioadhesive chitosan nanoparticles: dual targeting and pharmacokinetic aspects for advanced lung cancer treatment. Carbohydr Polym. 2021;274:118617. PubMed

Fernández‐Álvarez F, García‐García G, Arias JL. A tri‐stimuli responsive (maghemite/PLGA)/chitosan nanostructure with promising applications in lung cancer. Pharmaceutics. 2021;13(8):1232. doi:10.3390/pharmaceutics13081232 PubMed DOI PMC

Safarzadeh M, Sadeghi S, Azizi M, Rastegari‐Pouyani M, Pouriran R, Haji Molla Hoseini M. Chitin and chitosan as tools to combat COVID‐19: a triple approach. Int J Biol Macromol. 2021;183:235‐244. doi:10.1016/j.ijbiomac.2021.04.157 PubMed DOI PMC

Jaber N, al‐Remawi M, al‐Akayleh F, al‐Muhtaseb N, al‐Adham ISI, Collier PJ. A review of the antiviral activity of chitosan, including patented applications and its potential use against COVID‐19. J Appl Microbiol. 2022;132(1):41‐58. doi:10.1111/jam.15202 PubMed DOI PMC

Lotfy VF, Basta AH. Optimizing the chitosan‐cellulose based drug delivery system for controlling the ciprofloxacin release versus organic/inorganic crosslinker, characterization and kinetic study. Int J Biol Macromol. 2020;165:1496‐1506. PubMed

Zhang X, Pan Y, Li S, et al. Doubly crosslinked biodegradable hydrogels based on gellan gum and chitosan for drug delivery and wound dressing. Int J Biol Macromol. 2020;164:2204‐2214. doi:10.1016/j.ijbiomac.2020.08.093 PubMed DOI

Karpisheh V, Fakkari Afjadi J, Nabi Afjadi M, et al. Inhibition of HIF‐1α/EP4 axis by hyaluronate‐trimethyl chitosan‐SPION nanoparticles markedly suppresses the growth and development of cancer cells. Int J Biol Macromol. 2021;167:1006‐1019. doi:10.1016/j.ijbiomac.2020.11.056 PubMed DOI

Hamza RZ, Al‐Salmi FA, El‐Shenawy NS. Chitosan and lecithin ameliorate osteoarthritis symptoms induced by monoiodoacetate in a rat model. Molecules. 2020;25(23):5738. doi:10.3390/molecules25235738 PubMed DOI PMC

Scognamiglio F, Travan A, Donati I, Borgogna M, Marsich E. A hydrogel system based on a lactose‐modified chitosan for viscosupplementation in osteoarthritis. Carbohydr Polym. 2020;248:116787. doi:10.1016/j.carbpol.2020.116787 PubMed DOI

Liu Z, Mo X, Ma F, et al. Synthesis of carboxymethyl chitosan‐strontium complex and its therapeutic effects on relieving osteoarthritis. Carbohydr Polym. 2021;261:117869. doi:10.1016/j.carbpol.2021.117869 PubMed DOI

Medina‐Cruz D, Mostafavi E, Vernet‐Crua A, et al. Green nanotechnology‐based drug delivery systems for osteogenic disorders. Expert Opin Drug Deliv. 2020;17(3):341‐356. PubMed

Chen L, Wang C, Wu Y. Cholesterol (blood lipid) lowering potential of Rosuvastatin chitosan nanoparticles for atherosclerosis: preclinical study in rabbit model. Acta Biochim pol. 2020;67(4):495‐499. PubMed

Gull N, Khan SM, Butt OM, et al. Inflammation targeted chitosan‐based hydrogel for controlled release of diclofenac sodium. Int J Biol Macromol. 2020;162:175‐187. doi:10.1016/j.ijbiomac.2020.06.133 PubMed DOI

Shen K, Tang Q, Fang X, et al. The sustained release of dexamethasone from TiO(2) nanotubes reinforced by chitosan to enhance osteoblast function and anti‐inflammation activity. Mater Sci Eng C Mater Biol Appl. 2020;116:111241. doi:10.1016/j.msec.2020.111241 PubMed DOI

Wang X, Almoallim HS, Cui Q, Alharbi SA, Yang H. In situ decorated au NPs on chitosan‐encapsulated Fe(3)O(4)‐NH(2) NPs as magnetic nanocomposite: investigation of its anti‐colon carcinoma, anti‐gastric cancer and anti‐pancreatic cancer. Int J Biol Macromol. 2021;171:198‐207. doi:10.1016/j.ijbiomac.2020.12.037 PubMed DOI

Sarkar S, Das D, Dutta P, Kalita J, Wann SB, Manna P. Chitosan: a promising therapeutic agent and effective drug delivery system in managing diabetes mellitus. Carbohydr Polym. 2020;247:116594. doi:10.1016/j.carbpol.2020.116594 PubMed DOI

Othman SI, Alturki AM, Abu‐Taweel GM, Altoom NG, Allam AA, Abdelmonem R. Chitosan for biomedical applications, promising antidiabetic drug delivery system, and new diabetes mellitus treatment based on stem cell. Int J Biol Macromol. 2021;190:417‐432. doi:10.1016/j.ijbiomac.2021.08.154 PubMed DOI

Arnaldi P, Pastorino L, Monticelli O. On an effective approach to improve the properties and the drug release of chitosan‐based microparticles. Int J Biol Macromol. 2020;163:393‐401. doi:10.1016/j.ijbiomac.2020.07.016 PubMed DOI

Shi W, Ching YC, Chuah CH. Preparation of aerogel beads and microspheres based on chitosan and cellulose for drug delivery: a review. Int J Biol Macromol. 2021;170:751‐767. doi:10.1016/j.ijbiomac.2020.12.214 PubMed DOI

Silva TND, Reynaud F, Picciani PHS, de Holanda e Silva KG, Barradas TN. Chitosan‐based films containing nanoemulsions of methyl salicylate: formulation development, physical‐chemical and in vitro drug release characterization. Int J Biol Macromol. 2020;164:2558‐2568. doi:10.1016/j.ijbiomac.2020.08.117 PubMed DOI

Carvalho FS, Burgeiro A, Garcia R, Moreno AJ, Carvalho RA, Oliveira PJ. Doxorubicin‐induced cardiotoxicity: from bioenergetic failure and cell death to cardiomyopathy. Med Res Rev. 2014;34(1):106‐135. PubMed

Soltantabar P, Calubaquib EL, Mostafavi E, Biewer MC, Stefan MC. Enhancement of loading efficiency by coloading of doxorubicin and quercetin in thermoresponsive polymeric micelles. Biomacromolecules. 2020;21(4):1427‐1436. PubMed

Rabiee N, Haris MH, Ghadiri AM, Moghaddam FM, Fatahi Y. Polymer‐coated NH2‐UiO‐66 for the codelivery of DOX/pCRISPR. ACS Appl Mater Interfaces. 2021;13(9):10796‐10811. PubMed

Bonadonna G, Monfardini S, De Lena M, Fossati‐Bellani F, Beretta G. Phase I and preliminary phase II evaluation of adriamycin (NSC 123127). Cancer Res. 1970;30(10):2572‐2582. PubMed

Bonadonna G, Monfardini S, de Lena M, Fossati‐Bellani F. Clinical evaluation of adriamycin, a new antitumour antibiotic. Br Med J. 1969;3(5669):503‐506. PubMed PMC

Carvalho C, Santos RX, Cardoso S, et al. Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem. 2009;16(25):3267‐3285. PubMed

Hortobagyi GJ. Anthracyclines in the treatment of cancer. Drugs. 1997;54(4):1‐7. PubMed

Aubel‐Sadron G, Londos‐Gagliardi DJB. Daunorubicin and doxorubicin, anthracycline antibiotics, a physicochemical and biological review. Biochimie. 1984;66(5):333‐352. PubMed

Ashrafizaveh S, Ashrafizadeh M, Zarrabi A, et al. Long non‐coding RNA in the doxorubicin resistance of cancer cells. Cancer Lett. 2021;508:104‐114. doi:10.1016/j.canlet.2021.03.018 PubMed DOI

Maghsoudi S, Shahraki BT, Rabiee N, et al. Recent advancements in aptamer‐bioconjugates: sharpening stones for breast and prostate cancers targeting. J Drug Deliv Sci Technol. 2019;53:101146.

