Impaired pre-mRNA processing and altered architecture of 3' untranslated regions contribute to the development of human disorders
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
23896598
PubMed Central
PMC3759880
DOI
10.3390/ijms140815681
PII: ijms140815681
Knihovny.cz E-zdroje
- MeSH
- 3' nepřekládaná oblast MeSH
- chorea genetika metabolismus patologie MeSH
- dědičné degenerativní poruchy nervového systému genetika metabolismus patologie MeSH
- demence genetika metabolismus patologie MeSH
- expanze trinukleotidových repetic MeSH
- kognitivní poruchy genetika metabolismus patologie MeSH
- konformace nukleové kyseliny MeSH
- lidé MeSH
- myotonická dystrofie genetika metabolismus patologie MeSH
- nádory genetika metabolismus patologie MeSH
- prekurzory RNA genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- 3' nepřekládaná oblast MeSH
- prekurzory RNA MeSH
The biological fate of each mRNA and consequently, the protein to be synthesised, is highly dependent on the nature of the 3' untranslated region. Despite its non-coding character, the 3' UTR may affect the final mRNA stability, the localisation, the export from the nucleus and the translation efficiency. The conserved regulatory sequences within 3' UTRs and the specific elements binding to them enable gene expression control at the posttranscriptional level and all these processes reflect the actual state of the cell including proliferation, differentiation, cellular stress or tumourigenesis. Through this article, we briefly outline how the alterations in the establishment and final architecture of 3' UTRs may contribute to the development of various disorders in humans.
Regional Centre for Applied Molecular Oncology Masaryk Memorial Cancer Institute Brno Czech Republic
Zobrazit více v PubMed
Crick F. Central dogma of molecular biology. Nature. 1970;227:561–563. PubMed
Zhao J., Hyman L., Moore C. Formation of mrna 3′ ends in eukaryotes: Mechanism, regulation, and interrelationships with other steps in mrna synthesis. Microbiol. Mol. Biol. Rev. 1999;63:405–445. PubMed PMC
Lemay J.F., Lemieux C., St-Andre O., Bachand F. Crossing the borders: Poly(a)-binding proteins working on both sides of the fence. RNA Biol. 2010;7:291–295. PubMed
Proudfoot N.J., Brownlee G.G. 3′ non-coding region sequences in eukaryotic messenger rna. Nature. 1976;263:211–214. PubMed
Matoulkova E., Michalova E., Vojtesek B., Hrstka R. The role of the 3′ untranslated region in post-transcriptional regulation of protein expression in mammalian cells. RNA Biol. 2012;9:563–576. PubMed
Higgs D.R., Goodbourn S.E., Lamb J., Clegg J.B., Weatherall D.J., Proudfoot N.J. Alpha-thalassaemia caused by a polyadenylation signal mutation. Nature. 1983;306:398–400. PubMed
Serjeant G.R., Serjeant B.E., Fraser R.A., Hambleton I.R., Higgs D.R., Kulozik A.E., Donaldson A. Hb s-beta-thalassemia: Molecular, hematological and clinical comparisons. Hemoglobin. 2011;35:1–12. PubMed
Bennett C.L., Brunkow M.E., Ramsdell F., O’Briant K.C., Zhu Q., Fuleihan R.L., Shigeoka A.O., Ochs H.D., Chance P.F. A rare polyadenylation signal mutation of the foxp3 gene (aauaaa→aaugaa) leads to the ipex syndrome. Immunogenetics. 2001;53:435–439. PubMed
Bell D.A., Badawi A.F., Lang N.P., Ilett K.F., Kadlubar F.F., Hirvonen A. Polymorphism in the n-acetyltransferase 1 (nat1) polyadenylation signal: Association of nat1*10 allele with higher n-acetylation activity in bladder and colon tissue. Cancer Res. 1995;55:5226–5229. PubMed
de Leon J.H., Vatsis K.P., Weber W.W. Characterization of naturally occurring and recombinant human n-acetyltransferase variants encoded by nat1. Mol. Pharmacol. 2000;58:288–299. PubMed
