Impaired pre-mRNA processing and altered architecture of 3' untranslated regions contribute to the development of human disorders

. 2013 Jul 26 ; 14 (8) : 15681-94. [epub] 20130726

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid23896598

The biological fate of each mRNA and consequently, the protein to be synthesised, is highly dependent on the nature of the 3' untranslated region. Despite its non-coding character, the 3' UTR may affect the final mRNA stability, the localisation, the export from the nucleus and the translation efficiency. The conserved regulatory sequences within 3' UTRs and the specific elements binding to them enable gene expression control at the posttranscriptional level and all these processes reflect the actual state of the cell including proliferation, differentiation, cellular stress or tumourigenesis. Through this article, we briefly outline how the alterations in the establishment and final architecture of 3' UTRs may contribute to the development of various disorders in humans.

Zobrazit více v PubMed

Crick F. Central dogma of molecular biology. Nature. 1970;227:561–563. PubMed

Zhao J., Hyman L., Moore C. Formation of mrna 3′ ends in eukaryotes: Mechanism, regulation, and interrelationships with other steps in mrna synthesis. Microbiol. Mol. Biol. Rev. 1999;63:405–445. PubMed PMC

Lemay J.F., Lemieux C., St-Andre O., Bachand F. Crossing the borders: Poly(a)-binding proteins working on both sides of the fence. RNA Biol. 2010;7:291–295. PubMed

Proudfoot N.J., Brownlee G.G. 3′ non-coding region sequences in eukaryotic messenger rna. Nature. 1976;263:211–214. PubMed

Matoulkova E., Michalova E., Vojtesek B., Hrstka R. The role of the 3′ untranslated region in post-transcriptional regulation of protein expression in mammalian cells. RNA Biol. 2012;9:563–576. PubMed

Higgs D.R., Goodbourn S.E., Lamb J., Clegg J.B., Weatherall D.J., Proudfoot N.J. Alpha-thalassaemia caused by a polyadenylation signal mutation. Nature. 1983;306:398–400. PubMed

Serjeant G.R., Serjeant B.E., Fraser R.A., Hambleton I.R., Higgs D.R., Kulozik A.E., Donaldson A. Hb s-beta-thalassemia: Molecular, hematological and clinical comparisons. Hemoglobin. 2011;35:1–12. PubMed

Bennett C.L., Brunkow M.E., Ramsdell F., O’Briant K.C., Zhu Q., Fuleihan R.L., Shigeoka A.O., Ochs H.D., Chance P.F. A rare polyadenylation signal mutation of the foxp3 gene (aauaaa→aaugaa) leads to the ipex syndrome. Immunogenetics. 2001;53:435–439. PubMed

Bell D.A., Badawi A.F., Lang N.P., Ilett K.F., Kadlubar F.F., Hirvonen A. Polymorphism in the n-acetyltransferase 1 (nat1) polyadenylation signal: Association of nat1*10 allele with higher n-acetylation activity in bladder and colon tissue. Cancer Res. 1995;55:5226–5229. PubMed

de Leon J.H., Vatsis K.P., Weber W.W. Characterization of naturally occurring and recombinant human n-acetyltransferase variants encoded by nat1. Mol. Pharmacol. 2000;58:288–299. PubMed

Harmar A.J., Ogilvie A.D., Battersby S., Smith C.A., Blackwood D.H., Muir W.J., Fink G., Goodwin G.M. The serotonin transporter gene and affective disorder. Cold Spring Harb. Symp. Quant. Biol. 1996;61:791–795. PubMed

Battersby S., Ogilvie A.D., Blackwood D.H., Shen S., Muqit M.M., Muir W.J., Teague P., Goodwin G.M., Harmar A.J. Presence of multiple functional polyadenylation signals and a single nucleotide polymorphism in the 3′ untranslated region of the human serotonin transporter gene. J. Neurochem. 1999;72:1384–1388. PubMed

Bishop D.F., Kornreich R., Desnick R.J. Structural organization of the human alpha-galactosidase a gene: Further evidence for the absence of a 3′ untranslated region. Proc. Natl. Acad. Sci. USA. 1988;85:3903–3907. PubMed PMC

Brady R.O., Gal A.E., Bradley R.M., Martensson E., Warshaw A.L., Laster L. Enzymatic defect in fabry’s disease. Ceramidetrihexosidase deficiency. N. Engl. J. Med. 1967;276:1163–1167. PubMed

MacDermot K.D., Holmes A., Miners A.H. Natural history of fabry disease in affected males and obligate carrier females. J. Inherit Metab. Dis. 2001;24:13–14. PubMed

Vedder A.C., Linthorst G.E., van Breemen M.J., Groener J.E., Bemelman F.J., Strijland A., Mannens M.M., Aerts J.M., Hollak C.E. The dutch fabry cohort: Diversity of clinical manifestations and gb3 levels. J. Inherit Metab. Dis. 2007;30:68–78. PubMed

Tian B., Manley J.L. Alternative cleavage and polyadenylation: The long and short of it. Trends Biochem. Sci. 2013;38:312–320. PubMed PMC

Brown K.M., Gilmartin G.M. A mechanism for the regulation of pre-mrna 3′ processing by human cleavage factor im. Mol. Cell. 2003;12:1467–1476. PubMed

de Vries H., Ruegsegger U., Hubner W., Friedlein A., Langen H., Keller W. Human pre-mrna cleavage factor ii(m) contains homologs of yeast proteins and bridges two other cleavage factors. EMBO J. 2000;19:5895–5904. PubMed PMC

Bienroth S., Keller W., Wahle E. Assembly of a processive messenger rna polyadenylation complex. The EMBO J. 1993;12:585–594. PubMed PMC

Gehring N.H., Frede U., Neu-Yilik G., Hundsdoerfer P., Vetter B., Hentze M.W., Kulozik A.E. Increased efficiency of mrna 3′ end formation: A new genetic mechanism contributing to hereditary thrombophilia. Nature Genet. 2001;28:389–392. PubMed

Chen F., MacDonald C.C., Wilusz J. Cleavage site determinants in the mammalian polyadenylation signal. Nucleic Acids Res. 1995;23:2614–2620. PubMed PMC

Poort S.R., Rosendaal F.R., Reitsma P.H., Bertina R.M. A common genetic variation in the 3′-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood. 1996;88:3698–3703. PubMed

Steinman R.A. Mrna stability control: A clandestine force in normal and malignant hematopoiesis. Leukemia. 2007;21:1158–1171. PubMed

Kerwitz Y., Kuhn U., Lilie H., Knoth A., Scheuermann T., Friedrich H., Schwarz E., Wahle E. Stimulation of poly(a) polymerase through a direct interaction with the nuclear poly(a) binding protein allosterically regulated by rna. EMBO J. 2003;22:3705–3714. PubMed PMC

Brais B., Bouchard J.P., Xie Y.G., Rochefort D.L., Chretien N., Tome F.M., Lafreniere R.G., Rommens J.M., Uyama E., Nohira O., et al. Short gcg expansions in the pabp2 gene cause oculopharyngeal muscular dystrophy. Nature Genet. 1998;18:164–167. PubMed

Jenal M., Elkon R., Loayza-Puch F., van Haaften G., Kuhn U., Menzies F.M., Oude Vrielink J.A., Bos A.J., Drost J., Rooijers K., et al. The poly(a)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites. Cell. 2012;149:538–553. PubMed

Fu Y., Sun Y., Li Y., Li J., Rao X., Chen C., Xu A. Differential genome-wide profiling of tandem 3′ utrs among human breast cancer and normal cells by high-throughput sequencing. Genome Res. 2011;21:741–747. PubMed PMC

Ozsolak F., Kapranov P., Foissac S., Kim S.W., Fishilevich E., Monaghan A.P., John B., Milos P.M. Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation. Cell. 2010;143:1018–1029. PubMed PMC

Shepard P.J., Choi E.A., Lu J., Flanagan L.A., Hertel K.J., Shi Y. Complex and dynamic landscape of rna polyadenylation revealed by pas-seq. RNA. 2011;17:761–772. PubMed PMC

Ji Z., Lee J.Y., Pan Z., Jiang B., Tian B. Progressive lengthening of 3′ untranslated regions of mrnas by alternative polyadenylation during mouse embryonic development. Proc. Natl. Acad. Sci. USA. 2009;106:7028–7033. PubMed PMC

de Klerk E., Venema A., Anvar S.Y., Goeman J.J., Hu O., Trollet C., Dickson G., den Dunnen J.T., van der Maarel S.M., Raz V., et al. Poly(a) binding protein nuclear 1 levels affect alternative polyadenylation. Nucleic Acids Res. 2012;40:9089–9101. PubMed PMC

