Access to Spirooxindole-Fused Cyclopentanes via a Stereoselective Organocascade Reaction Using Bifunctional Catalysis

. 2023 Jun 16 ; 88 (12) : 7724-7735. [epub] 20230127

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36705518

The present study reports an asymmetric organocascade reaction of oxindole-derived alkenes with 3-bromo-1-nitropropane efficiently catalyzed by the bifunctional catalyst. Spirooxindole-fused cyclopentanes were produced in moderate-to-good isolated yields (15-69%) with excellent stereochemical outcomes. The synthetic utility of the protocol was exemplified on a set of additional transformations of the corresponding spirooxindole compounds.

Zobrazit více v PubMed

Wende R. C.; Schreiner P. R. Evolution of Asymmetric Organocatalysis: Multi- and Retrocatalysis. Green Chem. 2012, 14, 1821–1849. 10.1039/c2gc35160a. DOI

Albrecht L.; Jiang H.; Jørgensen K. A. A Simple Recipe for Sophisticated Cocktails: Organocatalytic One-Pot Reactions-Concept, Nomenclature, and Future Perspectives. Angew. Chem. - Int. Ed. 2011, 50, 8492–8509. 10.1002/anie.201102522. PubMed DOI

Walji A. M.; MacMillan D. W. C. Strategies to Bypass the Taxol Problem. Enantioselective Cascade Catalysis, a New Approach for the Efficient Construction of Molecular Complexity. Synlett 2007, 18, 1477–1489. 10.1055/s-2007-980382. DOI

Fogg D. E.; Dos Santos E. N. Tandem Catalysis: A Taxonomy and Illustrative Review. Coord. Chem. Rev. 2004, 248, 2365–2379. 10.1016/j.ccr.2004.05.012. DOI

Denmark S. E.; Gomez L. Tandem Double Intramolecular [4 + 2]/[3 + 2] Cycloadditions of Nitroalkenes. Org. Lett. 2001, 3, 2907–2910. 10.1021/ol016385n. PubMed DOI

Mayer S. F.; Kroutil W.; Faber K. Enzyme-Initiated Domino (Cascade) Reactions. Chem. Soc. Rev. 2001, 30, 332–339. 10.1039/b105493g. DOI

Jen W. S.; Wiener J. J. M.; MacMillan D. W. C. New Strategies for Organic Catalysis: The First Enantioselective Organocatalytic 1,3-Dipolar Cycloaddition. J. Am. Chem. Soc. 2000, 122, 9874–9875. 10.1021/ja005517p. DOI

Tietze L. F. Domino Reactions in Organic Synthesis. Chem. Rev. 1996, 96, 115–136. 10.1021/cr950027e. PubMed DOI

Massolo E.; Benaglia M.. Stereoselective Organocascades: From Fundamentals to Recent Developments. In Organocatalysis: Stereoselective Reactions and Applications in Organic Synthesis; De Gruyter Open Ltd., 2021; pp 229–262.

Mukherjee S.; Biswas B. Organo-Cascade Catalysis: Application of Merged Iminium-Enamine Activation Technique and Related Cascade Reactivities. ChemistrySelect 2020, 5, 10704–10726. 10.1002/slct.202003070. DOI

Tian L.; Luo Y. C.; Hu X. Q.; Xu P. F. Recent Developments in the Synthesis of Chiral Compounds with Quaternary Centers by Organocatalytic Cascade Reactions. Asian J. Org. Chem. 2016, 5, 580–607. 10.1002/ajoc.201500486. DOI

Wang Y.; Lu H.; Xu P. F. Asymmetric Catalytic Cascade Reactions for Constructing Diverse Scaffolds and Complex Molecules. Acc. Chem. Res. 2015, 48, 1832–1844. 10.1021/acs.accounts.5b00217. PubMed DOI

Volla C. M. R.; Atodiresei I.; Rueping M. Catalytic C-C Bond-Forming Multi-Component Cascade or Domino Reactions: Pushing the Boundaries of Complexity in Asymmetric Organocatalysis. Chem. Rev. 2014, 114, 2390–2431. 10.1021/cr400215u. PubMed DOI

Pellissier H. Recent Developments in Asymmetric Organocatalytic Domino Reactions. Adv. Synth. Catal. 2012, 354, 237–294. 10.1002/adsc.201100714. DOI

Grondal C.; Jeanty M.; Enders D. Organocatalytic Cascade Reactions as a New Tool in Total Synthesis. Nat. Chem. 2010, 2, 167–178. 10.1038/nchem.539. PubMed DOI

