Light Drives and Temperature Modulates: Variation of Phenolic Compounds Profile in Relation to Photosynthesis in Spring Barley
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
18-23702S
Czech Science Foundation
SGS11/PřF/2022
University of Ostrava
RRC/10/2021
Moravian-Silesian Region
CZ.02.1.01/0.0/0.0/16_019/0000797
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
36768753
PubMed Central
PMC9916737
DOI
10.3390/ijms24032427
PII: ijms24032427
Knihovny.cz E-resources
- Keywords
- CO2 assimilation, HPLC, antioxidants, carotenoids, flavonoids, gene expression, non-structural carbohydrates, photosynthetically active radiation (PAR), secondary metabolism, spring barley (Hordeum vulgare), temperature,
- MeSH
- Antioxidants pharmacology MeSH
- Phenols pharmacology MeSH
- Photosynthesis MeSH
- Hordeum * metabolism MeSH
- Temperature MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antioxidants MeSH
- Phenols MeSH
Accumulation and metabolic profile of phenolic compounds (PheCs; serving as UV-screening pigments and antioxidants) as well as carbon fixation rate (An) and plant growth are sensitive to irradiance and temperature. Since these factors are naturally co-acting in the environment, it is worthy to study the combined effects of these environmental factors to assess their possible physiological consequences. We investigated how low and high irradiance in combination with different temperatures modify the metabolic profile of PheCs and expression of genes involved in the antioxidative enzyme and PheCs biosynthesis, in relation to photosynthetic activity and availability of non-structural carbohydrates (NSC) in spring barley seedlings. High irradiance positively affected An, NSC, PheCs content, and antioxidant activity (AOX). High temperature led to decreased An, NSC, and increased dark respiration, whilst low temperature was accompanied by reduction of UV-A shielding but increase of PheCs content and AOX. Besides that, irradiance and temperature caused changes in the metabolic profile of PheCs, particularly alteration in homoorientin/isovitexin derivatives ratio, possibly related to demands on AOX-based protection. Moreover, we also observed changes in the ratio of sinapoyl-/feruloyl- acylated flavonoids, the function of which is not yet known. The data also strongly suggested that the NSC content may support the PheCs production.
Department of Physics Faculty of Science University of Ostrava 710 00 Ostrava Czech Republic
Global Change Research Institute Czech Academy of Sciences 603 00 Brno Czech Republic
See more in PubMed
Agati G., Brunetti C., Fini A., Gori A., Guidi L., Landi M., Sebastiani F., Tattini M. Are Flavonoids Effective Antioxidants in Plants? Twenty Years of Our Investigation. Antioxidants. 2020;9:1098. doi: 10.3390/antiox9111098. PubMed DOI PMC
Landi M., Tattini M., Gould K. Multiple functional roles of anthocyanins in plant-environment interactions. Environ. Exp. Bot. 2015;119:4–17. doi: 10.1016/j.envexpbot.2015.05.012. DOI
Caretto S., Linsalata V., Colella G., Mita G., Lattanzio V. Carbon Fluxes between Primary Metabolism and Phenolic Pathway in Plant Tissues under Stress. Int. J. Mol. Sci. 2015;16:26378–26394. doi: 10.3390/ijms161125967. PubMed DOI PMC
Lloyd J., Zakhleniuk O. Responses of primary and secondary metabolism to sugar accumulation revealed by microarray expression analysis of the Arabidopsis mutant, pho3. J. Exp. Bot. 2004;55:1221–1230. doi: 10.1093/jxb/erh143. PubMed DOI