Bhattacharjee R.B., Zannat T., Bag J. Expression of the polyalanine expansion mutant of nuclear poly(a)-binding protein induces apoptosis via the p53 pathway. Cell Biol. Int. 2012;36:697–704. PubMed

Fu Y.H., Pizzuti A., Fenwick R.G., Jr, King J., Rajnarayan S., Dunne P.W., Dubel J., Nasser G.A., Ashizawa T., de Jong P., et al. Science. 1992;255:1256–1258. PubMed

Mahadevan M., Tsilfidis C., Sabourin L., Shutler G., Amemiya C., Jansen G., Neville C., Narang M., Barcelo J., O’Hoy K., et al. Myotonic dystrophy mutation: An unstable ctg repeat in the 3′ untranslated region of the gene. Science. 1992;255:1253–1255. PubMed

Kamsteeg E.J., Kress W., Catalli C., Hertz J.M., Witsch-Baumgartner M., Buckley M.F., van Engelen B.G., Schwartz M., Scheffer H. Best practice guidelines and recommendations on the molecular diagnosis of myotonic dystrophy types 1 and 2. Eur. J. Hum. Genet. 2012;20:1203–1208. PubMed PMC

Salehi L.B., Bonifazi E., Stasio E.D., Gennarelli M., Botta A., Vallo L., Iraci R., Massa R., Antonini G., Angelini C., et al. Risk prediction for clinical phenotype in myotonic dystrophy type 1: Data from 2,650 patients. Genet. Test. 2007;11:84–90. PubMed

Savic Pavicevic D., Miladinovic J., Brkusanin M., Svikovic S., Djurica S., Brajuskovic G., Romac S. Molecular genetics and genetic testing in myotonic dystrophy type 1. BioMed Res. Int. 2013 doi: 10.1155/2013/391821. PubMed DOI PMC

Taneja K.L., McCurrach M., Schalling M., Housman D., Singer R.H. Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues. J. Cell Biol. 1995;128:995–1002. PubMed PMC

Day J.W., Ranum L.P. Rna pathogenesis of the myotonic dystrophies. Neuromuscul. Disord. 2005;15:5–16. PubMed

Jiang H., Mankodi A., Swanson M.S., Moxley R.T., Thornton C.A. Myotonic dystrophy type 1 is associated with nuclear foci of mutant rna, sequestration of muscleblind proteins and deregulated alternative splicing in neurons. Hum. Mol. Genet. 2004;13:3079–3088. PubMed

Kuyumcu-Martinez N.M., Wang G.S., Cooper T.A. Increased steady-state levels of cugbp1 in myotonic dystrophy 1 are due to pkc-mediated hyperphosphorylation. Mol. Cell. 2007;28:68–78. PubMed PMC

Kanadia R.N., Shin J., Yuan Y., Beattie S.G., Wheeler T.M., Thornton C.A., Swanson M.S. Reversal of rna missplicing and myotonia after muscleblind overexpression in a mouse poly(cug) model for myotonic dystrophy. Proc. Natl. Acad. Sci. USA. 2006;103:11748–11753. PubMed PMC

Mykowska A., Sobczak K., Wojciechowska M., Kozlowski P., Krzyzosiak W.J. Cag repeats mimic cug repeats in the misregulation of alternative splicing. Nucleic Acids Res. 2011;39:8938–8951. PubMed PMC

Salisbury E., Sakai K., Schoser B., Huichalaf C., Schneider-Gold C., Nguyen H., Wang G.L., Albrecht J.H., Timchenko L.T. Ectopic expression of cyclin d3 corrects differentiation of dm1 myoblasts through activation of rna cug-binding protein, cugbp1. Exp. Cell Res. 2008;314:2266–2278. PubMed PMC

Jones K., Wei C., Iakova P., Bugiardini E., Schneider-Gold C., Meola G., Woodgett J., Killian J., Timchenko N.A., Timchenko L.T. Gsk3beta mediates muscle pathology in myotonic dystrophy. J. Clin. Investig. 2012;122:4461–4472. PubMed PMC

Paul S., Dansithong W., Kim D., Rossi J., Webster N.J., Comai L., Reddy S. Interaction of muscleblind, cug-bp1 and hnrnp h proteins in dm1-associated aberrant ir splicing. EMBO J. 2006;25:4271–4283. PubMed PMC

Krol J., Fiszer A., Mykowska A., Sobczak K., de Mezer M., Krzyzosiak W.J. Ribonuclease dicer cleaves triplet repeat hairpins into shorter repeats that silence specific targets. Mol. Cell. 2007;25:575–586. PubMed