Wasilke J. C.; Obrey S. J.; Baker R. T.; Bazan G. C. Concurrent Tandem Catalysis. Chem. Rev. 2005, 105, 1001–1020. 10.1021/cr020018n. PubMed DOI

Hayashi Y. Pot Economy and One-Pot Synthesis. Chem. Sci. 2016, 7, 866–880. 10.1039/C5SC02913A. PubMed DOI PMC

Newhouse T.; Baran P. S.; Hoffmann R. W. The Economies of Synthesis. Chem. Soc. Rev. 2009, 38, 3010–3021. 10.1039/b821200g. PubMed DOI PMC

Wender P. A.; Verma V. A.; Paxton T. J.; Pillow T. H. Function-Oriented Synthesis, Step Economy, and Drug Design. Acc. Chem. Res. 2008, 41, 40–49. 10.1021/ar700155p. PubMed DOI

Trost B. M. Atom Economy—A Challenge for Organic Synthesis: Homogeneous Catalysis Leads the Way. Angew. Chem. - Int. Ed. 1995, 34, 259–281. 10.1002/anie.199502591. DOI

Ding A.; Meazza M.; Guo H.; Yang J. W.; Rios R. New Development in the Enantioselective Synthesis of Spiro Compounds. Chem. Soc. Rev. 2018, 47, 5946–5996. 10.1039/C6CS00825A. PubMed DOI

Xu P.-W.; Cui X.-Y.; Yu J.-S.; Zhou J.. Spirooxindoles. In Spiro Compounds; John Wiley & Sons, Ltd., 2022; pp 103–160.

Faisca Phillips A. M. M. M.Asymmetric Organocatalytic Cascade Reactions for the Synthesis of Nitrogen Heterocycles. In More Synthetic Approaches to Nonaromatic Nitrogen Heterocycles; John Wiley & Sons, Ltd., 2022; pp 101–161.

Boddy A.; Bull J. A. Stereoselective Synthesis and Applications of Spirocyclic Oxindoles. Org. Chem. Front. 2021, 8, 1026–1084. 10.1039/D0QO01085E. DOI

Sansinenea E.; Martínez E. F.; Ortiz A. Organocatalytic Synthesis of Chiral Spirooxindoles with Quaternary Stereogenic Centers. Eur. J. Org. Chem. 2020, 2020, 5101–5118. 10.1002/ejoc.202000470. DOI

Gasperi T.; Miceli M.; Campagne J. M.; De Figueiredo R. M. Non-Covalent Organocatalyzed Domino Reactions Involving Oxindoles: Recent Advances. Molecules 2017, 22, 1636.10.3390/molecules22101636. PubMed DOI PMC

Singh G. S.; Desta Z. Y. Isatins as Privileged Molecules in Design and Synthesis of Spiro-Fused Cyclic Frameworks. Chem. Rev. 2012, 112, 6104–6155. 10.1021/cr300135y. PubMed DOI

Trost B. M.; Brennan M. K. Asymmetric Syntheses of Oxindole and Indole Spirocyclic Alkaloid Natural Products. Synthesis 2009, 18, 3003–3025. 10.1055/s-0029-1216975. DOI

Yu B.; Yu D. Q.; Liu H. M. Spirooxindoles: Promising Scaffolds for Anticancer Agents. Eur. J. Med. Chem. 2015, 97, 673–698. 10.1016/j.ejmech.2014.06.056. PubMed DOI

Rottmann M.; McNamara C.; Yeung B. K. S.; Lee M. C. S.; Zou B.; Russell B.; Seitz P.; Plouffe D. M.; Dharia N. V.; Tan J.; Cohen S. B.; Spencer K. R.; González-Páez G. E.; Lakshminarayana S. B.; Goh A.; Suwanarusk R.; Jegla T.; Schmitt E. K.; Beck H. P.; Brun R.; Nosten F.; Renia L.; Dartois V.; Keller T. H.; Fidock D. A.; Winzeler E. A.; Diagana T. T. Spiroindolones, a Potent Compound Class for the Treatment of Malaria. Science 2010, 329, 1175–1180. 10.1126/science.1193225. PubMed DOI PMC

Galliford C. V.; Scheidt K. A. Pyrrolidinyl-Spirooxindole Natural Products as Inspirations for the Development of Potential Therapeutic Agents. Angew. Chem. - Int. Ed. 2007, 46, 8748–8758. 10.1002/anie.200701342. PubMed DOI