Gottwald J., Krysan P., Young J., Evert R., Sussman M. Genetic evidence for the in planta role of phloem-specific plasma membrane sucrose transporters. Proc. Natl. Acad. Sci. USA. 2000;97:13979–13984. doi: 10.1073/pnas.250473797. PubMed DOI PMC
Solfanelli C., Poggi A., Loreti E., Alpi A., Perata P. Sucrose-Specific Induction of the Anthocyanin Biosynthetic Pathway in Arabidopsis. Plant Physiol. 2006;140:637–646. doi: 10.1104/pp.105.072579. PubMed DOI PMC
Mathur S., Agrawal D., Jajoo A. Photosynthesis: Response to high temperature stress. J. Photochem. Photobiol. B Biol. 2014;137:116–126. doi: 10.1016/j.jphotobiol.2014.01.010. PubMed DOI
Agati G., Brunetti C., Di Ferdinando M., Ferrini F., Pollastri S., Tattini M. Functional roles of flavonoids in photoprotection: New evidence, lessons from the past. Plant Physiol. Biochem. 2013;72:35–45. doi: 10.1016/j.plaphy.2013.03.014. PubMed DOI
Bassi R., Dall’Osto L. Dissipation of Light Energy Absorbed in Excess: The Molecular Mechanisms. Annu. Rev. Plant Biol. 2021;72:47–76. doi: 10.1146/annurev-arplant-071720-015522. PubMed DOI
Landi M., Zivcak M., Sytar O., Brestic M., Allakhverdiev S. Plasticity of photosynthetic processes and the accumulation of secondary metabolites in plants in response to monochromatic light environments: A review. Biochim. Biophys. Acta (BBA)-Bioenerg. 2020;1861:148131. doi: 10.1016/j.bbabio.2019.148131. PubMed DOI
Bhatia C., Pandey A., Gaddam S., Hoecker U., Trivedi P. Low Temperature-Enhanced Flavonol Synthesis Requires Light-Associated Regulatory Components in Arabidopsis thaliana. Plant Cell Physiol. 2018;59:2099–2112. doi: 10.1093/pcp/pcy132. PubMed DOI
Catalá R., Medina J., Salinas J. Integration of low temperature and light signaling during cold acclimation response in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2011;108:16475–16480. doi: 10.1073/pnas.1107161108. PubMed DOI PMC
Leyva A., Jarillo J., Salinas J., Martinez-Zapater J. Low Temperature Induces the Accumulation of Phenylalanine Ammonia-Lyase and Chalcone Synthase mRNAs of Arabidopsis thaliana in a Light-Dependent Manner. Plant Physiol. 1995;108:39–46. doi: 10.1104/pp.108.1.39. PubMed DOI PMC
Christie P., Alfenito M., Walbot V. Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways: Enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta. 1994;194:541–549. doi: 10.1007/BF00714468. DOI
Sicher R., Kremer D. Effects of temperature and irradiance on non-structural carbohydrate accumulation in barley primary leaves. Physiol. Plant. 1986;66:365–369. doi: 10.1111/j.1399-3054.1986.tb05936.x. DOI
Rivero R., Ruiz J., Garcı P., López-Lefebre L., Sánchez E., Romero L. Resistance to cold and heat stress: Accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci. 2001;160:315–321. doi: 10.1016/S0168-9452(00)00395-2. PubMed DOI
Olsen K., Slimestad R., Lea U., Brede C., Løvdal T., Ruoff P., Verheul M., Lillo C. Temperature and nitrogen effects on regulators and products of the flavonoid pathway: Experimental and kinetic model studies. Plant Cell Environ. 2009;32:286–299. doi: 10.1111/j.1365-3040.2008.01920.x. PubMed DOI
Petridis A., Döll S., Nichelmann L., Bilger W., Mock H.-P. Arabidopsis thaliana G2-LIKE Flavonoid Regulator and brassinosteroid enhanced EXPRESSION1 are low-temperature regulators of flavonoid accumulation. New Phytol. 2016;211:912–925. doi: 10.1111/nph.13986. PubMed DOI
Dao T., Linthorst H., Verpoorte R. Chalcone synthase and its functions in plant resistance. Phytochem. Rev. 2011;10:397–412. doi: 10.1007/s11101-011-9211-7. PubMed DOI PMC