Mirzaei S et al. The involvement of epithelial‐to‐mesenchymal transition in doxorubicin resistance: possible molecular targets. Eur J Pharmacol. 2021;908:174344. PubMed

Mirzaei S, Zarrabi A, Hashemi F, et al. Nrf2 signaling pathway in chemoprotection and doxorubicin resistance: potential application. Drug Discov. 2021;10(3):349. PubMed PMC

Ashrafizadeh M, Zarrabi A, Hashemi F, et al. Polychemotherapy with curcumin and doxorubicin via biological nanoplatforms: enhancing antitumor activity. Pharmaceutics. 2020;12(11):1084. PubMed PMC

Wang C, Kar S, Lai X, et al. Triple negative breast cancer in Asia: an insider's view. Cancer Treat Rev. 2018;62:29‐38. doi:10.1016/j.ctrv.2017.10.014 PubMed DOI

Wang Y, Zhou P, Li P, Yang F, Gao XQ. Long non‐coding RNA H19 regulates proliferation and doxorubicin resistance in MCF‐7 cells by targeting PARP1. Bioengineered. 2020;11(1):536‐546. doi:10.1080/21655979.2020.1761512 PubMed DOI PMC

Wang S, Cheng M, Zheng X, et al. Interactions between lncRNA TUG1 and miR‐9‐5p modulate the resistance of breast cancer cells to doxorubicin by regulating eIF5A2. Onco Targets Ther. 2020;13:13159‐13170. PubMed PMC

Ji Y, Liu J, Zhu W, Ji J. circ_0002060 enhances doxorubicin resistance in osteosarcoma by regulating the miR‐198/ABCB1 Axis. Cancer Biother Radiopharm. 2020. doi:10.1089/cbr.2020.4240 PubMed DOI

Guan H, Xu H, Chen J, et al. Circ_0001721 enhances doxorubicin resistance and promotes tumorigenesis in osteosarcoma through miR‐758/TCF4 axis. Cancer Cell Int. 2021;21(1):336. PubMed PMC

Xiong L, Lin XM, Nie JH, Ye HS, Liu J. Resveratrol and its nanoparticle suppress doxorubicin/docetaxel‐resistant anaplastic thyroid cancer cells in vitro and in vivo. Nanotheranostics. 2021;5(2):143‐154. doi:10.7150/ntno.53844 PubMed DOI PMC

Casagrande N, Borghese C, Favero A, Vicenzetto C, Aldinucci D. Trabectedin overcomes doxorubicin‐resistance, counteracts tumor‐immunosuppressive reprogramming of monocytes and decreases xenograft growth in Hodgkin lymphoma. Cancer Lett. 2021;500:182‐193. doi:10.1016/j.canlet.2020.12.015 PubMed DOI

Wang H, Shan S, Wang H, Wang X. CircATXN7 contributes to the progression and doxorubicin resistance of breast cancer via modulating miR‐149‐5p/HOXA11 pathway. Anticancer Drugs. 2022;33(1):e700‐e710. doi:10.1097/CAD.0000000000001243 PubMed DOI

Cheng J‐T, Wang L, Wang H, et al. Insights into biological role of LncRNAs in epithelial‐mesenchymal transition. Cell. 2019;8(10):1178. doi:10.3390/cells8101178 PubMed DOI PMC

Xie M, Li J, Deng T, Yang N, Yang M. Modification of magnetic molybdenum disulfide by chitosan/carboxymethylcellulose with enhanced dispersibility for targeted photothermal−/chemotherapy of cancer. J Mater Chem B. 2021;9(7):1833‐1845. doi:10.1039/D0TB01664K PubMed DOI

Zhu Z, Wei Z. CIP2A silencing alleviates doxorubicin resistance in MCF7/ADR cells through activating PP2A and autophagy. Clin Transl Oncol. 2021;23(8):1542‐1548. doi:10.1007/s12094-021-02616-7 PubMed DOI PMC

Zhao W, Ning L, Wang L, et al. miR‐21 inhibition reverses doxorubicin‐resistance and inhibits PC3 human prostate cancer cells proliferation. Andrologia. 2021;53(5):e14016. doi:10.1111/and.14016 PubMed DOI

Ashrafizadeh M, Mirzaei S, Gholami MH, et al. Hyaluronic acid‐based nanoplatforms for doxorubicin: a review of stimuli‐responsive carriers, co‐delivery and resistance suppression. Carbohydr Polym. 2021;272:118491. doi:10.1016/j.carbpol.2021.118491 PubMed DOI

Paskeh MDA, Saebfar H, Mahabady MK, et al. Overcoming doxorubicin resistance in cancer: siRNA‐loaded nanoarchitectures for cancer gene therapy. Life Sci. 2022;298:120463. doi:10.1016/j.lfs.2022.120463 PubMed DOI

Ashrafizadeh M, Saebfar H, Gholami MH, et al. Doxorubicin‐loaded graphene oxide nanocomposites in cancer medicine: stimuli‐responsive carriers, co‐delivery and suppressing resistance. Expert Opin Drug Deliv. 2022;1‐28. doi:10.1080/17425247.2022.2041598 PubMed DOI

Makvandi P, Jamaledin R, Chen G, et al. Stimuli‐responsive transdermal microneedle patches. Mater Today. 2021;47:206‐222. doi:10.1016/j.mattod.2021.03.012 PubMed DOI PMC

Zhuo S, Zhang F, Yu J, Zhang X, Yang G, Liu X. pH‐sensitive biomaterials for drug delivery. Molecules (Basel, Switzerland). 2020;25(23):5649. doi:10.3390/molecules25235649 PubMed DOI PMC

Yan T, Zhu S, Hui W, He J, Liu Z, Cheng J. Chitosan based pH‐responsive polymeric prodrug vector for enhanced tumor targeted co‐delivery of doxorubicin and siRNA. Carbohydr Polym. 2020;250:116781. doi:10.1016/j.carbpol.2020.116781 PubMed DOI

Wang R, Shou D, Lv O, Kong Y, Deng L, Shen J. pH‐controlled drug delivery with hybrid aerogel of chitosan, carboxymethyl cellulose and graphene oxide as the carrier. Int J Biol Macromol. 2017;103:248‐253. PubMed

Marsano E, Bianchi E, Vicini S, et al. Stimuli responsive gels based on interpenetrating network of chitosan and poly (vinylpyrrolidone). Polymer. 2005;46(5):1595‐1600.

Hasan A, Waibhaw G, Tiwari S, Dharmalingam K, Shukla I, Pandey LM. Fabrication and characterization of chitosan, polyvinylpyrrolidone, and cellulose nanowhiskers nanocomposite films for wound healing drug delivery application. J Biomed Mater Res A. 2017;105(9):2391‐2404. PubMed

Risbud MV, Hardikar AA, Bhata SV, Bhonde RR. pH‐sensitive freeze‐dried chitosan–polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery. J Controlled Release. 2000;68(1):23‐30. PubMed

Gerami SE, Pourmadadi M, Fatoorehchi H, Yazdian F, Rashedi H, Nigjeh MN. Preparation of pH‐sensitive chitosan/polyvinylpyrrolidone/α‐Fe(2)O(3) nanocomposite for drug delivery application: emphasis on ameliorating restrictions. Int J Biol Macromol. 2021;173:409‐420. doi:10.1016/j.ijbiomac.2021.01.067 PubMed DOI

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7‐30. doi:10.3322/caac.21442 PubMed DOI

Bae YH, Park K. Targeted drug delivery to tumors: myths, reality and possibility. J Control Release. 2011;153(3):198‐205. doi:10.1016/j.jconrel.2011.06.001 PubMed DOI PMC

Shi Y, Li LC. Current advances in sustained‐release systems for parenteral drug delivery. Expert Opin Drug Deliv. 2005;2(6):1039‐1058. doi:10.1517/17425247.2.6.1039 PubMed DOI

Sartipzadeh O, Naghib SM, Shokati F, et al. Microfluidic‐assisted synthesis and modelling of monodispersed magnetic nanocomposites for biomedical applications. J Nanotechnol Rev. 2020;9(1):1397‐1407.

