Stratification and recovery time jointly shape ant functional reassembly in a neotropical forest
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- Keywords
- Chocó, Ecuador, chronosequence, community weighted means, environmental filters, forest regeneration, functional traits, phylogeny,
- MeSH
- Biodiversity MeSH
- Ecosystem * MeSH
- Ants * MeSH
- Phylogeny MeSH
- Forests MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Microhabitat differentiation of species communities such as vertical stratification in tropical forests contributes to species coexistence and thus biodiversity. However, little is known about how the extent of stratification changes during forest recovery and influences community reassembly. Environmental filtering determines community reassembly in time (succession) and in space (stratification), hence functional and phylogenetic composition of species communities are highly dynamic. It is poorly understood if and how these two concurrent filters-forest recovery and stratification-interact. In a tropical forest chronosequence in Ecuador spanning 34 years of natural recovery, we investigated the recovery trajectory of ant communities in three overlapping strata (ground, leaf litter, lower tree trunk) by quantifying 13 traits, as well as the functional and phylogenetic diversity of the ants. We expected that functional and phylogenetic diversity would increase with recovery time and that each ant community within each stratum would show a distinct functional reassembly. We predicted that traits related to ant diet would show divergent trajectories reflecting an increase in niche differentiation with recovery time. On the other hand, traits related to the abiotic environment were predicted to show convergent trajectories due to a more similar microclimate across strata with increasing recovery age. Most of the functional traits and the phylogenetic diversity of the ants were clearly stratified, confirming previous findings. However, neither functional nor phylogenetic diversity increased with recovery time. Community-weighted trait means had complex relationships to recovery time and the majority were shaped by a statistical interaction between recovery time and stratum, confirming our expectations. However, most trait trajectories converged among strata with increasing recovery time regardless of whether they were related to ant diet or environmental conditions. We confirm the hypothesized interaction among environmental filters during the functional reassembly in tropical forests. Communities in individual strata respond differently to recovery, and possible filter mechanisms likely arise from both abiotic (e.g. microclimate) and biotic (e.g. diet) conditions. Since vertical stratification is prevalent across animal and plant taxa, our results highlight the importance of stratum-specific analysis in dynamic ecosystems and may generalize beyond ants.
Departamento de Biología Escuela Politécnica Nacional Quito Ecuador
Ecological Networks Department of Biology Technical University of Darmstadt Darmstadt Germany
Escuela de Ciencias Biológicas Pontificia Universidad Católica del Ecuador Quito Ecuador
See more in PubMed
Adams, B. J., Schnitzer, S. A., & Yanoviak, S. P. (2019). Connectivity explains local ant community structure in a neotropical forest canopy: A large-scale experimental approach. Ecology, 100(6), e02673. https://doi.org/10.1002/ecy.2673
Agosti, D., Majer, J., Alonso, L. E., & Schultz, T. (2000). Ants: Standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press.
Anderson, M. J., & Walsh, D. C. (2013). PERMANOVA, ANOSIM, and the mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecological Monographs, 83(4), 557-574. https://doi.org/10.1890/12-2010.1