Mei G. J.; Shi F. Catalytic Asymmetric Synthesis of Spirooxindoles: Recent Developments. Chem. Commun. 2018, 54, 6607–6621. 10.1039/C8CC02364F. PubMed DOI

Kang T.; Zhao P.; Yang J.; Lin L.; Feng X.; Liu X. Asymmetric Catalytic Double Michael Additions for the Synthesis of Spirooxindoles. Chem.—Eur. J. 2018, 24, 3703–3706. 10.1002/chem.201800043. PubMed DOI

Chaudhari P. D.; Hong B. C.; Lee G. H. Organocatalytic Enantioselective Michael-Michael-Michael-Aldol Condensation Reactions: Control of Six Stereocenters in a Quadruple-Cascade Asymmetric Synthesis of Polysubstituted Spirocyclic Oxindoles. Org. Lett. 2017, 19, 6112–6115. 10.1021/acs.orglett.7b02962. PubMed DOI

Ding L. Z.; Zhong T. S.; Wu H.; Wang Y. M. Highly Enantioselective Construction of Spirocyclopentaneoxindoles Containing Four Consecutive Stereocenters through an Organocatalytic Iminium-Enamine Cascade Reaction. Eur. J. Org. Chem. 2014, 24, 5139–5143. 10.1002/ejoc.201402687. DOI

Sun W.; Hong L.; Zhu G.; Wang Z.; Wei X.; Ni J.; Wang R. An Organocatalytic Michael-Michael Cascade for the Enantioselective Construction of Spirocyclopentane Bioxindoles: Control of Four Contiguous Stereocenters. Org. Lett. 2014, 16, 544–547. 10.1021/ol4034226. PubMed DOI

Leng H.; Zhao Q.; Mao Q.; Liu S.; Luo M.; Qin R.; Huang W.; Zhan G. NHC-Catalysed Retro-Aldol/Aldol Cascade Reaction Enabling Solvent-Controlled Stereodivergent Synthesis of Spirooxindoles. Chin. Chem. Lett. 2021, 32, 2567–2571. 10.1016/j.cclet.2021.03.009. DOI

Albertshofer K.; Anderson K. E.; Barbas C. F. Assembly of Spirooxindole Derivatives via Organocatalytic Iminium-Enamine Cascade Reactions. Org. Lett. 2012, 14, 5968–5971. 10.1021/ol302876c. PubMed DOI

Tan B.; Candeias N. R.; Barbas C. F. Construction of Bispirooxindoles Containing Three Quaternary Stereocentres in a Cascade Using a Single Multifunctional Organocatalyst. Nat. Chem. 2011, 3, 473–477. 10.1038/nchem.1039. PubMed DOI

Zhao B. L.; Lin Y.; Du D. M. Enantioselective Construction of Bispirooxindoles via Squaramide-Catalysed Cascade Michael/Cyclization Reaction. Adv. Synth. Catal. 2019, 361, 3387–3393. 10.1002/adsc.201900358. DOI

Ming S.; Zhao B. L.; Du D. M. Chiral Squaramide-Catalysed Enantioselective Michael/Cyclization Cascade Reaction of 3-Hydroxyoxindoles with α,β-Unsaturated: N-Acylated Succinimides. Org. Biomol. Chem. 2017, 15, 6205–6213. 10.1039/C7OB01307H. PubMed DOI

Cui B.; Chen Y.; Shan J.; Qin L.; Yuan C.; Wang Y.; Han W.; Wan N.; Chen Y. An Enantioselective Synthesis of Spiro-Oxindole-Based 3,4-Dihydropyrroles: Via a Michael/Cyclization Cascade of 3-Aminooxindoles with 2-Enoylpyridines. Org. Biomol. Chem. 2017, 15, 8518–8522. 10.1039/C7OB02138K. PubMed DOI

You Y.; Cui B. D.; Zhou M. Q.; Zuo J.; Zhao J. Q.; Xu X. Y.; Zhang X. M.; Yuan W. C. Organocatalytic Asymmetric Michael/Friedel-Crafts Cascade Reaction of 3-Pyrrolyl-Oxindoles and α,β-Unsaturated Aldehydes for the Construction of Chiral Spiro[5,6-Dihydropyrido[1,2- a]Pyrrole-3,3′-Oxindoles]. J. Org. Chem. 2015, 80, 5951–5957. 10.1021/acs.joc.5b00597. PubMed DOI