Yin Q, Shen J, Zhang Z, Yu H, Li Y. Reversal of multidrug resistance by stimuli‐responsive drug delivery systems for therapy of tumor. Adv Drug Deliv Rev. 2013;65(13–14):1699‐1715. doi:10.1016/j.addr.2013.04.011 PubMed DOI

Pouysségur J, Dayan F, Mazure NM. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature. 2006;441(7092):437‐443. doi:10.1038/nature04871 PubMed DOI

Gooneh‐Farahani S, Naghib SM, Naimi‐Jamal MR, Seyfoori A. A pH‐sensitive nanocarrier based on BSA‐stabilized graphene‐chitosan nanocomposite for sustained and prolonged release of anticancer agents. Sci Rep. 2021;11(1):17404. PubMed PMC

Yang J, Naghib SM, Shokati F, et al. Enhanced therapeutic efficacy of doxorubicin for breast cancer using chitosan oligosaccharide‐modified halloysite nanotubes. Nanotechnol Rev. 2016;8(40):26578‐26590. PubMed

Gao X, Zhou Y, Ma G, et al. A water‐soluble photocrosslinkable chitosan derivative prepared by Michael‐addition reaction as a precursor for injectable hydrogel. Carbohydr Polym. 2010;79(3):507‐512.

Kufelt O, El‐Tamer A, Sehring C, Meißner M, Schlie‐Wolter S, Chichkov BN. Water‐soluble photopolymerizable chitosan hydrogels for biofabrication via two‐photon polymerization. Acta Biomaterialia. 2015;18:186‐195. PubMed

Li B, Wang L, Xu F, et al. Hydrosoluble, UV‐crosslinkable and injectable chitosan for patterned cell‐laden microgel and rapid transdermal curing hydrogel in vivo. Acta Biomater. 2015;22:59‐69. PubMed

Zhou Y, Ma G, Shi S, Yang D, Nie J. Photopolymerized water‐soluble chitosan‐based hydrogel as potential use in tissue engineering. Int J Biol Macromol. 2011;48(3):408‐413. PubMed

Carvalho IC, Mansur HS. Engineered 3D‐scaffolds of photocrosslinked chitosan‐gelatin hydrogel hybrids for chronic wound dressings and regeneration. Mater Sci Eng C. 2017;78:690‐705. PubMed

Cho IS, Cho MO, Li Z, et al. Synthesis and characterization of a new photo‐crosslinkable glycol chitosan thermogel for biomedical applications. Carbohydr Polym. 2016;144:59‐67. PubMed

He M, Jiang Z, Yang Y, Peng Y, Liu W. Synthesis of a chitosan‐based photo‐sensitive hydrogel and its biocompatibility and biodegradability. Carbohydr Polym. 2017;166:228‐235. PubMed

Nada AA, Ali EA, Solimanc AAF. Biocompatible chitosan‐based hydrogel with tunable mechanical and physical properties formed at body temperature. Int J Biol Macromol. 2019;131:624‐632. PubMed

Ding H, Li B, Jiang Y, et al. pH‐responsive UV crosslinkable chitosan hydrogel via "thiol‐ene" click chemistry for active modulating opposite drug release behaviors. Carbohydr Polym. 2021;251:117101. doi:10.1016/j.carbpol.2020.117101 PubMed DOI

Fathi M, Majidi S, Zangabad PS, Barar J, Erfan‐Niya H, Omidi Y. Chitosan‐based multifunctional nanomedicines and theranostics for targeted therapy of cancer. Med Res Rev. 2018;38(6):2110‐2136. PubMed

Sathiyaseelan A, Saravanakumar K, Mariadoss AVA, Wang MH. pH‐controlled nucleolin targeted release of dual drug from chitosan‐gold based aptamer functionalized nano drug delivery system for improved glioblastoma treatment. Carbohydr Polym. 2021;262:117907. doi:10.1016/j.carbpol.2021.117907 PubMed DOI

Raja MA, Arif M, Feng C, Zeenat S, Liu CG. Synthesis and evaluation of pH‐sensitive, self‐assembled chitosan‐based nanoparticles as efficient doxorubicin carriers. J Biomater Appl. 2017;31(8):1182‐1195. doi:10.1177/0885328216681184 PubMed DOI

Mirhadi E, Mashreghi M, Faal Maleki M, et al. Redox‐sensitive nanoscale drug delivery systems for cancer treatment. Int J Pharm. 2020;589:119882. doi:10.1016/j.ijpharm.2020.119882 PubMed DOI

Ahmadi S, Rabieec N, Bagherzadeh M, et al. Stimulus‐responsive sequential release systems for drug and gene delivery. Nano Today. 2020;34:100914. PubMed PMC

Hu F‐Q, Zhao M‐d, Yuan H, You J, Du Y, Zeng S. A novel chitosan oligosaccharide–stearic acid micelles for gene delivery: properties and in vitro transfection studies. Int J Pharm. 2006;315(1–2):158‐166. PubMed

Li J, Huo M, Wang J, et al. Redox‐sensitive micelles self‐assembled from amphiphilic hyaluronic acid‐deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel. Biomaterials. 2012;33(7):2310‐2320. PubMed

Yan J, Du Y‐Z, Chen F‐Y, You J, Yuan H, Hu F‐Q. Effect of proteins with different isoelectric points on the gene transfection efficiency mediated by stearic acid grafted chitosan oligosaccharide micelles. Mol Pharm. 2013;10(7):2568‐2577. PubMed

Zhao M‐D, Hu F‐Q, Du Y‐Z, et al. Coadministration of glycolipid‐like micelles loading cytotoxic drug with different action site for efficient cancer chemotherapy. Nanotechnology. 2009;20(5):055102. PubMed

You J, Wang Z, Du Y, et al. Specific tumor delivery of paclitaxel using glycolipid‐like polymer micelles containing gold nanospheres. Biomaterials. 2013;34(18):4510‐4519. PubMed PMC

Su Y, Hu Y, du Y, et al. Redox‐responsive polymer‐drug conjugates based on doxorubicin and chitosan oligosaccharide‐g‐stearic acid for cancer therapy. Mol Pharm. 2015;12(4):1193‐1202. doi:10.1021/mp500710x PubMed DOI

Zhou X, Guo L, Shi D, Duan S, Li J. Biocompatible chitosan Nanobubbles for ultrasound‐mediated targeted delivery of doxorubicin. Nanoscale Res Lett. 2019;14(1):24. PubMed PMC

Xu RX. Multifunctional microbubbles and nanobubbles for photoacoustic imaging. Contrast Media Mol Imaging. 2011;6(5):401‐411. PubMed

Sarkar A, Roy S, Sanpui P, Jaiswal A. Plasmonic gold nanorattle impregnated chitosan nanocarrier for stimulus responsive theranostics. ACS Appl Bio Mater. 2019;2(11):4812‐4825. doi:10.1021/acsabm.9b00568 PubMed DOI

Ruel‐Gariepy E, Leroux J‐C. In situ‐forming hydrogels—review of temperature‐sensitive systems. Eur J Pharm Biopharm. 2004;58(2):409‐426. PubMed

Ruel‐Gariepy E, Chenite A, Chaput C, Guirguis S, Leroux J. Characterization of thermosensitive chitosan gels for the sustained delivery of drugs. Int J Pharm. 2000;203(1–2):89‐98. PubMed

Lalloo A, Chao P, Hu P, Stein S, Sinko PJ. Pharmacokinetic and pharmacodynamic evaluation of a novel in situ forming poly (ethylene glycol)‐based hydrogel for the controlled delivery of the camptothecins. J Control Release. 2006;112(3):333‐342. PubMed

Ren S, Dai Y, Li C, et al. Pharmacokinetics and pharmacodynamics evaluation of a thermosensitive chitosan based hydrogel containing liposomal doxorubicin. Eur J Pharm Sci. 2016;92:137‐145. doi:10.1016/j.ejps.2016.07.002 PubMed DOI

Cho YI, Park S, Jeong SY, Yoo HS. In vivo and in vitro anti‐cancer activity of thermo‐sensitive and photo‐crosslinkable doxorubicin hydrogels composed of chitosan‐doxorubicin conjugates. Eur J Pharm Biopharm. 2009;73(1):59‐65. doi:10.1016/j.ejpb.2009.04.010 PubMed DOI