Basset, Y., Cizek, L., Cuénoud, P., Didham, R. K., Novotny, V., Ødegaard, F., Roslin, T., Tishechkin, A. K., Schmidl, J., Winchester, N. N., Roubik, D. W., Aberlenc, H.-P., Bail, J., Barrios, H., Bridle, J. R., Castaño-Meneses, G., Corbara, B., Curletti, G., Duarte da Rocha, W., … Leponce, M. (2015). Arthropod distribution in a tropical rainforest: Tackling a four dimensional puzzle. PLoS ONE, 10(12), e0144110. https://doi.org/10.1371/journal.pone.0144110
Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1-48. https://doi.org/10.18637/jss.v067.i01
Bihn, J. H., Gebauer, G., & Brandl, R. (2010). Loss of functional diversity of ant assemblages in secondary tropical forests. Ecology, 91(3), 782-792. https://doi.org/10.1890/08-1276.1
Blanchard, B. D., Nakamura, A., Cao, M., Chen, S. T., & Moreau, C. S. (2020). Spine and dine: A key defensive trait promotes ecological success in spiny ants. Ecology and Evolution, 10(12), 5852-5863. https://doi.org/10.1002/ece3.6322
Blüthgen, N., Gebauer, G., & Fiedler, K. (2003). Disentangling a rainforest food web using stable isotopes: Dietary diversity in a species-rich ant community. Oecologia, 137(3), 426-435. https://doi.org/10.1007/s00442-003-1347-8
Blüthgen, N., & Stork, N. E. (2007). Ant mosaics in a tropical rainforest in Australia and elsewhere: A critical review. Austral Ecology, 32(1), 93-104. https://doi.org/10.1111/j.1442-9993.2007.01744.x
Buxton, J. T., Robert, K. A., Marshall, A. T., Dutka, T. L., & Gibb, H. (2021). A cross-species test of the function of cuticular traits in ants (Hymenoptera: Formicidae). Myrmecological News, 31, 31-46. https://doi.org/10.25849/myrmecol.news_031:031
Cadotte, M. W., & Tucker, C. M. (2017). Should environmental filtering be abandoned? Trends in Ecology & Evolution, 32(6), 429-437. https://doi.org/10.1016/j.tree.2017.03.004
Chazdon, R. L., Peres, C. A., Dent, D., Sheil, D., Lugo, A. E., Lamb, D., Stork, N. E., & Miller, S. E. (2009). The potential for species conservation in tropical secondary forests. Conservation Biology, 23(6), 1406-1417. https://doi.org/10.1111/j.1523-1739.2009.01338.x
Chmel, K., Riegert, J., Paul, L., & Novotný, V. (2016). Vertical stratification of an avian community in new Guinean tropical rainforest. Population Ecology, 58(4), 535-547. https://doi.org/10.1007/s10144-016-0561-2
Clusella-Trullas, S., van Wyk, J. H., & Spotila, J. R. (2007). Thermal melanism in ectotherms. Journal of Thermal Biology, 32, 235-245. https://doi.org/10.1016/j.jtherbio.2007.01.013
Connor, E. F., & Simberloff, D. (1979). The assembly of species communities: Chance or competition? Ecology, 60(6), 1132-1140. https://doi.org/10.2307/1936961
Crouzeilles, R., Curran, M., Ferreira, M. S., Lindenmayer, D. B., Grelle, C. E. V., & Rey Benayas, J. M. (2016). A global meta-analysis on the ecological drivers of forest restoration success. Nature Communications, 7(1), 11666. https://doi.org/10.1038/ncomms11666
Davidson, D. W., Cook, S. C., & Snelling, R. R. (2004). Liquid-feeding performances of ants (Formicidae): Ecological and evolutionary implications. Oecologia, 139, 255-266. https://doi.org/10.1007/s00442-004-1508-4
Davies, R. W., Edwards, D. P., & Edwards, F. A. (2020). Secondary tropical forests recover dung beetle functional diversity and trait composition. Animal Conservation, 23(5), 617-627. https://doi.org/10.1111/acv.12584
de Almeida, D. R. A., Almeyda Zambrano, A. M., Broadbent, E. N., Wendt, A. L., Foster, P., Wilkinson, B. E., Salk, C., de Almeida Papa, D., Stark, S. C., Gorgens, E. B., Silva, C. A., Brancalion, P. H. S., Fagan, M., Meli, P., & Chazdon, R. (2020). Detecting successional changes in tropical forest structure using GatorEye drone-borne lidar. Biotropica, 52(6), 1155-1167.
de Bello, F., Carmona, C. P., Dias, A. T., Götzenberger, L., Moretti, M., & Berg, M. P. (2021). Handbook of trait-based ecology: From theory to R tools. Cambridge University Press.