Harmar A.J., Ogilvie A.D., Battersby S., Smith C.A., Blackwood D.H., Muir W.J., Fink G., Goodwin G.M. The serotonin transporter gene and affective disorder. Cold Spring Harb. Symp. Quant. Biol. 1996;61:791–795. PubMed
Battersby S., Ogilvie A.D., Blackwood D.H., Shen S., Muqit M.M., Muir W.J., Teague P., Goodwin G.M., Harmar A.J. Presence of multiple functional polyadenylation signals and a single nucleotide polymorphism in the 3′ untranslated region of the human serotonin transporter gene. J. Neurochem. 1999;72:1384–1388. PubMed
Bishop D.F., Kornreich R., Desnick R.J. Structural organization of the human alpha-galactosidase a gene: Further evidence for the absence of a 3′ untranslated region. Proc. Natl. Acad. Sci. USA. 1988;85:3903–3907. PubMed PMC
Brady R.O., Gal A.E., Bradley R.M., Martensson E., Warshaw A.L., Laster L. Enzymatic defect in fabry’s disease. Ceramidetrihexosidase deficiency. N. Engl. J. Med. 1967;276:1163–1167. PubMed
MacDermot K.D., Holmes A., Miners A.H. Natural history of fabry disease in affected males and obligate carrier females. J. Inherit Metab. Dis. 2001;24:13–14. PubMed
Vedder A.C., Linthorst G.E., van Breemen M.J., Groener J.E., Bemelman F.J., Strijland A., Mannens M.M., Aerts J.M., Hollak C.E. The dutch fabry cohort: Diversity of clinical manifestations and gb3 levels. J. Inherit Metab. Dis. 2007;30:68–78. PubMed
Tian B., Manley J.L. Alternative cleavage and polyadenylation: The long and short of it. Trends Biochem. Sci. 2013;38:312–320. PubMed PMC
Brown K.M., Gilmartin G.M. A mechanism for the regulation of pre-mrna 3′ processing by human cleavage factor im. Mol. Cell. 2003;12:1467–1476. PubMed
de Vries H., Ruegsegger U., Hubner W., Friedlein A., Langen H., Keller W. Human pre-mrna cleavage factor ii(m) contains homologs of yeast proteins and bridges two other cleavage factors. EMBO J. 2000;19:5895–5904. PubMed PMC
Bienroth S., Keller W., Wahle E. Assembly of a processive messenger rna polyadenylation complex. The EMBO J. 1993;12:585–594. PubMed PMC
Gehring N.H., Frede U., Neu-Yilik G., Hundsdoerfer P., Vetter B., Hentze M.W., Kulozik A.E. Increased efficiency of mrna 3′ end formation: A new genetic mechanism contributing to hereditary thrombophilia. Nature Genet. 2001;28:389–392. PubMed
Chen F., MacDonald C.C., Wilusz J. Cleavage site determinants in the mammalian polyadenylation signal. Nucleic Acids Res. 1995;23:2614–2620. PubMed PMC
Poort S.R., Rosendaal F.R., Reitsma P.H., Bertina R.M. A common genetic variation in the 3′-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood. 1996;88:3698–3703. PubMed
Steinman R.A. Mrna stability control: A clandestine force in normal and malignant hematopoiesis. Leukemia. 2007;21:1158–1171. PubMed
Kerwitz Y., Kuhn U., Lilie H., Knoth A., Scheuermann T., Friedrich H., Schwarz E., Wahle E. Stimulation of poly(a) polymerase through a direct interaction with the nuclear poly(a) binding protein allosterically regulated by rna. EMBO J. 2003;22:3705–3714. PubMed PMC
Brais B., Bouchard J.P., Xie Y.G., Rochefort D.L., Chretien N., Tome F.M., Lafreniere R.G., Rommens J.M., Uyama E., Nohira O., et al. Short gcg expansions in the pabp2 gene cause oculopharyngeal muscular dystrophy. Nature Genet. 1998;18:164–167. PubMed
Jenal M., Elkon R., Loayza-Puch F., van Haaften G., Kuhn U., Menzies F.M., Oude Vrielink J.A., Bos A.J., Drost J., Rooijers K., et al. The poly(a)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites. Cell. 2012;149:538–553. PubMed
Fu Y., Sun Y., Li Y., Li J., Rao X., Chen C., Xu A. Differential genome-wide profiling of tandem 3′ utrs among human breast cancer and normal cells by high-throughput sequencing. Genome Res. 2011;21:741–747. PubMed PMC
Ozsolak F., Kapranov P., Foissac S., Kim S.W., Fishilevich E., Monaghan A.P., John B., Milos P.M. Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation. Cell. 2010;143:1018–1029. PubMed PMC