Wang W, Zhang P, Shan W, Gao J, Liang W. A novel chitosan‐based thermosensitive hydrogel containing doxorubicin liposomes for topical cancer therapy. J Biomater Sci Polym Ed. 2013;24(14):1649‐1659. doi:10.1080/09205063.2013.789357 PubMed DOI

Dong X, Wei C, Liang J, Liu T, Kong D, Lv F. Thermosensitive hydrogel loaded with chitosan‐carbon nanotubes for near infrared light triggered drug delivery. Colloids Surf B Biointerfaces. 2017;154:253‐262. doi:10.1016/j.colsurfb.2017.03.036 PubMed DOI

Chen X, Niu S, Bremner DH, et al. Co‐delivery of doxorubicin and oleanolic acid by triple‐sensitive nanocomposite based on chitosan for effective promoting tumor apoptosis. Carbohydr Polym. 2020;247:116672. doi:10.1016/j.carbpol.2020.116672 PubMed DOI

Jiao J, Li X, Zhang S, et al. Redox and pH dual‐responsive PEG and chitosan‐conjugated hollow mesoporous silica for controlled drug release. Mater Sci Eng C Mater Biol Appl. 2016;67:26‐33. doi:10.1016/j.msec.2016.04.091 PubMed DOI

Gao Y, Ma Q, Cao J, et al. Bifunctional alginate/chitosan stabilized perfluorohexane nanodroplets as smart vehicles for ultrasound and pH responsive delivery of anticancer agents. Int J Biol Macromol. 2021;191:1068‐1078. doi:10.1016/j.ijbiomac.2021.09.166 PubMed DOI

Karthika V, AlSalhi MS, Devanesan S, Gopinath K, Arumugam A, Govindarajan M. Chitosan overlaid Fe(3)O(4)/rGO nanocomposite for targeted drug delivery, imaging, and biomedical applications. Sci Rep. 2020;10(1):18912. PubMed PMC

Liao T, Liu C, Ren J, et al. A chitosan/mesoporous silica nanoparticle‐based anticancer drug delivery system with a "tumor‐triggered targeting" property. Int J Biol Macromol. 2021;183:2017‐2029. doi:10.1016/j.ijbiomac.2021.06.004 PubMed DOI

Mu Y, Wu G, Su C, et al. pH‐sensitive amphiphilic chitosan‐quercetin conjugate for intracellular delivery of doxorubicin enhancement. Carbohydr Polym. 2019;223:115072. doi:10.1016/j.carbpol.2019.115072 PubMed DOI

Nogueira‐Librelotto DR, Scheeren LE, Macedo LB, Vinardell MP, Rolim CMB. pH‐sensitive chitosan‐tripolyphosphate nanoparticles increase doxorubicin‐induced growth inhibition of cervical HeLa tumor cells by apoptosis and cell cycle modulation. Colloids Surf B Biointerfaces. 2020;190:110897. doi:10.1016/j.colsurfb.2020.110897 PubMed DOI

Huang N, Wang J, Cheng X, Xu Y, Li W. Fabrication of PNIPAM‐chitosan/decatungstoeuropate/silica nanocomposite for thermo/pH dual‐stimuli‐responsive and luminescent drug delivery system. J Inorg Biochem. 2020;211:111216. doi:10.1016/j.jinorgbio.2020.111216 PubMed DOI

Verma NK, Purohit MP, Equbal D, et al. Targeted smart pH and thermoresponsive N,O‐carboxymethyl chitosan conjugated Nnanogels for enhanced therapeutic efficacy of doxorubicin in MCF‐7 breast cancer cells. Bioconjug Chem. 2016;27(11):2605‐2619. doi:10.1021/acs.bioconjchem.6b00366 PubMed DOI

Xia B, Zhang W, Tong H, Li J, Chen Z, Shi J. Multifunctional chitosan/porous silicon@au nanocomposite hydrogels for long‐term and repeatedly localized combinatorial therapy of cancer via a single injection. ACS Biomater Sci Eng. 2019;5(4):1857‐1867. doi:10.1021/acsbiomaterials.8b01533 PubMed DOI

Kong M, Zuo Y, Wang M, Bai X, Feng C, Chen X. Simply constructed chitosan nanocarriers with precise spatiotemporal control for efficient intracellular drug delivery. Carbohydr Polym. 2017;169:341‐350. doi:10.1016/j.carbpol.2017.03.090 PubMed DOI

Bigham A, Foroughi F, Rezvani Ghomi E, Rafienia M, Neisiany RE, Ramakrishna S. The journey of multifunctional bone scaffolds fabricated from traditional toward modern techniques. Bio‐Design Manufact. 2020;3(4):281‐306. doi:10.1007/s42242-020-00094-4 DOI

Bigham A, Aghajanian AH, Saudi A, Rafienia M. Hierarchical porous Mg2SiO4‐CoFe2O4 nanomagnetic scaffold for bone cancer therapy and regeneration: surface modification and in vitro studies. Mater Sci Eng C. 2020;109:110579. PubMed

Ou W, Byeon JH, Thapa RK, Ku SK, Yong CS, Kim JO. Plug‐and‐play Nanorization of coarse black phosphorus for targeted chemo‐photoimmunotherapy of colorectal cancer. ACS Nano. 2018;12(10):10061‐10074. doi:10.1021/acsnano.8b04658 PubMed DOI

Mirzaei S, Gholami MH, Hashemi F, et al. Employing siRNA tool and its delivery platforms in suppressing cisplatin resistance: approaching to a new era of cancer chemotherapy. Life Sci. 2021;277:119430. PubMed

Delfi M, Sartorius R, Ashrafizadeh M, et al. Self‐assembled peptide and protein nanostructures for anti‐cancer therapy: targeted delivery, stimuli‐responsive devices and immunotherapy. Nano Today. 2021;38:101119. PubMed PMC

Mirzaei S, Hushmandi K, Zabolian A, et al. Elucidating role of reactive oxygen species (ROS) in cisplatin chemotherapy: a focus on molecular pathways and possible therapeutic strategies. Molecules. 2021;26(8):2382. PubMed PMC

Guo Y, Chu M, Tan S, et al. Chitosan‐g‐TPGS nanoparticles for anticancer drug delivery and overcoming multidrug resistance. Mol Pharm. 2014;11(1):59‐70. doi:10.1021/mp400514t PubMed DOI

Siddharth S, Nayak A, Nayak D, Bindhani BK, Kundu CN. Chitosan‐dextran sulfate coated doxorubicin loaded PLGA‐PVA‐nanoparticles caused apoptosis in doxorubicin resistance breast cancer cells through induction of DNA damage. Sci Rep. 2017;7(1):2143. PubMed PMC

Luesakul U, Puthong S, Neamati N, Muangsin N. pH‐responsive selenium nanoparticles stabilized by folate‐chitosan delivering doxorubicin for overcoming drug‐resistant cancer cells. Carbohydr Polym. 2018;181:841‐850. doi:10.1016/j.carbpol.2017.11.068 PubMed DOI

Meng T, Qiu G, Hong Y, et al. Effect of chitosan based glycolipid‐like nanocarrier in prevention of developing acquired drug resistance in tri‐cycle treatment of breast cancer. Int J Pharm. 2019;555:303‐313. doi:10.1016/j.ijpharm.2018.11.056 PubMed DOI

Giarra S, Zappavigna S, Campani V, et al. Chitosan‐based polyelectrolyte complexes for doxorubicin and Zoledronic acid combined therapy to overcome multidrug resistance. Pharmaceutics. 2018;10(4):180. doi:10.3390/pharmaceutics10040180 PubMed DOI PMC

Duan J, Mansour HM, Zhang Y, et al. Reversion of multidrug resistance by co‐encapsulation of doxorubicin and curcumin in chitosan/poly(butyl cyanoacrylate) nanoparticles. Int J Pharm. 2012;426(1–2):193‐201. doi:10.1016/j.ijpharm.2012.01.020 PubMed DOI

Ahmadi S, Rabiee N, Fatahi Y, et al. Controlled gene delivery systems: nanomaterials and chemical approaches. J Biomed Nanotechnol. 2020;16(5):553‐582. PubMed

Rabiee N et al. Carbosilane dendrimers: drug and gene delivery applications. J Drug Deliv Sci Technol. 2020:101879.