de Bello, F., Carmona, C. P., Lepš, J., Szava-Kovats, R., & Pärtel, M. (2016). Functional diversity through the mean trait dissimilarity: Resolving shortcomings with existing paradigms and algorithms. Oecologia, 180(4), 933-940. https://doi.org/10.1007/s00442-016-3546-0
de Bello, F., Lavergne, S., Meynard, C. N., Lepš, J., & Thuiller, W. (2010). The partitioning of diversity: Showing Theseus a way out of the labyrinth. Journal of Vegetation Science, 21(5), 992-1000. https://doi.org/10.1111/j.1654-1103.2010.01195.x
de Frenne, P., Zellweger, F., Rodríguez-Sánchez, F., Scheffers, B. R., Hylander, K., Luoto, M., Vellend, M., Verheyen, K., & Lenoir, J. (2019). Global buffering of temperatures under forest canopies. Nature Ecology & Evolution, 3(5), 744-749. https://doi.org/10.1038/s41559-019-0842-1
del Pliego, P. G., Scheffers, B. R., Basham, E. W., Woodcock, P., Wheeler, C., Gilroy, J. J., Uribe, C. A. M., Haugaasen, T., Freckleton, R. P., & Edwards, D. P. (2016). Thermally buffered microhabitats recovery in tropical secondary forests following land abandonment. Biological Conservation, 201, 385-395. https://doi.org/10.1016/j.biocon.2016.07.038
Dent, D. H., & Wright, S. J. (2009). The future of tropical species in secondary forests: A quantitative review. Biological Conservation, 142(12), 2833-2843. https://doi.org/10.1016/j.biocon.2009.05.035
Diamond, J. M. (1975). Assembly of species communities. In J. M. Diamond & M. L. Cody (Eds.), Ecology and evolution of communities (pp. 342-344). Harvard University Press.
Economo, E. P., Narula, N., Friedman, N. R., Weiser, M. D., & Guénard, B. (2018). Macroecology and macroevolution of the latitudinal diversity gradient in ants. Nature Communications, 9(1), 1778. https://doi.org/10.1038/s41467-018-04218-4
Edwards, D. P., Massam, M. R., Haugaasen, T., & Gilroy, J. J. (2017). Tropical secondary forest regeneration conserves high levels of avian phylogenetic diversity. Biological Conservation, 209, 432-439. https://doi.org/10.1016/j.biocon.2017.03.006
Edwards, F. A., Edwards, D. P., Larsen, T. H., Hsu, W. W., Benedick, S., Chung, A., Vun Khen, C., Wilcove, D. S., & Hamer, K. C. (2014). Does logging and forest conversion to oil palm agriculture alter functional diversity in a biodiversity hotspot?: Functional diversity and land-use change in Borneo. Animal Conservation, 17(2), 163-173. https://doi.org/10.1111/acv.12074
Ellers, J., Berg, M. P., Dias, A. T. C., Fontana, S., Ooms, A., & Moretti, M. (2018). Diversity in form and function: Vertical distribution of soil fauna mediates multidimensional trait variation. Journal of Animal Ecology, 87(4), 933-944. https://doi.org/10.1111/1365-2656.12838
Estes, J. A., Terborgh, J., Brashares, J. S., Power, M. E., Berger, J., Bond, W. J., Carpenter, S. R., Essington, T. E., Holt, R. D., Jackson, J. B. C., Marquis, R. J., Oksanen, L., Oksanen, T., Paine, R. T., Pikitch, E. K., Ripple, W. J., Sandin, S. A., Scheffer, M., Schoener, T. W., … Wardle, D. A. (2011). Trophic downgrading of planet earth. Science, 333(6040), 301-306. https://doi.org/10.1126/science.1205106
Feener, D. H., Lighton, J. R. B., & Bartholomew, G. A. (1988). Curvilinear allometry, energetics and foraging ecology: A comparison of leaf-cutting ants and army ants. Functional Ecology, 2, 509-520. https://doi.org/10.2307/2389394
Fernández, F., Guerrero, R. J., & Delsinne, T. (2019). Hormigas de Colombia. Universidad Nacional de Colombia.
Floren, A., Wetzel, W., & Staab, M. (2014). The contribution of canopy species to overall ant diversity (Hymenoptera: Formicidae) in temperate and tropical ecosystems. Myrmecological News, 19, 65-74.