Chen L.; Wu Z. J.; Zhang M. L.; Yue D. F.; Zhang X. M.; Xu X. Y.; Yuan W. C. Organocatalytic Asymmetric Michael/Cyclization Cascade Reactions of 3-Hydroxyoxindoles/3-Aminooxindoles with α,β-Unsaturated Acyl Phosphonates for the Construction of Spirocyclic Oxindole-γ-Lactones/Lactams. J. Org. Chem. 2015, 80, 12668–12675. 10.1021/acs.joc.5b02253. PubMed DOI

Zhao B. L.; Du D. M. Organocatalytic Cascade Michael/Michael Reaction for the Asymmetric Synthesis of Spirooxindoles Containing Five Contiguous Stereocenters. Chem. Commun. 2016, 52, 6162–6165. 10.1039/C6CC00705H. PubMed DOI

Halskov K. S.; Kniep F.; Lauridsen V. H.; Iversen E. H.; Donslund B. S.; Jørgensen K. A. Organocatalytic Enamine-Activation of Cyclopropanes for Highly Stereoselective Formation of Cyclobutanes. J. Am. Chem. Soc. 2015, 137, 1685–1691. 10.1021/ja512573q. PubMed DOI

Monari M.; Montroni E.; Nitti A.; Lombardo M.; Trombini C.; Quintavalla A. Highly Stereoselective [4 + 2] and [3 + 2] Spiroannulations of 2-(2-Oxoindolin-3-Ylidene)Acetic Esters Catalyzed by Bifunctional Thioureas. Chem. - A Eur. J. 2015, 21, 11038–11049. 10.1002/chem.201500676. PubMed DOI

Qi L. W.; Yang Y.; Gui Y. Y.; Zhang Y.; Chen F.; Tian F.; Peng L.; Wang L. X. Asymmetric Synthesis of 3,3-Spirooxindoles Fused with Cyclobutanes through Organocatalytic Formal [2 + 2] Cycloadditions under H-Bond-Directing Dienamine Activation. Org. Lett. 2014, 16, 6436–6439. 10.1021/ol503266q. PubMed DOI

Chen P. Q.; Xiao Y. C.; Yue C. Z.; Chen Y. C. Trienamine Catalysis with Linear Deconjugated 3,5-Dienones. Org. Chem. Front. 2014, 1, 490–493. 10.1039/C4QO00079J. DOI

Mei G. J.; Li D.; Zhou G. X.; Shi Q.; Cao Z.; Shi F. A Catalytic Asymmetric Construction of a Tetrahydroquinoline-Based Spirooxindole Framework: Via a Diastereo- and Enantioselective Decarboxylative [4 + 2] Cycloaddition. Chem. Commun. 2017, 53, 10030–10033. 10.1039/C7CC05595A. PubMed DOI

Zhu Q. N.; Zhang Y. C.; Xu M. M.; Sun X. X.; Yang X.; Shi F. Enantioselective Construction of Tetrahydroquinolin-5-One-Based Spirooxindole Scaffold via an Organocatalytic Asymmetric Multicomponent [3 + 3] Cyclization. J. Org. Chem. 2016, 81, 7898–7907. 10.1021/acs.joc.6b01598. PubMed DOI

Zhao K.; Zhi Y.; Shu T.; Valkonen A.; Rissanen K.; Enders D. Organocatalytic Domino Oxa-Michael/1,6-Addition Reactions: Asymmetric Synthesis of Chromans Bearing Oxindole Scaffolds. Angew. Chem. - Int. Ed. 2016, 55, 12104–12108. 10.1002/anie.201606947. PubMed DOI

Kumarswamyreddy N.; Kesavan V. Enantioselective Synthesis of Dihydrospiro[Indoline-3,4′-Pyrano[2,3-c]Pyrazole] Derivatives via Michael/Hemiketalization Reaction. Org. Lett. 2016, 18, 1354–1357. 10.1021/acs.orglett.6b00287. PubMed DOI

Sun Q. S.; Zhu H.; Chen Y. J.; Yang X. Di; Sun X. W.; Lin G. Q. Squaramide-Catalyzed Synthesis of Enantioenriched Spirocyclic Oxindoles via Ketimine Intermediates with Multiple Active Sites. Angew. Chem. - Int. Ed. 2015, 54, 13253–13257. 10.1002/anie.201506206. PubMed DOI