Franklin K., Lee S., Patel D., Kumar S., Spartz A., Gu C., Ye S., Yu P., Breen G., Cohen J., et al. PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc. Natl. Acad. Sci. USA. 2011;108:20231–20235. doi: 10.1073/pnas.1110682108. PubMed DOI PMC
Ma J., Li M.-Y., Wang F., Tang J., Xiong A.-S. Genome-wide analysis of Dof family transcription factors and their responses to abiotic stresses in Chinese cabbage. BMC Genom. 2015;16:33. doi: 10.1186/s12864-015-1242-9. PubMed DOI PMC
Legris M., Klose C., Burgie E., Rojas C., Neme M., Hiltbrunner A., Wigge P., Schäfer E., Vierstra R., Casal J. Phytochrome B integrates light and temperature signals in Arabidopsis. Science. 2016;354:897–900. doi: 10.1126/science.aaf5656. PubMed DOI
Zhang Q., Zhai J., Shao L., Lin W., Peng C. Accumulation of Anthocyanins: An Adaptation Strategy of Mikania micrantha to Low Temperature in Winter. [(accessed on 13 June 2022)];Front. Plant Sci. 2019 10:1049. doi: 10.3389/fpls.2019.01049. Available online: https://www.frontiersin.org/article/10.3389/fpls.2019.01049. PubMed DOI PMC
Brauch D., Porzel A., Schumann E., Pillen K., Mock H.-P. Changes in isovitexin-O-glycosylation during the development of young barley plants. Phytochemistry. 2018;148:11–20. doi: 10.1016/j.phytochem.2018.01.001. PubMed DOI
Havaux M., Greppin H., Strasser R. Functioning of photosystems I and II in pea leaves exposed to heat stress in the presence or absence of light. Planta. 1991;186:88–98. doi: 10.1007/BF00201502. PubMed DOI
Kurasová I., Čajánek M., Kalina J., Urban O., Špunda V. Characterization of acclimation of Hordeum vulgare to high irradiation based on different responses of photosynthetic activity and pigment composition. Photosynth. Res. 2002;72:71. doi: 10.1023/A:1016018900535. PubMed DOI
Goss R., Latowski D. Lipid Dependence of Xanthophyll Cycling in Higher Plants and Algae. [(accessed on 5 January 2023)];Front. Plant Sci. 2020 11:455. doi: 10.3389/fpls.2020.00455. Available online: https://www.frontiersin.org/articles/10.3389/fpls.2020.00455. PubMed DOI PMC
Szilágyi A., Sommarin M., Akerlund H.-E. Membrane curvature stress controls the maximal conversion of violaxanthin to zeaxanthin in the violaxanthin cycle--influence of alpha-tocopherol, cetylethers, linolenic acid, and temperature. Biochim. Biophys. Acta. 2007;1768:2310–2318. doi: 10.1016/j.bbamem.2007.06.001. PubMed DOI
Zhang R., Kramer D., Cruz J., Struck K., Sharkey T. The effects of moderately high temperature on zeaxanthin accumulation and decay. Photosynth. Res. 2011;108:171. doi: 10.1007/s11120-011-9672-y. PubMed DOI
Welc R., Luchowski R., Kluczyk D., Zubik-Duda M., Grudzinski W., Maksim M., Reszczynska E., Sowinski K., Mazur R., Nosalewicz A., et al. Mechanisms shaping the synergism of zeaxanthin and PsbS in photoprotective energy dissipation in the photosynthetic apparatus of plants. Plant J. 2021;107:418–433. doi: 10.1111/tpj.15297. PubMed DOI
Havaux M., Dall’Osto L., Bassi R. Zeaxanthin Has Enhanced Antioxidant Capacity with Respect to All Other Xanthophylls in Arabidopsis Leaves and Functions Independent of Binding to PSII Antennae. Plant Physiol. 2007;145:1506–1520. doi: 10.1104/pp.107.108480. PubMed DOI PMC
Szilágyi A., Selstam E., Akerlund H.-E. Laurdan fluorescence spectroscopy in the thylakoid bilayer: The effect of violaxanthin to zeaxanthin conversion on the galactolipid dominated lipid environment. Biochim. Biophys. Acta. 2008;1778:348–355. doi: 10.1016/j.bbamem.2007.10.006. PubMed DOI