Fornoff, F., Staab, M., Zhu, C.-D., & Klein, A.-M. (2021). Multi-trophic communities re-establish with canopy cover and microclimate in a subtropical forest biodiversity experiment. Oecologia, 196(1), 289-301. https://doi.org/10.1007/s00442-021-04921-y
Fowler, H. G., Forti, L. C., Brandao, C. R. F., Delabie, J. H. C., & Vasoncelos, H. L. (1991). Ecologia nutricional de formigas. In A. R. Panizzi & J. R. P. Parra (Eds.), Ecologia nutricional de insetos (pp. 131-223). Manole.
Fraser, L. H., Harrower, W. L., Garris, H. W., Davidson, S., Hebert, P. D., Howie, R., Moody, A., Polster, D., Schmitz, O. J., Sinclair, A. R. E., Starzomski, B. M., Sullivan, T. P., Turkington, R., & Wilson, D. (2015). A call for applying trophic structure in ecological restoration. Restoration Ecology, 23(5), 503-507. https://doi.org/10.1111/rec.12225
Garcia, T. S., Paoletti, D. J., & Blaustein, A. R. (2009). Correlated trait responses to multiple selection pressures in larval amphibians reveal conflict avoidance strategies. Freshwater Biology, 54, 1066-1077. https://doi.org/10.1111/j.1365-2427.2008.02154.x
Gibb, H., & Cunningham, S. A. (2013). Restoration of trophic structure in an assemblage of omnivores, considering a revegetation chronosequence. Journal of Applied Ecology, 50(2), 449-458. https://doi.org/10.1111/1365-2664.12054
Gibb, H., & Parr, C. L. (2013). Does structural complexity determine the morphology of assemblages? An experimental test on three continents. PLoS ONE, 8(5), e64005. https://doi.org/10.1371/journal.pone.0064005
Gibb, H., Sanders, N. J., Dunn, R. R., Arnan, X., Vasconcelos, H. L., Donoso, D. A., Andersen, A. N., Silva, R. R., Bishop, T. R., & Gomez, C. (2018). Habitat disturbance selects against both small and large species across varying climates. Ecography, 41(7), 1184-1193. https://doi.org/10.1111/ecog.03244
Gibb, H., Stoklosa, J., Warton, D. I., Brown, A. M., Andrew, N. R., & Cunningham, S. A. (2015). Does morphology predict trophic position and habitat use of ant species and assemblages? Oecologia, 177(2), 519-531. https://doi.org/10.1007/s00442-014-3101-9
Giller, P. S. (1996). The diversity of soil communities, the ‘poor man's tropical rainforest’. Biodiversity and Conservation, 5(2), 135-168. https://doi.org/10.1007/BF00055827
Guariguata, M. R., & Ostertag, R. (2001). Neotropical secondary forest succession: Changes in structural and functional characteristics. Forest Ecology and Management, 148(1-3), 185-206. https://doi.org/10.1016/j.foreco.2020.118885
Guilherme, D. R., Souza, J. L. P., Franklin, E., Pequeno, P. A. C. L., das Chagas, A. C., & Baccaro, F. B. (2019). Can environmental complexity predict functional trait composition of ground-dwelling ant assemblages? A test across the Amazon Basin. Acta Oecologica, 99, 103434. https://doi.org/10.1016/j.actao.2019.05.004
Hoenle, P. O., Donoso, D. A., Argoti, A., Staab, M., von Beeren, C., & Blüthgen, N. (2022a). Rapid ant community reassembly in a neotropical forest: Recovery dynamics and land-use legacy. Ecological Applications, e2559. https://doi.org/10.1002/eap.2559
Hoenle, P. O., Donoso, D. A., Argoti, A., Staab, M., von Beeren, C., & Blüthgen, N. (2022b). Data from: Stratification and recovery time jointly shape ant functional re-assembly in a neotropical forest. Dryad Digital Repository, https://doi.org/10.5061/dryad.8cz8w9gs1
Hoenle, P. O., Staab, M., Donoso, D. A., Argoti, A., & Blüthgen, N. (2023). Data from: Stratification and recovery time jointly shape ant functional reassembly in a neotropical forest. Dryad Digital Repository, https://doi.org/10.5061/dryad.jsxksn0fc