Ebralidze A., Wang Y., Petkova V., Ebralidse K., Junghans R.P. Rna leaching of transcription factors disrupts transcription in myotonic dystrophy. Science. 2004;303:383–387. PubMed

Greenstein P.E., Vonsattel J.P., Margolis R.L., Joseph J.T. Huntington’s disease like-2 neuropathology. Mov. Disord. 2007;22:1416–1423. PubMed

Margolis R.L., O’Hearn E., Rosenblatt A., Willour V., Holmes S.E., Franz M.L., Callahan C., Hwang H.S., Troncoso J.C., Ross C.A. A disorder similar to huntington’s disease is associated with a novel cag repeat expansion. Ann. Neurol. 2001;50:373–380. PubMed

Paradisi I., Ikonomu V., Arias S. Huntington disease-like 2 (hdl2) in venezuela: Frequency and ethnic origin. J. Hum. Genet. 2013;58:3–6. PubMed

Rudnicki D.D., Holmes S.E., Lin M.W., Thornton C.A., Ross C.A., Margolis R.L. Huntington’s disease-like 2 is associated with cug repeat-containing rna foci. Ann. Neurol. 2007;61:272–282. PubMed

Wilburn B., Rudnicki D.D., Zhao J., Weitz T.M., Cheng Y., Gu X., Greiner E., Park C.S., Wang N., Sopher B.L., et al. An antisense cag repeat transcript at jph3 locus mediates expanded polyglutamine protein toxicity in huntington’s disease-like 2 mice. Neuron. 2011;70:427–440. PubMed PMC

Seixas A.I., Holmes S.E., Takeshima H., Pavlovich A., Sachs N., Pruitt J.L., Silveira I., Ross C.A., Margolis R.L., Rudnicki D.D. Loss of junctophilin-3 contributes to huntington disease-like 2 pathogenesis. Ann. Neurol. 2012;71:245–257. PubMed

Reamon-Buettner S.M., Cho S.H., Borlak J. Mutations in the 3′-untranslated region of gata4 as molecular hotspots for congenital heart disease (chd) BMC Med.Genet. 2007;8:38. PubMed PMC

Menabo S., Balsamo A., Baldazzi L., Barbaro M., Nicoletti A., Conti V., Pirazzoli P., Wedell A., Cicognani A. A sequence variation in 3′ utr of cyp21a2 gene correlates with a mild form of congenital adrenal hyperplasia. J. Endocrinol. Investig. 2012;35:298–305. PubMed

Abrahams Y., Laguette M.J., Prince S., Collins M. Polymorphisms within the col5a1 3′-utr that alters mrna structure and the mir608 gene are associated with achilles tendinopathy. Ann. Hum. Genet. 2013;77:204–214. PubMed

Haas U., Sczakiel G., Laufer S.D. Microrna-mediated regulation of gene expression is affected by disease-associated snps within the 3′-utr via altered rna structure. RNA Biol. 2012;9:924–937. PubMed PMC

Lee Y.S., Dutta A. The tumor suppressor microrna let-7 represses the hmga2 oncogene. Genes Dev. 2007;21:1025–1030. PubMed PMC

Mayr C., Bartel D.P. Widespread shortening of 3′ utrs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell. 2009;138:673–684. PubMed PMC

Mayr C., Hemann M.T., Bartel D.P. Disrupting the pairing between let-7 and hmga2 enhances oncogenic transformation. Science. 2007;315:1576–1579. PubMed PMC

Carninci P., Kasukawa T., Katayama S., Gough J., Frith M.C., Maeda N., Oyama R., Ravasi T., Lenhard B., Wells C., et al. The transcriptional landscape of the mammalian genome. Science. 2005;309:1559–1563. PubMed

Sandberg R., Neilson J.R., Sarma A., Sharp P.A., Burge C.B. Proliferating cells express mrnas with shortened 3′ untranslated regions and fewer microrna target sites. Science. 2008;320:1643–1647. PubMed PMC

Lembo A., Di Cunto F., Provero P. Shortening of 3′utrs correlates with poor prognosis in breast and lung cancer. PLoS One. 2012 doi: 10.1371/journal.pone.0031129. PubMed DOI PMC