Labate C., Adcock M., Leegood R. Effects of temperature on the regulation of photosynthetic carbon assimilation in leaves of maize and barley. Planta. 1990;181:547–554. doi: 10.1007/BF00193009. PubMed DOI
Crafts-Brandner S., van de Loo F., Salvucci M. The Two Forms of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Activase Differ in Sensitivity to Elevated Temperature. Plant Physiol. 1997;114:439–444. doi: 10.1104/pp.114.2.439. PubMed DOI PMC
Rollins J., Habte E., Templer S., Colby T., Schmidt J., von Korff M. Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.) J. Exp. Bot. 2013;64:3201–3212. doi: 10.1093/jxb/ert158. PubMed DOI PMC
Salvucci M., Osteryoung K., Crafts-Brandner S., Vierling E. Exceptional Sensitivity of Rubisco Activase to Thermal Denaturation in Vitro and in Vivo. Plant Physiol. 2001;127:1053–1064. doi: 10.1104/pp.010357. PubMed DOI PMC
Geiger D., Servaites J. Diurnal Regulation of Photosynthetic Carbon Metabolism in C3 Plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1994;45:235–256. doi: 10.1146/annurev.pp.45.060194.001315. DOI
Krapp A., Stitt M. An evaluation of direct and indirect mechanisms for the “sink-regulation” of photosynthesis in spinach: Changes in gas exchange, carbohydrates, metabolites, enzyme activities and steady-state transcript levels after cold-girdling source leaves. Planta. 1995;195:313–323. doi: 10.1007/BF00202587. DOI
Peuke A., Windt C., Van As H. Effects of cold-girdling on flows in the transport phloem in Ricinus communis: Is mass flow inhibited? Plant Cell Environ. 2006;29:15–25. doi: 10.1111/j.1365-3040.2005.01396.x. PubMed DOI
Wingler A. Comparison of signaling interactions determining annual and perennial plant growth in response to low temperature. [(accessed on 26 August 2022)];Front. Plant Sci. 2015 5:794. doi: 10.3389/fpls.2014.00794. Available online: https://www.frontiersin.org/articles/10.3389/fpls.2014.00794. PubMed DOI PMC
Savitch L., Harney T., Huner N. Sucrose metabolism in spring and winter wheat in response to high irradiance, cold stress and cold acclimation. Physiol. Plant. 2000;108:270–278. doi: 10.1034/j.1399-3054.2000.108003270.x. DOI
Gorsuch P., Pandey S., Atkin O. Temporal heterogeneity of cold acclimation phenotypes in Arabidopsis leaves. Plant Cell Environ. 2010;33:244–258. doi: 10.1111/j.1365-3040.2009.02074.x. PubMed DOI
Weiszmann J., Fürtauer L., Weckwerth W., Nägele T. Vacuolar sucrose cleavage prevents limitation of cytosolic carbohydrate metabolism and stabilizes photosynthesis under abiotic stress. FEBS J. 2018;285:4082–4098. doi: 10.1111/febs.14656. PubMed DOI
Klem K., Holub P., Štroch M., Nezval J., Špunda V., Tříska J., Jansen M., Robson T., Urban O. Ultraviolet and photosynthetically active radiation can both induce photoprotective capacity allowing barley to overcome high radiation stress. Plant Physiol. Biochem. 2015;93:74–83. doi: 10.1016/j.plaphy.2015.01.001. PubMed DOI
Pech R., Volná A., Hunt L., Bartas M., Červeň J., Pečinka P., Špunda V., Nezval J. Regulation of Phenolic Compound Production by Light Varying in Spectral Quality and Total Irradiance. Int. J. Mol. Sci. 2022;23:6533. doi: 10.3390/ijms23126533. PubMed DOI PMC
Siipola S., Kotilainen T., Sipari N., Morales L., Lindfors A., Robson T., Aphalo P. Epidermal UV-A absorbance and whole-leaf flavonoid composition in pea respond more to solar blue light than to solar UV radiation. Plant Cell Environ. 2015;38:941–952. doi: 10.1111/pce.12403. PubMed DOI
Tattini M., Galardi C., Pinelli P., Massai R., Remorini D., Agati G. Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytol. 2004;163:547–561. doi: 10.1111/j.1469-8137.2004.01126.x. PubMed DOI