Shepard P.J., Choi E.A., Lu J., Flanagan L.A., Hertel K.J., Shi Y. Complex and dynamic landscape of rna polyadenylation revealed by pas-seq. RNA. 2011;17:761–772. PubMed PMC
Ji Z., Lee J.Y., Pan Z., Jiang B., Tian B. Progressive lengthening of 3′ untranslated regions of mrnas by alternative polyadenylation during mouse embryonic development. Proc. Natl. Acad. Sci. USA. 2009;106:7028–7033. PubMed PMC
de Klerk E., Venema A., Anvar S.Y., Goeman J.J., Hu O., Trollet C., Dickson G., den Dunnen J.T., van der Maarel S.M., Raz V., et al. Poly(a) binding protein nuclear 1 levels affect alternative polyadenylation. Nucleic Acids Res. 2012;40:9089–9101. PubMed PMC
Bhattacharjee R.B., Zannat T., Bag J. Expression of the polyalanine expansion mutant of nuclear poly(a)-binding protein induces apoptosis via the p53 pathway. Cell Biol. Int. 2012;36:697–704. PubMed
Fu Y.H., Pizzuti A., Fenwick R.G., Jr, King J., Rajnarayan S., Dunne P.W., Dubel J., Nasser G.A., Ashizawa T., de Jong P., et al. Science. 1992;255:1256–1258. PubMed
Mahadevan M., Tsilfidis C., Sabourin L., Shutler G., Amemiya C., Jansen G., Neville C., Narang M., Barcelo J., O’Hoy K., et al. Myotonic dystrophy mutation: An unstable ctg repeat in the 3′ untranslated region of the gene. Science. 1992;255:1253–1255. PubMed
Kamsteeg E.J., Kress W., Catalli C., Hertz J.M., Witsch-Baumgartner M., Buckley M.F., van Engelen B.G., Schwartz M., Scheffer H. Best practice guidelines and recommendations on the molecular diagnosis of myotonic dystrophy types 1 and 2. Eur. J. Hum. Genet. 2012;20:1203–1208. PubMed PMC
Salehi L.B., Bonifazi E., Stasio E.D., Gennarelli M., Botta A., Vallo L., Iraci R., Massa R., Antonini G., Angelini C., et al. Risk prediction for clinical phenotype in myotonic dystrophy type 1: Data from 2,650 patients. Genet. Test. 2007;11:84–90. PubMed
Savic Pavicevic D., Miladinovic J., Brkusanin M., Svikovic S., Djurica S., Brajuskovic G., Romac S. Molecular genetics and genetic testing in myotonic dystrophy type 1. BioMed Res. Int. 2013 doi: 10.1155/2013/391821. PubMed DOI PMC
Taneja K.L., McCurrach M., Schalling M., Housman D., Singer R.H. Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues. J. Cell Biol. 1995;128:995–1002. PubMed PMC
Day J.W., Ranum L.P. Rna pathogenesis of the myotonic dystrophies. Neuromuscul. Disord. 2005;15:5–16. PubMed
Jiang H., Mankodi A., Swanson M.S., Moxley R.T., Thornton C.A. Myotonic dystrophy type 1 is associated with nuclear foci of mutant rna, sequestration of muscleblind proteins and deregulated alternative splicing in neurons. Hum. Mol. Genet. 2004;13:3079–3088. PubMed
Kuyumcu-Martinez N.M., Wang G.S., Cooper T.A. Increased steady-state levels of cugbp1 in myotonic dystrophy 1 are due to pkc-mediated hyperphosphorylation. Mol. Cell. 2007;28:68–78. PubMed PMC
Kanadia R.N., Shin J., Yuan Y., Beattie S.G., Wheeler T.M., Thornton C.A., Swanson M.S. Reversal of rna missplicing and myotonia after muscleblind overexpression in a mouse poly(cug) model for myotonic dystrophy. Proc. Natl. Acad. Sci. USA. 2006;103:11748–11753. PubMed PMC
Mykowska A., Sobczak K., Wojciechowska M., Kozlowski P., Krzyzosiak W.J. Cag repeats mimic cug repeats in the misregulation of alternative splicing. Nucleic Acids Res. 2011;39:8938–8951. PubMed PMC
Salisbury E., Sakai K., Schoser B., Huichalaf C., Schneider-Gold C., Nguyen H., Wang G.L., Albrecht J.H., Timchenko L.T. Ectopic expression of cyclin d3 corrects differentiation of dm1 myoblasts through activation of rna cug-binding protein, cugbp1. Exp. Cell Res. 2008;314:2266–2278. PubMed PMC
Jones K., Wei C., Iakova P., Bugiardini E., Schneider-Gold C., Meola G., Woodgett J., Killian J., Timchenko N.A., Timchenko L.T. Gsk3beta mediates muscle pathology in myotonic dystrophy. J. Clin. Investig. 2012;122:4461–4472. PubMed PMC