Rabiee N, Ahmadi S, Arab Z, et al. Aptamer hybrid nanocomplexes as targeting components for antibiotic/gene delivery systems and diagnostics: a review. Int J Nanomed. 2020;15:4237‐4256. PubMed PMC

Ashrafizade M, Delfi M, Hashemi F, et al. Biomedical application of chitosan‐based nanoscale delivery systems: potential usefulness in siRNA delivery for cancer therapy. Carbohydr Polym. 2021;260:117809. doi:10.1016/j.carbpol.2021.117809 PubMed DOI

Makvandi P, Josic U, Delfi M, et al. Drug delivery (nano) platforms for oral and dental applications: tissue regeneration, infection control, and cancer management. Adv Sci. 2021;8(8):2004014. PubMed PMC

Gantenbein B, Tang S, Guerrero J, et al. Non‐viral gene delivery methods for bone and joints. Front Bioeng Biotechnol. 2020;8:1320. PubMed PMC

Duan L, Xu L, Xu X, et al. Exosome‐mediated delivery of gene vectors for gene therapy. Nanoscale. 2021;13(3):1387‐1397. PubMed

Kimura S, Harashima HJP. Current status and challenges associated with CNS‐targeted gene delivery across the BBB. Pharmaceutics. 2020;12(12):1216. PubMed PMC

Chen S, Deng J, Zhang LM. Cationic nanoparticles self‐assembled from amphiphilic chitosan derivatives containing poly(amidoamine) dendrons and deoxycholic acid as a vector for co‐delivery of doxorubicin and gene. Carbohydr Polym. 2021;258:117706. doi:10.1016/j.carbpol.2021.117706 PubMed DOI

Alinejad V, Hossein Somi M, Baradaran B, et al. Co‐delivery of IL17RB siRNA and doxorubicin by chitosan‐based nanoparticles for enhanced anticancer efficacy in breast cancer cells. Biomed Pharmacother. 2016;83:229‐240. doi:10.1016/j.biopha.2016.06.037 PubMed DOI

Butt AM, Amin MCIM, Katas H, Abdul Murad NA, Jamal R, Kesharwani P. Doxorubicin and siRNA codelivery via chitosan‐coated pH‐responsive mixed micellar Polyplexes for enhanced cancer therapy in multidrug‐resistant tumors. Mol Pharm. 2016;13(12):4179‐4190. doi:10.1021/acs.molpharmaceut.6b00776 PubMed DOI

Siahmansouri H, Somi MH, Babaloo Z, et al. Effects of HMGA2 siRNA and doxorubicin dual delivery by chitosan nanoparticles on cytotoxicity and gene expression of HT‐29 colorectal cancer cell line. J Pharm Pharmacol. 2016;68(9):1119‐1130. doi:10.1111/jphp.12593 PubMed DOI

Zhu QL, Zhou Y, Guan M, et al. Low‐density lipoprotein‐coupled N‐succinyl chitosan nanoparticles co‐delivering siRNA and doxorubicin for hepatocyte‐targeted therapy. Biomaterials. 2014;35(22):5965‐5976. doi:10.1016/j.biomaterials.2014.03.088 PubMed DOI

Han L, Zhao J, Zhang X, et al. Enhanced siRNA delivery and silencing gold‐chitosan nanosystem with surface charge‐reversal polymer assembly and good biocompatibility. ACS Nano. 2012;6(8):7340‐7351. doi:10.1021/nn3024688 PubMed DOI

Shali H, Shabani M, Pourgholi F, et al. Co‐delivery of insulin‐like growth factor 1 receptor specific siRNA and doxorubicin using chitosan‐based nanoparticles enhanced anticancer efficacy in A549 lung cancer cell line. Artif Cells Nanomed Biotechnol. 2018;46(2):293‐302. doi:10.1080/21691401.2017.1307212 PubMed DOI

Yoon HY, Son S, Lee SJ, et al. Glycol chitosan nanoparticles as specialized cancer therapeutic vehicles: sequential delivery of doxorubicin and Bcl‐2 siRNA. Sci Rep. 2014;4:6878. PubMed PMC

Seifi‐Najmi M, Hajivalili M, Safaralizadeh R, et al. SiRNA/DOX lodeded chitosan based nanoparticles: development, characterization and in vitro evaluation on A549 lung cancer cell line. Cell Mol Biol (Noisy‐le‐Grand). 2016;62(11):87‐94. PubMed

Eivazy P, Atyabi F, Jadidi‐Niaragh F, et al. The impact of the codelivery of drug‐siRNA by trimethyl chitosan nanoparticles on the efficacy of chemotherapy for metastatic breast cancer cell line (MDA‐MB‐231). Artif Cells Nanomed Biotechnol. 2017;45(5):889‐896. PubMed

Choi C et al. Application of chitosan and chitosan derivatives as biomaterials. 2016;33:1‐10.

Deng J, Nam J‐P, Nah J‐W. Dendronized chitosan derivative as a biocompatible gene delivery carrier. J Indus Eng Chem. 2011;12(3):642‐649. PubMed

Xu Q, Leong J, Chua QY, et al. Combined modality doxorubicin‐based chemotherapy and chitosan‐mediated p53 gene therapy using double‐walled microspheres for treatment of human hepatocellular carcinoma. Biomaterials. 2013;34(21):5149‐5162. doi:10.1016/j.biomaterials.2013.03.044 PubMed DOI PMC

Xu Q, Xia Y, Wang CH, Pack DW. Monodisperse double‐walled microspheres loaded with chitosan‐p53 nanoparticles and doxorubicin for combined gene therapy and chemotherapy. J Control Release. 2012;163(2):130‐135. doi:10.1016/j.jconrel.2012.08.032 PubMed DOI PMC

Mirzaei S, Mahabady MK, Zabolian A, et al. Small interfering RNA (siRNA) to target genes and molecular pathways in glioblastoma therapy: current status with an emphasis on delivery systems. Life Sci. 2021;275:119368. doi:10.1016/j.lfs.2021.119368 PubMed DOI

Ashrafizadeh M, Zarrabi A, Hushmandi K, et al. Progress in natural compounds/siRNA co‐delivery employing nanovehicles for cancer therapy. ACS Comb Sci. 2020;22(12):669‐700. PubMed PMC

Ashrafizadeh M, Hushmandi K, Moghadam ER, et al. Progress in delivery of siRNA‐based therapeutics employing nano‐vehicles for treatment of prostate cancer. Bioengineering (Basel). 2020;7(3):91. PubMed PMC

Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75(1):1‐18. PubMed

Muhamad II, Selvakumaran S, Lazim NAMJN. Designing polymeric nanoparticles for targeted drug delivery system. Nanomedicine. 2014;287:287.

Cai W, Cai W, Jiang H, Weizmann Y, Wang X. Intelligent bio‐responsive fluorescent Au‐shRNA complexes for regulated autophagy and effective cancer bioimaging and therapeutics. Biosensors (Basel). 2021;11(11):425. PubMed PMC

Zhang X, Taoka R, Liu D, et al. Knockdown of RRM1 with adenoviral shRNA vectors to inhibit tumor cell viability and increase chemotherapeutic sensitivity to gemcitabine in bladder cancer cells. Int J Mol Sci. 2021;22(8):4102. doi:10.3390/ijms22084102 PubMed DOI PMC

Wang J, Wang K, Liang J, Jin J, Wang X, Yan S. Chitosan‐tripolyphosphate nanoparticles‐mediated co‐delivery of MTHFD1L shRNA and 5‐aminolevulinic acid for combination photodynamic‐gene therapy in oral cancer. Photodiagnosis Photodyn Ther. 2021;36:102581. doi:10.1016/j.pdpdt.2021.102581 PubMed DOI

Lu M, Xu Z, Wei F, et al. Oncolytic adenovirus carrying SPAG9‐shRNA enhanced the efficacy of docetaxel for advanced prostate cancer. Anticancer Drugs. 2022;33(2):142‐148. doi:10.1097/CAD.0000000000001251 PubMed DOI