Noole A.; Ilmarinen K.; Järving I.; Lopp M.; Kanger T. Asymmetric Synthesis of Congested Spiro-Cyclopentaneoxindoles via an Organocatalytic Cascade Reaction. J. Org. Chem. 2013, 78, 8117–8122. 10.1021/jo4008223. PubMed DOI

Bencivenni G.; Wu L. Y.; Mazzanti A.; Giannichi B.; Pesciaioli F.; Song M. P.; Bartoli G.; Melchiorre P. Targeting Structural and Stereochemical Complexity by Organocascade Catalysis: Construction of Spirocyclic Oxindoles Having Multiple Stereocenters. Angew. Chem. - Int. Ed. 2009, 48, 7200–7203. 10.1002/anie.200903192. PubMed DOI

Sun W.; Zhu G.; Wu C.; Hong L.; Wang R. An Organocatalytic Cascade Strategy for the Enantioselective Construction of Spirocyclopentane Bioxindoles Containing Three Contiguous Stereocenters and Two Spiro Quaternary Centers. Chem. - A Eur. J. 2012, 18, 6737–6741. 10.1002/chem.201200478. PubMed DOI

Dočekal V.; Vopálenská A.; Merka P.; Konečná K.; Jand’ourek O.; Pour M.; Císařová I.; Veselý J. Enantioselective Construction of Spirooxindole-Fused Cyclopentanes. J. Org. Chem. 2021, 86, 12623–12643. 10.1021/acs.joc.1c01116. PubMed DOI

Urban M.; Nigríni M.; Císařová I.; Veselý J. Enantioselective Construction of Chiral Bispiro[Oxindole-Pyrrolidine-Pyrazolone] Derivatives via Sequential and One-Pot Mannich/Hydroamination Reaction. J. Org. Chem. 2021, 86, 18139–18155. 10.1021/acs.joc.1c02428. PubMed DOI

Formánek B.; Tauchman J.; Císařová I.; Veselý J. Access to Spirocyclic Benzothiophenones with Multiple Stereocenters via an Organocatalytic Cascade Reaction. J. Org. Chem. 2020, 85, 8510–8521. 10.1021/acs.joc.0c00882. PubMed DOI

Kamlar M.; Franc M.; Císařová I.; Gyepes R.; Veselý J. Formal [3 + 2] Cycloaddition of Vinylcyclopropane Azlactones to Enals Using Synergistic Catalysis. Chem. Commun. 2019, 55, 3829–3832. 10.1039/C8CC06500D. PubMed DOI

Okino T.; Hoashi Y.; Furukawa T.; Xu X.; Takemoto Y. Enantio- and Diastereoselective Michael Reaction of 1,3-Dicarbonyl Compounds to Nitroolefins Catalyzed by a Bifunctional Thiourea. J. Am. Chem. Soc. 2005, 127, 119–125. 10.1021/ja044370p. PubMed DOI

Zhao B. L.; Du D. M. Chiral Squaramide-Catalyzed Michael/Alkylation Cascade Reaction for the Asymmetric Synthesis of Nitro-Spirocyclopropanes. Eur. J. Org. Chem. 2015, 24, 5350–5359. 10.1002/ejoc.201500533. DOI

Pesciaioli F.; Righi P.; Mazzanti A.; Bartoli G.; Bencivenni G. Organocatalytic Michael-Alkylation Cascade: The Enantioselective Nitrocyclopropanation of Oxindoles. Chem. - A Eur. J. 2011, 17, 2842–2845. 10.1002/chem.201003423. PubMed DOI

Baeza A.; Nájera C. Recent Advances in the Direct Nucleophilic Substitution of Allylic Alcohols through SN1-Type Reactions. Synthesis 2013, 46, 25–34. 10.1055/s-0033-1340316. DOI

Lumbroso A.; Cooke M. L.; Breit B. Catalytic Asymmetric Synthesis of Allylic Alcohols and Derivatives and Their Applications in Organic Synthesis. Angew. Chem. - Int. Ed. 2013, 52, 1890–1932. 10.1002/anie.201204579. PubMed DOI

Fukata Y.; Okamura T.; Asano K.; Matsubara S. Asymmetric Isomerization of ω-Hydroxy-α,β-Unsaturated Thioesters into β-Mercaptolactones by a Bifunctional Aminothiourea Catalyst. Org. Lett. 2014, 16, 2184–2187. 10.1021/ol500637x. PubMed DOI