Paul S., Dansithong W., Kim D., Rossi J., Webster N.J., Comai L., Reddy S. Interaction of muscleblind, cug-bp1 and hnrnp h proteins in dm1-associated aberrant ir splicing. EMBO J. 2006;25:4271–4283. PubMed PMC
Krol J., Fiszer A., Mykowska A., Sobczak K., de Mezer M., Krzyzosiak W.J. Ribonuclease dicer cleaves triplet repeat hairpins into shorter repeats that silence specific targets. Mol. Cell. 2007;25:575–586. PubMed
Ebralidze A., Wang Y., Petkova V., Ebralidse K., Junghans R.P. Rna leaching of transcription factors disrupts transcription in myotonic dystrophy. Science. 2004;303:383–387. PubMed
Greenstein P.E., Vonsattel J.P., Margolis R.L., Joseph J.T. Huntington’s disease like-2 neuropathology. Mov. Disord. 2007;22:1416–1423. PubMed
Margolis R.L., O’Hearn E., Rosenblatt A., Willour V., Holmes S.E., Franz M.L., Callahan C., Hwang H.S., Troncoso J.C., Ross C.A. A disorder similar to huntington’s disease is associated with a novel cag repeat expansion. Ann. Neurol. 2001;50:373–380. PubMed
Paradisi I., Ikonomu V., Arias S. Huntington disease-like 2 (hdl2) in venezuela: Frequency and ethnic origin. J. Hum. Genet. 2013;58:3–6. PubMed
Rudnicki D.D., Holmes S.E., Lin M.W., Thornton C.A., Ross C.A., Margolis R.L. Huntington’s disease-like 2 is associated with cug repeat-containing rna foci. Ann. Neurol. 2007;61:272–282. PubMed
Wilburn B., Rudnicki D.D., Zhao J., Weitz T.M., Cheng Y., Gu X., Greiner E., Park C.S., Wang N., Sopher B.L., et al. An antisense cag repeat transcript at jph3 locus mediates expanded polyglutamine protein toxicity in huntington’s disease-like 2 mice. Neuron. 2011;70:427–440. PubMed PMC
Seixas A.I., Holmes S.E., Takeshima H., Pavlovich A., Sachs N., Pruitt J.L., Silveira I., Ross C.A., Margolis R.L., Rudnicki D.D. Loss of junctophilin-3 contributes to huntington disease-like 2 pathogenesis. Ann. Neurol. 2012;71:245–257. PubMed
Reamon-Buettner S.M., Cho S.H., Borlak J. Mutations in the 3′-untranslated region of gata4 as molecular hotspots for congenital heart disease (chd) BMC Med.Genet. 2007;8:38. PubMed PMC
Menabo S., Balsamo A., Baldazzi L., Barbaro M., Nicoletti A., Conti V., Pirazzoli P., Wedell A., Cicognani A. A sequence variation in 3′ utr of cyp21a2 gene correlates with a mild form of congenital adrenal hyperplasia. J. Endocrinol. Investig. 2012;35:298–305. PubMed
Abrahams Y., Laguette M.J., Prince S., Collins M. Polymorphisms within the col5a1 3′-utr that alters mrna structure and the mir608 gene are associated with achilles tendinopathy. Ann. Hum. Genet. 2013;77:204–214. PubMed
Haas U., Sczakiel G., Laufer S.D. Microrna-mediated regulation of gene expression is affected by disease-associated snps within the 3′-utr via altered rna structure. RNA Biol. 2012;9:924–937. PubMed PMC
Lee Y.S., Dutta A. The tumor suppressor microrna let-7 represses the hmga2 oncogene. Genes Dev. 2007;21:1025–1030. PubMed PMC
Mayr C., Bartel D.P. Widespread shortening of 3′ utrs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell. 2009;138:673–684. PubMed PMC
Mayr C., Hemann M.T., Bartel D.P. Disrupting the pairing between let-7 and hmga2 enhances oncogenic transformation. Science. 2007;315:1576–1579. PubMed PMC
Carninci P., Kasukawa T., Katayama S., Gough J., Frith M.C., Maeda N., Oyama R., Ravasi T., Lenhard B., Wells C., et al. The transcriptional landscape of the mammalian genome. Science. 2005;309:1559–1563. PubMed
Sandberg R., Neilson J.R., Sarma A., Sharp P.A., Burge C.B. Proliferating cells express mrnas with shortened 3′ untranslated regions and fewer microrna target sites. Science. 2008;320:1643–1647. PubMed PMC
Lembo A., Di Cunto F., Provero P. Shortening of 3′utrs correlates with poor prognosis in breast and lung cancer. PLoS One. 2012 doi: 10.1371/journal.pone.0031129. PubMed DOI PMC