Yang H, Chen Y, Chen Z, et al. Chemo‐photodynamic combined gene therapy and dual‐modal cancer imaging achieved by pH‐responsive alginate/chitosan multilayer‐modified magnetic mesoporous silica nanocomposites. Biomater Sci. 2017;5(5):1001‐1013. 10.1039/C7BM00043J PubMed DOI

Paskeh MDA, Mirzaeic S, Oroueid S, et al. Revealing the role of miRNA‐489 as a new onco‐suppressor factor in different cancers based on pre‐clinical and clinical evidence. Int J Biol Macromol. 2021;191:727‐737. doi:10.1016/j.ijbiomac.2021.09.089 PubMed DOI

Ashrafizadeh M, Zarrabi A, Orouei S, et al. Interplay between SOX9 transcription factor and microRNAs in cancer. Int J Biol Macromol. 2021;183:681‐694. doi:10.1016/j.ijbiomac.2021.04.185 PubMed DOI

Mirzaei S, Zarrabi A, Asnaf SE, et al. The role of microRNA‐338‐3p in cancer: growth, invasion, chemoresistance and mediators. Life Sci. 2021;268:119005. PubMed

Mirzaei S, Saebfar H, Gholami MH, et al. MicroRNAs regulating SOX2 in cancer progression and therapy response. Expert Rev Mol Med. 2021;23. PubMed

Meijuan W, Mao X, Wang S. Clinical significance of miR‐139‐5p and FGF2 in ovarian cancer. J BUON. 2021;26(3):663‐669. PubMed

Hang J, Wei F, Yan Z, Zhang X, Xu K, Zhu Y. The value of miR‐510 in the prognosis and development of colon cancer. Open Med (Wars). 2021;16(1):795‐804. doi:10.1515/med-2021-0251 PubMed DOI PMC

Wang J. Tripterine and miR‐184 show synergy to suppress breast cancer progression. Biochem Biophys Res Commun. 2021;561:19‐25. doi:10.1016/j.bbrc.2021.04.108 PubMed DOI

Deng X, Cao M, Zhang J, et al. Hyaluronic acid‐chitosan nanoparticles for co‐delivery of MiR‐34a and doxorubicin in therapy against triple negative breast cancer. Biomaterials. 2014;35(14):4333‐4344. doi:10.1016/j.biomaterials.2014.02.006 PubMed DOI

Unsoy G, Gunduz U. Targeted silencing of Survivin in cancer cells by siRNA loaded chitosan magnetic nanoparticles. Expert Rev Anticancer Ther. 2016;16(7):789‐797. doi:10.1080/14737140.2016.1184981 PubMed DOI

Zhao Z, Ji M, Wang Q, He N, Li Y. Ca(2+) signaling modulation using cancer cell membrane coated chitosan nanoparticles to combat multidrug resistance of cancer. Carbohydr Polym. 2020;238:116073. doi:10.1016/j.carbpol.2020.116073 PubMed DOI

Wang C, Ravi S, Garapati US, et al. Multifunctional chitosan magnetic‐graphene (CMG) nanoparticles: a Theranostic platform for tumor‐targeted co‐delivery of drugs, genes and MRI contrast agents. J Mater Chem B. 2013;1(35):4396‐4405. doi:10.1039/c3tb20452a PubMed DOI PMC

Abadi AJ, Mirzaei S, Mahabady MK, et al. Curcumin and its derivatives in cancer therapy: potentiating antitumor activity of cisplatin and reducing side effects. Phytother Res. 2022;36(1):189‐213. PubMed

Ashrafizadeh M, Zarrabi A, Mirzaei S, et al. Gallic acid for cancer therapy: molecular mechanisms and boosting efficacy by nanoscopical delivery. Food Chem Toxicol. 2021;157:112576. PubMed

Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer J Clin. 2021;71(1):7‐33. PubMed

Ashrafizadeh M, Mirzaei S, Hushmandi K, et al. Therapeutic potential of AMPK signaling targeting in lung cancer: advances, challenges and future prospects. Life Sci. 2021;278:119649. PubMed

Abadi AJ, Zarrabi A, Gholami MH, et al. Small in size, but large in action: microRNAs as potential modulators of PTEN in breast and lung cancers. Biomolecules. 2021;11(2):304. PubMed PMC

Ashrafizadeh M, Zarrabi A, Hushmandi K, et al. Toward regulatory effects of curcumin on transforming growth factor‐beta across different diseases: a review. Front Pharmacol. 2020;11:1785. PubMed PMC

Lee R, Choi YJ, Jeong MS, et al. Hyaluronic acid‐decorated glycol chitosan nanoparticles for pH‐sensitive controlled release of doxorubicin and celecoxib in nonsmall cell lung cancer. Bioconjug Chem. 2020;31(3):923‐932. doi:10.1021/acs.bioconjchem.0c00048 PubMed DOI

Farboudi A, Mahboobnia K, Chogan F, et al. UiO‐66 metal organic framework nanoparticles loaded carboxymethyl chitosan/poly ethylene oxide/polyurethane core‐shell nanofibers for controlled release of doxorubicin and folic acid. Int J Biol Macromol. 2020;150:178‐188. doi:10.1016/j.ijbiomac.2020.02.067 PubMed DOI

Ashrafizadeh M, Ahmadi Z, Mohamamdinejad R, et al. Curcumin therapeutic modulation of the Wnt signaling pathway. Curr Pharm Biotechnol. 2020;21(11):1006‐1015. PubMed

Ashrafizadeh M, Yaribeygi H, Sahebkar A. Therapeutic effects of curcumin against bladder cancer: a review of possible molecular pathways. Anticancer Agents Med Chem. 2020;20(6):667‐677. PubMed

Azarian M, Azarian M, Hossein HHS, et al. Folic acid‐adorned curcumin‐loaded iron oxide nanoparticles for cervical cancer. ACS Appl Bio Mater. 2022;5(3):1305‐1318. PubMed PMC

Jyoti K, Pandey RS, Kush P, Kaushik D, Jain UK, Madan J. Inhalable bioresponsive chitosan microspheres of doxorubicin and soluble curcumin augmented drug delivery in lung cancer cells. Int J Biol Macromol. 2017;98:50‐58. doi:10.1016/j.ijbiomac.2017.01.109 PubMed DOI

Kim MW, Niidome T, Lee R. Glycol chitosan‐docosahexaenoic acid liposomes for drug delivery: synergistic effect of doxorubicin‐rapamycin in drug‐resistant breast cancer. Mar Drugs. 2019;17(10) :581. doi:10.3390/md17100581 PubMed DOI PMC

van der Koog L, Gandek TB, Nagelkerke A. Liposomes and extracellular vesicles as drug delivery systems: a comparison of composition, pharmacokinetics, and functionalization. Adv Healthc Mater. 2022;11:e2100639. doi:10.1002/adhm.202100639 PubMed DOI

Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:286. PubMed PMC

Al Saqr A et al. Co‐delivery of Hispolon and doxorubicin liposomes improves efficacy against melanoma cells. AAPS PharmSciTech. 2020;21(8):304. PubMed

Murugesan K, Srinivasan P, Mahadeva R, Gupta CM, Haq W. Tuftsin‐bearing liposomes co‐encapsulated with doxorubicin and curcumin efficiently inhibit EAC tumor growth in mice. Int J Nanomedicine. 2020;15:10547‐10559. PubMed PMC

Wi TI, Won JE, Lee CM, et al. Efficacy of combination therapy with linalool and doxorubicin encapsulated by liposomes as a two‐in‐one hybrid carrier system for epithelial ovarian carcinoma. Int J Nanomedicine. 2020;15:8427‐8436. PubMed PMC

Lian B, Wei H, Pan R, et al. Galactose modified liposomes for effective co‐delivery of doxorubicin and Combretastatin A4. Int J Nanomedicine. 2021;16:457‐467. PubMed PMC

Deygen IM, Seidl C, Kölmel DK, et al. Novel prodrug of doxorubicin modified by stearoylspermine encapsulated into PEG‐chitosan‐stabilized liposomes. Langmuir. 2016;32(42):10861‐10869. doi:10.1021/acs.langmuir.6b01023 PubMed DOI