Bilger W., Rolland M., Nybakken L. UV screening in higher plants induced by low temperature in the absence of UV-B radiation. Photochem. Photobiol. Sci. 2007;6:190–195. doi: 10.1039/b609820g. PubMed DOI
Coffey A., Jansen M. Effects of natural solar UV-B radiation on three Arabidopsis accessions are strongly affected by seasonal weather conditions. Plant Physiol. Biochem. 2019;134:64–72. doi: 10.1016/j.plaphy.2018.06.016. PubMed DOI
Schulz E., Tohge T., Zuther E., Fernie A., Hincha D. Flavonoids are determinants of freezing tolerance and cold acclimation in Arabidopsis thaliana. Sci. Rep. 2016;6:34027. doi: 10.1038/srep34027. PubMed DOI PMC
Ferreres F., Andrade P., Valentão P., Gil-Izquierdo A. Further knowledge on barley (Hordeum vulgare L.) leaves O-glycosyl-C-glycosyl flavones by liquid chromatography-UV diode-array detection-electrospray ionisation mass spectrometry. J. Chromatogr. A. 2008;1182:56–64. doi: 10.1016/j.chroma.2007.12.070. PubMed DOI
Neugart S., Tobler M., Barnes P. Different irradiances of UV and PAR in the same ratios alter the flavonoid profiles of Arabidopsis thaliana wild types and UV-signalling pathway mutants. Photochem. Photobiol. Sci. 2019;18:1685–1699. doi: 10.1039/c8pp00496j. PubMed DOI
Neugart S., Fiol M., Schreiner M., Rohn S., Zrenner R., Kroh L., Krumbein A. Low and moderate photosynthetically active radiation affects the flavonol glycosides and hydroxycinnamic acid derivatives in kale (Brassica oleracea var. sabellica) dependent on two low temperatures. Plant Physiol. Biochem. 2013;72:161–168. doi: 10.1016/j.plaphy.2013.04.002. PubMed DOI
Kikuzaki H., Hisamoto M., Hirose K., Akiyama K., Taniguchi H. Antioxidant Properties of Ferulic Acid and Its Related Compounds. J. Agric. Food Chem. 2002;50:2161–2168. doi: 10.1021/jf011348w. PubMed DOI
Jenkins G. UV and blue light signal transduction in Arabidopsis. Plant Cell Environ. 1997;20:773–778. doi: 10.1046/j.1365-3040.1997.d01-105.x. PubMed DOI
Jenkins G., Long J., Wade H., Shenton M., Bibikova T. UV and blue light signalling: Pathways regulating chalcone synthase gene expression in Arabidopsis. New Phytol. 2001;151:121–131. doi: 10.1046/j.1469-8137.2001.00151.x. PubMed DOI
Podolec R., Ulm R. Photoreceptor-mediated regulation of the COP1/SPA E3 ubiquitin ligase. Curr. Opin. Plant Biol. 2018;45:18–25. doi: 10.1016/j.pbi.2018.04.018. PubMed DOI
Stracke R., Favory J.-J., Gruber H., Bartelniewoehner L., Bartels S., Binkert M., Funk M., Weisshaar B., Ulm R. The Arabidopsis bZIP transcription factor HY5 regulates expression of the PFG1/MYB12 gene in response to light and ultraviolet-B radiation. Plant Cell Environ. 2010;33:88–103. doi: 10.1111/j.1365-3040.2009.02061.x. PubMed DOI
Neugart S., Krumbein A., Zrenner R. Influence of Light and Temperature on Gene Expression Leading to Accumulation of Specific Flavonol Glycosides and Hydroxycinnamic Acid Derivatives in Kale (Brassica oleracea var. sabellica) Front. Plant Sci. 2016;7:326. doi: 10.3389/fpls.2016.00326. PubMed DOI PMC
Nezval J., Štroch M., Materová Z., Špunda V., Kalina J. Phenolic compounds and carotenoids during acclimation of spring barley and its mutant Chlorina f2 from high to low irradiance. Biol. Plant. 2017;61:73–84. doi: 10.1007/s10535-016-0689-0. DOI
Teng S., Keurentjes J., Bentsink L., Koornneef M., Smeekens S. Sucrose-Specific Induction of Anthocyanin Biosynthesis in Arabidopsis Requires the MYB75/PAP1 Gene. Plant Physiol. 2005;139:1840–1852. doi: 10.1104/pp.105.066688. PubMed DOI PMC