Hubbell, S. P. (2011). The unified neutral theory of biodiversity and biogeography (MPB-32). Princeton University Press. https://doi.org/10.1515/9781400837526
Jucker, T., Hardwick, S. R., Both, S., Elias, D. M., Ewers, R. M., Milodowski, D. T., Swinfield, T., Swinfield, T., & Coomes, D. A. (2018). Canopy structure and topography jointly constrain the microclimate of human-modified tropical landscapes. Global Change Biology, 24(11), 5243-5258. https://doi.org/10.1111/gcb.14415
Jucker, T., Jackson, T. D., Zellweger, F., Swinfield, T., Gregory, N., Williamson, J., Slade, E., Phillips, J., Bittencourt, P., Blonder, B., Boyle, M., Ellwood, F., Hemprich-Bennett, D., Lewis, O., Matula, R., Senior, R., Shenkin, A., Svátek, M., & Coomes, D. A. (2020). A research agenda for microclimate ecology in human-modified tropical forests. Frontiers in Forests and Global Change, 2, 92. https://doi.org/10.3389/ffgc.2019.00092
Kaspari, M. (1993). Body size and microclimate use in neotropical granivorous ants. Oecologia, 96(4), 500-507. https://doi.org/10.1007/BF00320507
Kaspari, M., Clay, N. A., Lucas, J., Yanoviak, S. P., & Kay, A. (2015). Thermal adaptation generates a diversity of thermal limits in a rainforest ant community. Global Change Biology, 21(3), 1092-1102. https://doi.org/10.1111/gcb.12750
Kaspari, M., & Weiser, M. D. (1999). The size-grain hypothesis and interspecific scaling in ants. Functional Ecology, 13(4), 530-538.
Kaspari, M., & Yanoviak, S. P. (2001). Bait use in tropical litter and canopy ants-Evidence of differences in nutrient Limitation1. Biotropica, 33(1), 207-211.
Keddy, P. A. (1992). Assembly and response rules: Two goals for predictive community ecology. Journal of Vegetation Science, 3(2), 157-164. https://doi.org/10.2307/3235676
Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., Blomberg, S. P., & Webb, C. O. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26(11), 1463-1464. https://doi.org/10.1093/bioinformatics/btq166
Kent, R., Lindsell, J. A., Vaglio Laurin, G., Valentini, R., & Coomes, D. A. (2015). Airborne LiDAR detects selectively logged tropical forest even in an advanced stage of recovery. Remote Sensing, 7(7), 8348-8367.
Klimes, P., Idigel, C., Rimandai, M., Fayle, T. M., Janda, M., Weiblen, G. D., & Novotny, V. (2012). Why are there more arboreal ant species in primary than in secondary tropical forests? Journal of Animal Ecology, 81(5), 1103-1112.
Kraft, N. J. B., Adler, P. B., Godoy, O., James, E. C., Fuller, S., & Levine, J. M. (2015). Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology, 29(5), 592-599. https://doi.org/10.1111/1365-2435.12345
Kraft, N. J. B., Cornwell, W. K., Webb, C. O., & Ackerly, D. D. (2007). Trait evolution, community assembly, and the phylogenetic structure of ecological communities. The American Naturalist, 170(2), 271-283. https://doi.org/10.1086/519400
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1-26. http://doi.org/10.18637/jss.v082.i13
Lach, L., Parr, C., & Abbott, K. (2010). Ant ecology. Oxford University Press.
Laliberté, E., & Legendre, P. (2010). A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91(1), 299-305. https://doi.org/10.1890/08-2244.1
Laliberté, E., Legendre, P., & Shipley, B. (2014). FD: Measuring functional diversity from multiple traits, and other tools for functional ecology. R Package Version 1.0-12.