Yan L, Crayton SH, Thawani JP, Amirshaghaghi A, Tsourkas A, Cheng Z. A pH‐responsive drug‐delivery platform based on glycol chitosan‐coated liposomes. Small. 2015;11(37):4870‐4874. doi:10.1002/smll.201501412 PubMed DOI PMC

Cavalcante CH, Fernandes RS, de Oliveira Silva J, et al. Doxorubicin‐loaded pH‐sensitive micelles: a promising alternative to enhance antitumor activity and reduce toxicity. Biomed Pharmacother. 2021;134:111076. doi:10.1016/j.biopha.2020.111076 PubMed DOI

Feng R, Wang W, Zhu L, Xu H, Chen S, Song Z. Phenylboronic acid‐functionalized F127‐oligochitosan conjugate micelles for doxorubicin encapsulation. J Biomed Mater Res B Appl Biomater. 2020;108(8):3345‐3355. doi:10.1002/jbm.b.34670 PubMed DOI

Wang C, Qi P, Lu Y, et al. Bicomponent polymeric micelles for pH‐controlled delivery of doxorubicin. Drug Deliv. 2020;27(1):344‐357. doi:10.1080/10717544.2020.1726526 PubMed DOI PMC

Gao X, Lu Y, Wu B, et al. Interface cisplatin‐crosslinked doxorubicin‐loaded triblock copolymer micelles for synergistic cancer therapy. Colloids Surf B Biointerfaces. 2020;196:111334. doi:10.1016/j.colsurfb.2020.111334 PubMed DOI

Xie L, Liu R, Chen X, He M, Zhang Y, Chen S. Micelles based on lysine, histidine, or arginine: designing structures for enhanced drug delivery. Front Bioeng Biotechnol. 2021;9:744657. doi:10.3389/fbioe.2021.744657 PubMed DOI PMC

Rosch JG, Winter H, DuRoss AN, Sahay G, Sun C. Inverse‐micelle synthesis of doxorubicin‐loaded alginate/chitosan nanoparticles and in vitro assessment of breast cancer cytotoxicity. Colloid Interface Sci Commun. 2019;28:69‐74. doi:10.1016/j.colcom.2018.12.002 PubMed DOI PMC

Yan T, Li D, Li J, et al. Effective co‐delivery of doxorubicin and curcumin using a glycyrrhetinic acid‐modified chitosan‐cystamine‐poly(ε‐caprolactone) copolymer micelle for combination cancer chemotherapy. Colloids Surf B Biointerfaces. 2016;145:526‐538. doi:10.1016/j.colsurfb.2016.05.070 PubMed DOI

Kittur F, Kittura KV, Prashantha H, Sankarb KU, Tharanathana RN. Characterization of chitin, chitosan and their carboxymethyl derivatives by differential scanning calorimetry. Carbohydr Polym. 2002;49(2):185‐193.

Win PP, Shin‐ya Y, Kyung‐JinHong TK. Formulation and characterization of pH sensitive drug carrier based on phosphorylated chitosan. Carbohydr Polym. 2003;53(3):305‐310.

Sarasam AR, Krishnaswamy RK, Madihally SVJB. Blending chitosan with polycaprolactone: effects on physicochemical and antibacterial properties. Biomacromolecules. 2006;7(4):1131‐1138. PubMed

Xiangyang X, Ling L, Jianping Z, et al. Preparation and characterization of N‐succinyl‐N'‐octyl chitosan micelles as doxorubicin carriers for effective anti‐tumor activity. Colloids Surf B Biointerfaces. 2007;55(2):222‐228. doi:10.1016/j.colsurfb.2006.12.006 PubMed DOI

Su CW, Chiang MY, Lin YL, et al. Sodium dodecyl sulfate‐modified doxorubicin‐loaded chitosan‐lipid Nanocarrier with multi polysaccharide‐lecithin Nanoarchitecture for augmented bioavailability and stability of Oral administration in vitro and in vivo. J Biomed Nanotechnol. 2016;12(5):962‐972. doi:10.1166/jbn.2016.2227 PubMed DOI

Hu FQ, Liu LN, du YZ, Yuan H. Synthesis and antitumor activity of doxorubicin conjugated stearic acid‐g‐chitosan oligosaccharide polymeric micelles. Biomaterials. 2009;30(36):6955‐6963. doi:10.1016/j.biomaterials.2009.09.008 PubMed DOI

Saeb MR, Rabiee N, Mozafari M, Mostafavi E. Metal‐organic frameworks (MOFs)‐based nanomaterials for drug delivery. Materials. 2021;14(13):3652. PubMed PMC

Rabiee N, Rabiee M, Sojdeh S, et al. Porphyrin molecules decorated on metal–organic frameworks for multi‐functional biomedical applications. Biomolecules. 2021;11(11):1714. PubMed PMC

Chowdhuri AR, Singh T, Ghosh SK, Sahu SK. Carbon dots embedded magnetic nanoparticles @chitosan @metal organic framework as a Nanoprobe for pH sensitive targeted anticancer drug delivery. ACS Appl Mater Interfaces. 2016;8(26):16573‐16583. doi:10.1021/acsami.6b03988 PubMed DOI

Abazari R, Mahjoub AR, Ataei F, et al. Chitosan immobilization on bio‐MOF nanostructures: a biocompatible pH‐responsive Nanocarrier for doxorubicin release on MCF‐7 cell lines of human breast cancer. Inorg Chem. 2018;57(21):13364‐13379. doi:10.1021/acs.inorgchem.8b01955 PubMed DOI

Zhao G, Wang J, Peng X, Li Y, Yuan X, Ma Y. Facile solvothermal synthesis of mesostructured Fe3O4/chitosan nanoparticles as delivery vehicles for pH‐responsive drug delivery and magnetic resonance imaging contrast agents. Chem Asian J. 2014;9(2):546‐553. doi:10.1002/asia.201301072 PubMed DOI

Pandit A, Khare L, Jahagirdar D, Srivastav A, Jain R, Dandekar P. Probing synergistic interplay between bio‐inspired peptidomimetic chitosan‐copper complexes and doxorubicin. Int J Biol Macromol. 2020;161:1475‐1483. doi:10.1016/j.ijbiomac.2020.07.241 PubMed DOI

Khademi Z, Lavaee P, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Co‐delivery of doxorubicin and aptamer against Forkhead box M1 using chitosan‐gold nanoparticles coated with nucleolin aptamer for synergistic treatment of cancer cells. Carbohydr Polym. 2020;248:116735. doi:10.1016/j.carbpol.2020.116735 PubMed DOI

Kang JW, Cho HJ, Lee HJ, Jin HE, Maeng HJ. Polyethylene glycol‐decorated doxorubicin/carboxymethyl chitosan/gold nanocomplex for reducing drug efflux in cancer cells and extending circulation in blood stream. Int J Biol Macromol. 2019;125:61‐71. doi:10.1016/j.ijbiomac.2018.12.028 PubMed DOI

Al‐Musawi S, Albukhaty S, Al‐Karagoly H, Almalki F. Design and synthesis of multi‐functional superparamagnetic core‐gold shell coated with chitosan and folate nanoparticles for targeted antitumor therapy. Nanomaterials (Basel). 2020;11(1):32. PubMed PMC

Horo H, Bhattacharyya S, Mandal B, Kundu LM. Synthesis of functionalized silk‐coated chitosan‐gold nanoparticles and microparticles for target‐directed delivery of antitumor agents. Carbohydr Polym. 2021;258:117659. doi:10.1016/j.carbpol.2021.117659 PubMed DOI

Rasoulzadehzali M, Namazi H. Facile preparation of antibacterial chitosan/graphene oxide‐ag bio‐nanocomposite hydrogel beads for controlled release of doxorubicin. Int J Biol Macromol. 2018;116:54‐63. doi:10.1016/j.ijbiomac.2018.04.140 PubMed DOI

Shen JW, Li J, Dai J, et al. Molecular dynamics study on the adsorption and release of doxorubicin by chitosan‐decorated graphene. Carbohydr Polym. 2020;248:116809. doi:10.1016/j.carbpol.2020.116809 PubMed DOI

Anirudhan T, Deepa JR. Nano‐zinc oxide incorporated graphene oxide/nanocellulose composite for the adsorption and photo catalytic degradation of ciprofloxacin hydrochloride from aqueous solutions. J Colloid Interface Sci. 2017;490:343‐356. PubMed