Malerich J. P.; Hagihara K.; Rawal V. H. Chiral Squaramide Derivatives are Excellent Hydrogen Bond Donor Catalysts. J. Am. Chem. Soc. 2008, 130, 14416–14417. 10.1021/ja805693p. PubMed DOI PMC

Han X.; Zhong F.; Lu Y. Highly Enantioselective Amination Reactions of Fluorinated Keto Esters Catalyzed by Novel Chiral Guanidines Derived from Cinchona Alkaloids. Adv. Synth. Catal. 2010, 352, 2778–2782. 10.1002/adsc.201000562. DOI

Zhang L.-L.; Zhang J.-W.; Xiang S.-H.; Guo Z.; Tan B. Remote Control of Axial Chirality: Synthesis of Spirooxindole–Urazoles via Desymmetrization of ATAD. Org. Lett. 2018, 20, 6022–6026. 10.1021/acs.orglett.8b02361. PubMed DOI

Halskov K. S.; Johansen T. K.; Davis R. L.; Steurer M.; Jensen F.; Jørgensen K. A. Cross-trienamines in Asymmetric Organocatalysis. J. Am. Chem. Soc. 2012, 134, 12943–12946. 10.1021/ja3068269. PubMed DOI PMC

Shelke A. M.; Suryavanshi G. An efficient one pot regioselective synthesis of a 3,3′-spiro-phosphonylpyrazole-oxindole framework via base mediated [1,3]-dipolar cycloaddition reaction of the Bestmann–Ohira reagent with methyleneindolinones. Org. Biomol. Chem. 2015, 13, 8669–8675. 10.1039/C5OB01020A. PubMed DOI

Zhang X.-C.; Cao S.-H.; Wei Y.; Shi M. Phosphine- and Nitrogen-Containing Lewis Base Catalyzed Highly Regioselective and Geometric Selective Cyclization of Isatin Derived Electron-Deficient Alkenes with Ethyl 2,3-Butadienoate. Org. Lett. 2011, 13, 1142–1145. 10.1021/ol1031798. PubMed DOI

Yuan X.; Zhang S.-J.; Du W.; Chen Y.-C. Asymmetric Diels–Alder Cycloadditions of Trifluoromethylated Dienophiles Under Trienamine Catalysis. Chem. Eur. J. 2016, 22, 11048–11052. 10.1002/chem.201600989. PubMed DOI

Laevens B. A.; Tao J.; Murphy G. K. Iodide-Mediated Synthesis of Spirooxindolo Dihydrofurans from Iodonium Ylides and 3-Alkylidene-2-oxindoles. J. Org. Chem. 2017, 82, 11903–11908. 10.1021/acs.joc.7b01639. PubMed DOI

Badiola E.; Fiser B.; Gómez-Bengoa E.; Mielgo A.; Olaizola I.; Urruzuno I.; García J. M.; Odriozola J. M.; Razkin J.; Oiarbide M.; Palomo C. Enantioselective Construction of Tetrasubstituted Stereogenic Carbons through Brønsted Base Catalyzed Michael Reactions: α′-Hydroxy Enones as Key Enoate Equivalent. J. Am. Chem. Soc. 2014, 136, 17869–17881. 10.1021/ja510603w. PubMed DOI

Hewawasam P.; Meanwell N. A. Tetrahedron Lett. 1994, 35, 7303–7306. 10.1016/0040-4039(94)85299-5. DOI

Šotolová M.; Kamlar M.; Remeš M.; Géant P.-Y.; Císařová I.; Štícha M.; Veselý J. Enantioselective Organocatalytic Synthesis of 1,2,3-Trisubstituted Cyclopentanes. Eur. J. Org. Chem. 2021, 2021, 5080–5089. 10.1002/ejoc.202100841. DOI

Öhrlein R.; Schwab W.; Ehrler R.; Jäger V. 3-Nitropropanal and 3-Nitropropanol: Preparation of the Parent Compounds and Derivatives. Synthesis 1986, 7, 535–538. 10.1055/s-1986-31694. DOI

Zhao M.; Lu W. Catalytic Bromination of Alkyl sp3 C–H Bonds with KBr/Air under Visible Light. Org. Lett. 2018, 20, 5264–5267. 10.1021/acs.orglett.8b02208. PubMed DOI

Noland W. E.; Hartman P. J. The Nitroethylation of Indole. A New Synthesis of Tryptamine. J. Am. Chem. Soc. 1954, 76, 3227–3228. 10.1021/ja01641a044. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...