Laurans, M., Hérault, B., Vieilledent, G., & Vincent, G. (2014). Vertical stratification reduces competition for light in dense tropical forests. Forest Ecology and Management, 329, 79-88. https://doi.org/10.1016/j.foreco.2014.05.059
Law, S. J., Bishop, T. R., Eggleton, P., Griffiths, H., Ashton, L., & Parr, C. (2020). Darker ants dominate the canopy: Testing macroecological hypotheses for patterns in colour along a microclimatic gradient. Journal of Animal Ecology, 89(2), 347-359. https://doi.org/10.1111/1365-2656.13110
Lee, R. H., & Guénard, B. (2019). Choices of sampling method bias functional components estimation and ability to discriminate assembly mechanisms. Methods in Ecology and Evolution, 10(6), 867-878. https://doi.org/10.1111/2041-210X.13175
Lennox, G. D., Gardner, T. A., Thomson, J. R., Ferreira, J., Berenguer, E., Lees, A. C., Mac Nally, R., Aragão, L. E. O. C., Ferraz, S. F. B., Louzada, J., Moura, N. G., Oliveira, V. H. F., Pardini, R., Solar, R. R. C., Vaz-de Mello, F. Z., Vieira, I. C. G., & Barlow, J. (2018). Second rate or a second chance? Assessing biomass and biodiversity recovery in regenerating Amazonian forests. Global Change Biology, 24(12), 5680-5694. https://doi.org/10.1111/gcb.14443
Lenth, R. V. (2021). Emmeans: Estimated marginal means, aka least-squares means. R Package Version 1.5.4. https://CRAN.R-project.org/package=emmeans
Liu, C., Guénard, B., Blanchard, B., Peng, Y.-Q., & Economo, E. P. (2016). Reorganization of taxonomic, functional, and phylogenetic ant biodiversity after conversion to rubber plantation. Ecological Monographs, 86(2), 215-227. https://doi.org/10.1890/15-1464.1
Longino, J. (2010). Ants of Costa Rica. https://ants.biology.utah.edu/AntsofCostaRica.html
Luck, G. W., Lavorel, S., McIntyre, S., & Lumb, K. (2012). Improving the application of vertebrate trait-based frameworks to the study of ecosystem services. Journal of Animal Ecology, 81(5), 1065-1076. https://doi.org/10.1111/j.1365-2656.2012.01974.x
Lucky, A., Trautwein, M. D., Guenard, B. S., Weiser, M. D., & Dunn, R. R. (2013). Tracing the rise of ants-out of the ground. PLoS ONE, 8(12), e84012.
MacArthur, R., & Levins, R. (1967). The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist, 101(921), 377-385. https://doi.org/10.1086/282505
Meli, P., Holl, K. D., Rey Benayas, J. M., Jones, H. P., Jones, P. C., Montoya, D., & Moreno Mateos, D. (2017). A global review of past land use, climate, and active vs. passive restoration effects on forest recovery. PLoS ONE, 12(2), e0171368. https://doi.org/10.1371/journal.pone.0171368
Mena, S., Kozak, K. M., Cárdenas, R. E., & Checa, M. F. (2020). Forest stratification shapes allometry and flight morphology of tropical butterflies. Proceedings of the Royal Society B, 287(1937), 20201071. https://doi.org/10.1098/rspb.2020.1071
Mo, X.-X., Shi, L.-L., Zhang, Y.-J., Zhu, H., & Slik, J. F. (2013). Change in phylogenetic community structure during succession of traditionally managed tropical rainforest in Southwest China. PLoS ONE, 8(7), e71464. https://doi.org/10.1371/journal.pone.0071464
Mottl, O., Yombai, J., Novotný, V., Leponce, M., Weiblen, G. D., & Klimeš, P. (2021). Inter-specific aggression generates ant mosaics in canopies of primary tropical rainforest. Oikos, 130(7), 1087-1099. https://doi.org/10.1111/oik.08069
Neves, F. S., Antoniazzi, R., Camarota, F., Pacelhe, F. T., & Powell, S. (2021). Spatiotemporal dynamics of the ant community in a dry forest differ by vertical strata but not by successional stage. Biotropica, 53(2), 372-383. https://doi.org/10.1111/btp.12918
Nooten, S. S., Chan, K. H., Schultheiss, P., Bogar, T. A., & Guénard, B. (2022). Ant body size mediates functional performance and species interactions in carrion decomposer communities. Functional Ecology, 36, 1279-1291. https://doi.org/10.1111/1365-2435.14039
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., O'hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. (2010). Vegan: Community ecology package.