Fiorica C, Mauro N, Pitarresi G, Scialabba C, Palumbo FS, Giammona G. Double‐network‐structured graphene oxide‐containing nanogels as photothermal agents for the treatment of colorectal cancer. Biomacromolecules. 2017;18(3):1010‐1018. PubMed

Anirudhan TS, Chithra Sekhar V, Athira VS. Graphene oxide based functionalized chitosan polyelectrolyte nanocomposite for targeted and pH responsive drug delivery. Int J Biol Macromol. 2020;150:468‐479. doi:10.1016/j.ijbiomac.2020.02.053 PubMed DOI

Omidi S, Pirhayati M, Kakanejadifard A. Co‐delivery of doxorubicin and curcumin by a pH‐sensitive, injectable, and in situ hydrogel composed of chitosan, graphene, and cellulose nanowhisker. Carbohydr Polym. 2020;231:115745. doi:10.1016/j.carbpol.2019.115745 PubMed DOI

Rungnim C, Rungrotmongkol T, Poo‐Arporn RP. pH‐controlled doxorubicin anticancer loading and release from carbon nanotube noncovalently modified by chitosan: MD simulations. J Mol Graph Model. 2016;70:70‐76. doi:10.1016/j.jmgm.2016.09.011 PubMed DOI

Khoshoei A, Ghasemy E, Poustchi F, Shahbazi MA, Maleki R. Engineering the pH‐sensitivity of the graphene and carbon nanotube based nanomedicines in smart cancer therapy by grafting trimetyl chitosan. Pharm Res. 2020;37(8):160. PubMed PMC

Wang H, Mukherjee S, Yi J, Banerjee P, Chen Q, Zhou S. Biocompatible chitosan‐carbon dot hybrid Nanogels for NIR‐imaging‐guided synergistic Photothermal‐chemo therapy. ACS Appl Mater Interfaces. 2017;9(22):18639‐18649. doi:10.1021/acsami.7b06062 PubMed DOI

Wang C, Zhang Z, Chen B, Gu L, Li Y, Yu S. Design and evaluation of galactosylated chitosan/graphene oxide nanoparticles as a drug delivery system. J Colloid Interface Sci. 2018;516:332‐341. doi:10.1016/j.jcis.2018.01.073 PubMed DOI

Arjmand O, Ardjmand M, Amani AM, Eikani MH. Development of a novel system based on green magnetic/graphene oxide/chitosan/allium sativum/quercus/nanocomposite for targeted release of doxorubicin anti‐cancer drug. Anticancer Agents Med Chem. 2020;20(9):1094‐1104. PubMed

Zaharie‐Butucel D, Potara M, Suarasan S, Licarete E, Astilean S. Efficient combined near‐infrared‐triggered therapy: phototherapy over chemotherapy in chitosan‐reduced graphene oxide‐IR820 dye‐doxorubicin nanoplatforms. J Colloid Interface Sci. 2019;552:218‐229. doi:10.1016/j.jcis.2019.05.050 PubMed DOI

Bae Y, Joo C, Park KH, Kang SW, Huh KM, Choi JS. Preparation and characterization of 3D human glioblastoma spheroids using an N‐octanoyl glycol chitosan hydrogel. Int J Biol Macromol. 2021;185:87‐97. doi:10.1016/j.ijbiomac.2021.06.083 PubMed DOI

Sun R, Fang L, Lv X, et al. In vitro and in vivo evaluation of self‐assembled chitosan nanoparticles selectively overcoming hepatocellular carcinoma via asialoglycoprotein receptor. Drug Deliv. 2021;28(1):2071‐2084. doi:10.1080/10717544.2021.1983077 PubMed DOI PMC

Xie P, du P, Li J, Liu P. Stimuli‐responsive hybrid cluster bombs of PEGylated chitosan encapsulated DOX‐loaded superparamagnetic nanoparticles enabling tumor‐specific disassembly for on‐demand drug delivery and enhanced MR imaging. Carbohydr Polym. 2019;205:377‐384. doi:10.1016/j.carbpol.2018.10.076 PubMed DOI

Zhao X, Wei Z, Zhao Z, et al. Design and development of graphene oxide nanoparticle/chitosan hybrids showing pH‐sensitive surface charge‐reversible ability for efficient intracellular doxorubicin delivery. ACS Appl Mater Interfaces. 2018;10(7):6608‐6617. doi:10.1021/acsami.7b16910 PubMed DOI

Karnati KR, Wang Y. Understanding the co‐loading and releasing of doxorubicin and paclitaxel using chitosan functionalized single‐walled carbon nanotubes by molecular dynamics simulations. Phys Chem Chem Phys. 2018;20(14):9389‐9400. doi:10.1039/C8CP00124C PubMed DOI PMC

Kurmi BD, Paliwal R, Paliwal SR. Dual cancer targeting using estrogen functionalized chitosan nanoparticles loaded with doxorubicin‐estrone conjugate: a quality by design approach. Int J Biol Macromol. 2020;164:2881‐2894. doi:10.1016/j.ijbiomac.2020.08.172 PubMed DOI

Mohammadi Z, Samadi FY, Rahmani S, Mohammadi Z. Chitosan‐Raloxifene nanoparticle containing doxorubicin as a new double‐effect targeting vehicle for breast cancer therapy. Daru. 2020;28(2):433‐442. doi:10.1007/s40199-020-00338-9 PubMed DOI PMC

Pornpitchanarong C, Rojanarata T, Opanasopit P, Ngawhirunpat T, Patrojanasophon P. Catechol‐modified chitosan/hyaluronic acid nanoparticles as a new avenue for local delivery of doxorubicin to oral cancer cells. Colloids Surf B Biointerfaces. 2020;196:111279. doi:10.1016/j.colsurfb.2020.111279 PubMed DOI

Nouri A, Faraji Dizaji B, Kianinejad N, et al. Simultaneous linear release of folic acid and doxorubicin from ethyl cellulose/chitosan/g‐C(3) N(4) /MoS(2) core‐shell nanofibers and its anticancer properties. J Biomed Mater Res A. 2021;109(6):903‐914. doi:10.1002/jbm.a.37081 PubMed DOI

Khatami F, Matin MM, Danesh NM, Bahrami AR, Abnous K, Taghdisi SM. Targeted delivery system using silica nanoparticles coated with chitosan and AS1411 for combination therapy of doxorubicin and antimiR‐21. Carbohydr Polym. 2021;266:118111. doi:10.1016/j.carbpol.2021.118111 PubMed DOI

Helmi O, Elshishiny F, Mamdouh W. Targeted doxorubicin delivery and release within breast cancer environment using PEGylated chitosan nanoparticles labeled with monoclonal antibodies. Int J Biol Macromol. 2021;184:325‐338. doi:10.1016/j.ijbiomac.2021.06.014 PubMed DOI

Abasalta M, Asefnejad A, Khorasani MT, Saadatabadi AR. Fabrication of carboxymethyl chitosan/poly(ε‐caprolactone)/doxorubicin/nickel ferrite core‐shell fibers for controlled release of doxorubicin against breast cancer. Carbohydr Polym. 2021;257:117631. doi:10.1016/j.carbpol.2021.117631 PubMed DOI

Niu S, Zhang X, Williams GR, et al. Hollow mesoporous silica nanoparticles gated by chitosan‐copper sulfide composites as theranostic agents for the treatment of breast cancer. Acta Biomater. 2021;126:408‐420. doi:10.1016/j.actbio.2021.03.024 PubMed DOI

Ramnandan D, Mokhosi S, Daniels A, Singh M, et al. Chitosan, polyethylene glycol and polyvinyl alcohol modified MgFe(2)O(4) ferrite magnetic nanoparticles in doxorubicin delivery: a comparative study in vitro. Molecules. 2021;26(13):877. doi:10.3390/molecules26133893 PubMed DOI PMC

Pandit AH, Nisar S, Imtiyaz K, et al. Injectable, self‐healing, and biocompatible N,O‐carboxymethyl chitosan/multialdehyde guar gum hydrogels for sustained anticancer drug delivery. Biomacromolecules. 2021;22(9):3731‐3745. doi:10.1021/acs.biomac.1c00537 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...