Wiestner A., Tehrani M., Chiorazzi M., Wright G., Gibellini F., Nakayama K., Liu H., Rosenwald A., Muller-Hermelink H.K., Ott G., et al. Point mutations and genomic deletions in ccnd1 create stable truncated cyclin d1 mrnas that are associated with increased proliferation rate and shorter survival. Blood. 2007;109:4599–4606. PubMed PMC
Hrstka R., Coates P.J., Vojtesek B. Polymorphisms in p53 and the p53 pathway: Roles in cancer susceptibility and response to treatment. J. Cell. Mol. Med. 2009;13:440–453. PubMed PMC
Stacey S.N., Sulem P., Jonasdottir A., Masson G., Gudmundsson J., Gudbjartsson D.F., Magnusson O.T., Gudjonsson S.A., Sigurgeirsson B., Thorisdottir K., et al. A germline variant in the tp53 polyadenylation signal confers cancer susceptibility. Nature Genet. 2011;43:1098–1103. PubMed PMC
Zhou L., Yuan Q., Yang M. A functional germline variant in the p53 polyadenylation signal and risk of esophageal squamous cell carcinoma. Gene. 2012;506:295–297. PubMed
Li Y., Gordon M.W., Xu-Monette Z.Y., Visco C., Tzankov A., Zou D., Qiu L., Montes-Moreno S., Dybkaer K., Orazi A., et al. Single nucleotide variation in the tp53 3′ untranslated region in diffuse large b-cell lymphoma treated with rituximab-chop: A report from the international dlbcl rituximab-chop consortium program. Blood. 2013;121:4529–4540. PubMed PMC
Enciso-Mora V., Hosking F.J., Di Stefano A.L., Zelenika D., Shete S., Broderick P., Idbaih A., Delattre J.Y., Hoang-Xuan K., Marie Y., et al. Low penetrance susceptibility to glioma is caused by the tp53 variant rs78378222. Br. J. Cancer. 2013;108:2178–2185. PubMed PMC
Akman B.H., Can T., Erson-Bensan A.E. Estrogen-induced upregulation and 3′-utr shortening of cdc6. Nucleic Acids Res. 2012;40:10679–10688. PubMed PMC
Kazazoglou T., Tsiapalis C.M., Havredaki M. Polyadenylate polymerase activity in stationary and growing cell cultures. Exp. Cell Biol. 1987;55:164–172. PubMed
Scorilas A., Talieri M., Ardavanis A., Courtis N., Dimitriadis E., Yotis J., Tsiapalis C.M., Trangas T. Polyadenylate polymerase enzymatic activity in mammary tumor cytosols: A new independent prognostic marker in primary breast cancer. Cancer Res. 2000;60:5427–5433. PubMed
Xu N., Chen C.Y., Shyu A.B. Modulation of the fate of cytoplasmic mrna by au-rich elements: Key sequence features controlling mrna deadenylation and decay. Mol. Cell. Biol. 1997;17:4611–4621. PubMed PMC
Hollis G.F., Gazdar A.F., Bertness V., Kirsch I.R. Complex translocation disrupts c-myc regulation in a human plasma cell myeloma. Mol. Cell. Biol. 1988;8:124–129. PubMed PMC
Eick D., Piechaczyk M., Henglein B., Blanchard J.M., Traub B., Kofler E., Wiest S., Lenoir G.M., Bornkamm G.W. Aberrant c-myc rnas of burkitt’s lymphoma cells have longer half-lives. EMBO J. 1985;4:3717–3725. PubMed PMC
Young L.E., Dixon D.A. Posttranscriptional regulation of cyclooxygenase 2 expression in colorectal cancer. Curr. Colorectal Cancer Rep. 2010;6:60–67. PubMed PMC
zur Hausen H. Human papillomaviruses and their possible role in squamous cell carcinomas. Curr. Top. Microbiol. Immunol. 1977;78:1–30. PubMed
Schwarz E., Freese U.K., Gissmann L., Mayer W., Roggenbuck B., Stremlau A., zur Hausen H. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature. 1985;314:111–114. PubMed
Yee C., Krishnan-Hewlett I., Baker C.C., Schlegel R., Howley P.M. Presence and expression of human papillomavirus sequences in human cervical carcinoma cell lines. Am. J. Pathol. 1985;119:361–366. PubMed PMC
Jeon S., Lambert P.F. Integration of human papillomavirus type 16 DNA into the human genome leads to increased stability of e6 and e7 mrnas: Implications for cervical carcinogenesis. Proc. Natl. Acad. Sci. USA. 1995;92:1654–1658. PubMed PMC