Parr, C. L., Dunn, R. R., Sanders, N. J., Weiser, M. D., Photakis, M., Bishop, T. R., Fitzpatrick, M. C., Arnan, X., Baccaro, F., & Brandão, C. R. (2017). GlobalAnts: A new database on the geography of ant traits (Hymenoptera: Formicidae). Insect Conservation and Diversity, 10(1), 5-20. https://doi.org/10.1111/icad.12211
Peeters, C., Keller, R. A., Khalife, A., Fischer, G., Katzke, J., Blanke, A., & Economo, E. P. (2020). The loss of flight in ant workers enabled an evolutionary redesign of the thorax for ground labour. Frontiers in Zoology, 17(1), 1-13. https://doi.org/10.1186/s12983-020-00375-9
Plowman, N. S., Mottl, O., Novotny, V., Idigel, C., Philip, F. J., Rimandai, M., & Klimes, P. (2020). Nest microhabitats and tree size mediate shifts in ant community structure across elevation in tropical rainforest canopies. Ecography, 43(3), 431-442. https://doi.org/10.1111/ecog.04730
Qian, H., & Jin, Y. (2021). Are phylogenies resolved at the genus level appropriate for studies on phylogenetic structure of species assemblages? Plant Diversity, 43(4), 255-263. https://doi.org/10.1016/j.pld.2020.11.005
R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing. www.R-project.org
Rocha-Ortega, M., Arnan, X., Ribeiro-Neto, J. D., Leal, I. R., Favila, M. E., & Martínez-Ramos, M. (2018). Taxonomic and functional ant diversity along a secondary successional gradient in a tropical forest. Biotropica, 50(2), 290-301. https://doi.org/10.1111/btp.12511
Rühr, P. T., Edel, C., Frenzel, M., & Blanke, A. (2022). A bite force database of 654 insect species. bioRxiv. https://doi.org/10.1101/2022.01.21.477193
Salazar, F., Reyes-Bueno, F., Sanmartin, D., & Donoso, D. A. (2015). Mapping continental Ecuadorian ant species. Sociobiology, 62(2), 132-162.
Santoandré, S., Filloy, J., Zurita, G. A., & Bellocq, M. I. (2019). Ant taxonomic and functional diversity show differential response to plantation age in two contrasting biomes. Forest Ecology and Management, 437, 304-313. https://doi.org/10.1016/j.foreco.2019.01.021
Scheffers, B. R., Phillips, B. L., Laurance, W. F., Sodhi, N. S., Diesmos, A., & Williams, S. E. (2013). Increasing arboreality with altitude: A novel biogeographic dimension. Proceedings of the Royal Society B: Biological Sciences, 280(1770), 20131581. https://doi.org/10.1098/rspb.2013.1581
Schmidt, F. A., Ribas, C. R., & Schoereder, J. H. (2013). How predictable is the response of ant assemblages to natural forest recovery? Implications for their use as bioindicators. Ecological Indicators, 24, 158-166. https://doi.org/10.1016/j.ecolind.2012.05.031
Schofield, S. F., Bishop, T. R., & Parr, C. L. (2016). Morphological characteristics of ant assemblages (Hymenoptera: Formicidae) differ among contrasting biomes. Myrmecological News, 23, 129-137. https://doi.org/10.25849/myrmecol.news_023:129
Schultz, N. M., Lawrence, P. J., & Lee, X. (2017). Global satellite data highlights the diurnal asymmetry of the surface temperature response to deforestation. Journal of Geophysical Research: Biogeosciences, 122(4), 903-917. https://doi.org/10.1002/2016JG003653
Schulze, C. H., Linsenmair, K. E., & Fiedler, K. (2001). Understorey versus canopy: Patterns of vertical stratification and diversity among lepidoptera in a Bornean rain forest. In K. E. Linsenmair, A. J. Davis, B. Fiala, & M. R. Speight (Eds.), Tropical forest canopies: Ecology and management (Vol. 69, pp. 133-152). Springer Netherlands. https://doi.org/10.1007/978-94-017-3606-0_11
Silva, R. R., & Brandão, C. R. F. (2010). Morphological patterns and community organization in leaf-litter ant assemblages. Ecological Monographs, 80(1), 107-124. https://doi.org/10.1890/08-1298.1
Skarbek, C. J., Noack, M., Bruelheide, H., Härdtle, W., von Oheimb, G., Scholten, T., Seitz, S., & Staab, M. (2020). A tale of scale: Plot but not neighbourhood tree diversity increases leaf litter ant diversity. Journal of Animal Ecology, 89(2), 299-308. https://doi.org/10.1111/1365-2656.13115
Sommer, S., & Wehner, R. (2012). Leg allometry in ants: Extreme long-leggedness in thermophilic species. Arthropod Structure & Development, 41, 71-77.
Sosiak, C. E., & Barden, P. (2021). Multidimensional trait morphology predicts ecology across ant lineages. Functional Ecology, 35(1), 139-152. https://doi.org/10.1111/1365-2435.13697
Srivastava, D. S., Cadotte, M. W., MacDonald, A. A. M., Marushia, R. G., & Mirotchnick, N. (2012). Phylogenetic diversity and the functioning of ecosystems. Ecology Letters, 15, 637-648. https://doi.org/10.1111/j.1461-0248.2012.01795.x
Staab, M., Schuldt, A., Assmann, T., Bruelheide, H., & Klein, A.-M. (2014). Ant community structure during forest succession in a subtropical forest in south-East China. Acta Oecologica, 61, 32-40. https://doi.org/10.1016/j.actao.2014.10.003
Tucker, C. M., Cadotte, M. W., Carvalho, S. B., Davies, T. J., Ferrier, S., Fritz, S. A., Grenyer, R., Helmus, M. R., Jin, L. S., Mooers, A. O., Pavoine, S., Purschke, O., Redding, D. W., Rosauer, D. F., Winter, M., & Mazel, F. (2017). A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biological Reviews, 92, 698-715. https://doi.org/10.1111/brv.12252
Villéger, S., Mason, N. W., & Mouillot, D. (2008). New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89(8), 2290-2301. https://doi.org/10.1890/07-1206.1
Weiser, M. D., & Kaspari, M. (2006). Ecological morphospace of New World ants. Ecological Entomology, 31(2), 131-142. https://doi.org/10.1111/j.0307-6946.2006.00759.x
Whitworth, A., Beirne, C., Pillco Huarcaya, R., Whittaker, L., Serrano Rojas, S. J., Tobler, M. W., & MacLeod, R. (2019). Human disturbance impacts on rainforest mammals are most notable in the canopy, especially for larger-bodied species. Diversity and Distributions, 25(7), 1166-1178. https://doi.org/10.1111/ddi.12930
Whitworth, A., Villacampa, J., Brown, A., Huarcaya, R. P., Downie, R., & MacLeod, R. (2016). Past human disturbance effects upon biodiversity are greatest in the canopy; A case study on rainforest butterflies. PLoS ONE, 11(3), e0150520. https://doi.org/10.1371/journal.pone.0150520
Widenfalk, L. A., Malmström, A., Berg, M. P., & Bengtsson, J. (2016). Small-scale collembola community composition in a pine forest soil - Overdispersion in functional traits indicates the importance of species interactions. Soil Biology and Biochemistry, 103, 52-62. https://doi.org/10.1016/j.soilbio.2016.08.006
Wittman, S. E., Sanders, N. J., Ellison, A. M., Jules, E. S., Ratchford, J. S., & Gotelli, N. J. (2010). Species interactions and thermal constraints on ant community structure. Oikos, 119(3), 551-559. https://doi.org/10.1111/j.1600-0706.2009.17792.x
Wong, M. K., Guénard, B., & Lewis, O. T. (2019). Trait-based ecology of terrestrial arthropods. Biological Reviews, 94(3), 999-1022. https://doi.org/10.1111/brv.12488
Xing, S., Hood, A. S., Dial, R. J., & Fayle, T. M. (2022). Species turnover in ant assemblages is greater horizontally than vertically in the world's tallest tropical forest. Ecology and Evolution, 12(8), e9158. https://doi.org/10.1002/ece3.9158
Dryad
10.5061/dryad.jsxksn0fc