Wiestner A., Tehrani M., Chiorazzi M., Wright G., Gibellini F., Nakayama K., Liu H., Rosenwald A., Muller-Hermelink H.K., Ott G., et al. Point mutations and genomic deletions in ccnd1 create stable truncated cyclin d1 mrnas that are associated with increased proliferation rate and shorter survival. Blood. 2007;109:4599–4606. PubMed PMC

Hrstka R., Coates P.J., Vojtesek B. Polymorphisms in p53 and the p53 pathway: Roles in cancer susceptibility and response to treatment. J. Cell. Mol. Med. 2009;13:440–453. PubMed PMC

Stacey S.N., Sulem P., Jonasdottir A., Masson G., Gudmundsson J., Gudbjartsson D.F., Magnusson O.T., Gudjonsson S.A., Sigurgeirsson B., Thorisdottir K., et al. A germline variant in the tp53 polyadenylation signal confers cancer susceptibility. Nature Genet. 2011;43:1098–1103. PubMed PMC

Zhou L., Yuan Q., Yang M. A functional germline variant in the p53 polyadenylation signal and risk of esophageal squamous cell carcinoma. Gene. 2012;506:295–297. PubMed

Li Y., Gordon M.W., Xu-Monette Z.Y., Visco C., Tzankov A., Zou D., Qiu L., Montes-Moreno S., Dybkaer K., Orazi A., et al. Single nucleotide variation in the tp53 3′ untranslated region in diffuse large b-cell lymphoma treated with rituximab-chop: A report from the international dlbcl rituximab-chop consortium program. Blood. 2013;121:4529–4540. PubMed PMC

Enciso-Mora V., Hosking F.J., Di Stefano A.L., Zelenika D., Shete S., Broderick P., Idbaih A., Delattre J.Y., Hoang-Xuan K., Marie Y., et al. Low penetrance susceptibility to glioma is caused by the tp53 variant rs78378222. Br. J. Cancer. 2013;108:2178–2185. PubMed PMC

Akman B.H., Can T., Erson-Bensan A.E. Estrogen-induced upregulation and 3′-utr shortening of cdc6. Nucleic Acids Res. 2012;40:10679–10688. PubMed PMC

Kazazoglou T., Tsiapalis C.M., Havredaki M. Polyadenylate polymerase activity in stationary and growing cell cultures. Exp. Cell Biol. 1987;55:164–172. PubMed

Scorilas A., Talieri M., Ardavanis A., Courtis N., Dimitriadis E., Yotis J., Tsiapalis C.M., Trangas T. Polyadenylate polymerase enzymatic activity in mammary tumor cytosols: A new independent prognostic marker in primary breast cancer. Cancer Res. 2000;60:5427–5433. PubMed

Xu N., Chen C.Y., Shyu A.B. Modulation of the fate of cytoplasmic mrna by au-rich elements: Key sequence features controlling mrna deadenylation and decay. Mol. Cell. Biol. 1997;17:4611–4621. PubMed PMC

Hollis G.F., Gazdar A.F., Bertness V., Kirsch I.R. Complex translocation disrupts c-myc regulation in a human plasma cell myeloma. Mol. Cell. Biol. 1988;8:124–129. PubMed PMC

Eick D., Piechaczyk M., Henglein B., Blanchard J.M., Traub B., Kofler E., Wiest S., Lenoir G.M., Bornkamm G.W. Aberrant c-myc rnas of burkitt’s lymphoma cells have longer half-lives. EMBO J. 1985;4:3717–3725. PubMed PMC

Young L.E., Dixon D.A. Posttranscriptional regulation of cyclooxygenase 2 expression in colorectal cancer. Curr. Colorectal Cancer Rep. 2010;6:60–67. PubMed PMC

zur Hausen H. Human papillomaviruses and their possible role in squamous cell carcinomas. Curr. Top. Microbiol. Immunol. 1977;78:1–30. PubMed

Schwarz E., Freese U.K., Gissmann L., Mayer W., Roggenbuck B., Stremlau A., zur Hausen H. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature. 1985;314:111–114. PubMed

Yee C., Krishnan-Hewlett I., Baker C.C., Schlegel R., Howley P.M. Presence and expression of human papillomavirus sequences in human cervical carcinoma cell lines. Am. J. Pathol. 1985;119:361–366. PubMed PMC

Jeon S., Lambert P.F. Integration of human papillomavirus type 16 DNA into the human genome leads to increased stability of e6 and e7 mrnas: Implications for cervical carcinogenesis. Proc. Natl. Acad. Sci. USA. 1995;92:1654–1658. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...