Tsukaya H., Ohshima T., Naito S., Chino M., Komeda Y. Sugar-Dependent Expression of the CHS-A Gene for Chalcone Synthase from Petunia in Transgenic Arabidopsis. Plant Physiol. 1991;97:1414–1421. doi: 10.1104/pp.97.4.1414. PubMed DOI PMC
Lu C.-A., Lim E.-K., Yu S.-M. Sugar Response Sequence in the Promoter of a Rice α-Amylase Gene Serves as a Transcriptional Enhancer. J. Biol. Chem. 1998;273:10120–10131. doi: 10.1074/jbc.273.17.10120. PubMed DOI
Laine P., Bigot J., Ourry A., Boucaud J. Effects of low temperature on nitrate uptake, and xylem and phloem flows of nitrogen, in Secale cereale L. and Brassica napus L. New Phytol. 1994;127:675–683. doi: 10.1111/j.1469-8137.1994.tb02970.x. PubMed DOI
Larbat R., Robin C., Lillo C., Drengstig T., Ruoff P. Modeling the diversion of primary carbon flux into secondary metabolism under variable nitrate and light/dark conditions. J. Theor. Biol. 2016;402:144–157. doi: 10.1016/j.jtbi.2016.05.008. PubMed DOI
Ögren E., Evans J. Photosynthetic light-response curves. Planta. 1993;189:182–190. doi: 10.1007/BF00195075. DOI
Lichtenthaler H. Methods in Enzymology. Elsevier; Amsterdam, The Netherlands: 1987. [34] Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes; pp. 350–382. DOI
Materová Z., Sobotka R., Zdvihalová B., Oravec M., Nezval J., Karlický V., Vrábl D., Štroch M., Špunda V. Monochromatic green light induces an aberrant accumulation of geranylgeranyled chlorophylls in plants. Plant Physiol. Biochem. 2017;116:48–56. doi: 10.1016/j.plaphy.2017.05.002. PubMed DOI
Cerovic Z., Masdoumier G., Ghozlen N., Latouche G. A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiol. Plant. 2012;146:251–260. doi: 10.1111/j.1399-3054.2012.01639.x. PubMed DOI PMC
Han S., Li D., Trost E., Mayer K., Vlot A., Heller W., Schmid M., Hartmann A., Rothballer M. Systemic Responses of Barley to the 3-hydroxy-decanoyl-homoserine Lactone Producing Plant Beneficial Endophyte Acidovorax radicis N35. Front. Plant Sci. 2016;7:1868. doi: 10.3389/fpls.2016.01868. PubMed DOI PMC
Ghannam A., Alek H., Doumani S., Mansour D., Arabi M. Deciphering the transcriptional regulation and spatiotemporal distribution of immunity response in barley to Pyrenophora graminea fungal invasion. BMC Genom. 2016;17:256. doi: 10.1186/s12864-016-2573-x. PubMed DOI PMC
Shoeva O., Mock H.-P., Kukoeva T., Börner A., Khlestkina E. Regulation of the Flavonoid Biosynthesis Pathway Genes in Purple and Black Grains of Hordeum vulgare. PLoS ONE. 2016;11:e0163782. doi: 10.1371/journal.pone.0163782. PubMed DOI PMC
Cai J., Li P., Luo X., Chang T., Li J., Zhao Y., Xu Y. Selection of appropriate reference genes for the detection of rhythmic gene expression via quantitative real-time PCR in Tibetan hulless barley. PLoS ONE. 2018;13:e0190559. doi: 10.1371/journal.pone.0190559. PubMed DOI PMC
Shagimardanova E., Gusev O., Bingham G., Levinskikh M., Sychev V., Tiansu Z., Kihara M., Ito K., Sugimoto M. Oxidative stress and antioxidant capacity in barley grown under space environment. Biosci. Biotechnol. Biochem. 2010;74:1479–1482. doi: 10.1271/bbb.100139. PubMed DOI
Parrott D., Martin J., Fischer A. Analysis of barley (Hordeum vulgare) leaf senescence and protease gene expression: A family C1A cysteine protease is specifically induced under conditions characterized by high carbohydrate, but low to moderate nitrogen levels. New Phytol. 2010;187:313–331. doi: 10.1111/j.1469-8137.2010.03278.x. PubMed DOI
Livak K., Schmittgen T. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI