Study on Sperm-Cell Detection Using YOLOv5 Architecture with Labaled Dataset
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
36833377
PubMed Central
PMC9957213
DOI
10.3390/genes14020451
PII: genes14020451
Knihovny.cz E-zdroje
- Klíčová slova
- computer-aided sperm analysis, small-object detection, sperm-cell detection, yolo,
- MeSH
- analýza spermatu MeSH
- lidé MeSH
- motilita spermií MeSH
- mužská infertilita * diagnóza MeSH
- sperma * MeSH
- spermie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Infertility has recently emerged as a severe medical problem. The essential elements in male infertility are sperm morphology, sperm motility, and sperm density. In order to analyze sperm motility, density, and morphology, laboratory experts do a semen analysis. However, it is simple to err when using a subjective interpretation based on laboratory observation. In this work, a computer-aided sperm count estimation approach is suggested to lessen the impact of experts in semen analysis. Object detection techniques concentrating on sperm motility estimate the number of active sperm in the semen. This study provides an overview of other techniques that we can compare. The Visem dataset from the Association for Computing Machinery was used to test the proposed strategy. We created a labelled dataset to prove that our network can detect sperms in images. The best not-super tuned result is mAP 72.15.
Zobrazit více v PubMed
Boivin J., Bunting L., Collins J.A., Nygren K.G. International estimates of infertility prevalence and treatment-seeking: Potential need and demand for infertility medical care. Hum. Reprod. 2007;22:1506–1512. doi: 10.1093/humrep/dem046. PubMed DOI
Schmidt L. Psychosocial Consequences of Infertility and Treatment. In: Carrell D.T., Peterson C.M., editors. Reproductive Endocrinology and Infertility: Integrating Modern Clinical and Laboratory Practice. Springer; New York, NY, USA: 2010. pp. 93–100. DOI
Maduro M.R., Lamb D.J. Understanding New Genetics of Male Infertility. J. Urol. 2002;168:2197–2205. doi: 10.1016/S0022-5347(05)64355-8. PubMed DOI
Gumuscu A., Tenekeci M.E. Estimation of active sperm count in spermiogram using motion detection methods. J. Fac. Eng. Archit. Gazi Univ. 2019;34:1274–1280. doi: 10.17341/gazimmfd.460524. DOI
Suttipasit P. Forensic Spermatozoa Detection. Am. J. Forensic Med. Pathol. 2019;40:304–311. doi: 10.1097/PAF.0000000000000517. PubMed DOI
Kucuk N. Sperm DNA and detection of DNA fragmentations in sperm. Turk. J. Urol. 2018;44:1–5. doi: 10.5152/tud.2018.49321. PubMed DOI PMC
Hidayatullah P., Mengko T.L.E.R., Munir R. A Survey on Multisperm Tracking for Sperm Motility Measurement. Int. J. Mach. Learn. Comput. 2017;7:144–151. doi: 10.18178/ijmlc.2017.7.5.637. DOI
Broekhuijse M.L.W.J., Šoštarić E., Feitsma H., Gadella B.M. Additional value of computer assisted semen analysis (CASA) compared to conventional motility assessments in pig artificial insemination. Theriogenology. 2011;76:1473–1486.e1. doi: 10.1016/j.theriogenology.2011.05.040. PubMed DOI
Iguer-ouada M., Verstegen J.P. Evaluation of the “Hamilton Thorn computer-based automated system” for dog semen analysis. Theriogenology. 2001;55:733–749. doi: 10.1016/S0093-691X(01)00440-X. PubMed DOI
Mambou S., Krejcar O., Selamat A., Dobrovolny M., Maresova P., Kuca K. Novel Thermal Image Classification Based on Techniques Derived from Mathematical Morphology: Case of Breast Cancer. In: Rojas I., Valenzuela O., Rojas F., Herrera L.J., Ortuño F., editors. Bioinformatics and Biomedical Engineering. Volume 12108. Springer International Publishing; New York, NY, USA: 2020. pp. 683–694. DOI
Dobrovolny M., Mls K., Krejcar O., Mambou S., Selamat A. Medical Image Data Upscaling with Generative Adversarial Networks. In: Rojas I., Valenzuela O., Rojas F., Herrera L.J., Ortuño F., editors. Bioinformatics and Biomedical Engineering. Volume 12108. Springer International Publishing; New York, NY, USA: 2020. pp. 739–749. DOI
Hidayatullah P., Mengko T.L.E.R., Munir R., Barlian A. Bull Sperm Tracking and Machine Learning-Based Motility Classification. IEEE Access. 2021;9:61159–61170. doi: 10.1109/ACCESS.2021.3074127. DOI
Martin R. Detection of Genetic-Damage in Human Sperm. Reprod Toxicol. 1993;7:47–52. doi: 10.1016/0890-6238(93)90068-I. PubMed DOI
Silva P.F.N., Gadella B.M. Detection of damage in mammalian sperm cells. Theriogenology. 2006;65:958–978. doi: 10.1016/j.theriogenology.2005.09.010. PubMed DOI
World Health Organization, Regional Office for the Eastern Mediterranean . List of Basic Sources in English for a Medical Faculty Library. World Health Organization; Rome, Itay: 2013. p. 133. Section Vi.
García-Olalla O., Alegre E., Fernández-Robles L., Malm P., Bengtsson E. Acrosome integrity assessment of boar spermatozoa images using an early fusion of texture and contour descriptors. Comput. Methods Programs Biomed. 2015;120:49–64. doi: 10.1016/j.cmpb.2015.03.005. PubMed DOI
Auger J., Eustache F., Ducot B., Blandin T., Daudin M., Diaz I., Matribi S., Gony B., Keskes L., Kolbezen M., et al. Intra- and inter-individual variability in human sperm concentration, motility and vitality assessment during a workshop involving ten laboratories. Hum. Reprod. 2000;15:2360–2368. doi: 10.1093/humrep/15.11.2360. PubMed DOI
Hoogewijs M.K., De Vliegher S.P., Govaere J.L., De Schauwer C., De Kruif A., Van Soom A. Influence of counting chamber type on CASA outcomes of equine semen analysis. Equine Vet. J. 2012;44:542–549. doi: 10.1111/j.2042-3306.2011.00523.x. PubMed DOI
Sørensen L., Østergaard J., Johansen P., Bruijne M.d. Multi-object tracking of human spermatozoa; Proceedings of the Medical Imaging 2008: Image Processing; San Diego, CA, USA. 16–21 February 2008; Philadelphia, PA, USA: SPIE; 2008. pp. 784–795. DOI
Jati G., Gunawan A.A.S., Lestari S.W., Jatmiko W., Hilman M.H. Multi-sperm tracking using Hungarian Kalman Filter on low frame rate video; Proceedings of the 2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS); Malang, Indonesia. 15–16 October 2016; pp. 530–535. DOI
Imani Y., Teyfouri N., Ahmadzadeh M.R., Golabbakhsh M. A new method for multiple sperm cells tracking. J. Med. Signals Sens. 2014;4:35. doi: 10.4103/2228-7477.128436. PubMed DOI PMC
Zhang W., Phoon K.K. Editorial for Advances and applications of deep learning and soft computing in geotechnical underground engineering. J. Rock Mech. Geotech. Eng. 2022;14:671–673. doi: 10.1016/j.jrmge.2022.01.001. DOI
Zhang W., Gu X., Tang L., Yin Y., Liu D., Zhang Y. Application of machine learning, deep learning and optimization algorithms in geoengineering and geoscience: Comprehensive review and future challenge. Gondwana Res. 2022;109:1–17. doi: 10.1016/j.gr.2022.03.015. DOI
Wu C., Hong L., Wang L., Zhang R., Pijush S., Zhang W. Prediction of wall deflection induced by braced excavation in spatially variable soils via convolutional neural network. Gondwana Res. 2022 doi: 10.1016/j.gr.2022.06.011. in press . DOI
Phoon K.K., Zhang W. Future of machine learning in geotechnics. Georisk. 2022:1–16. doi: 10.1080/17499518.2022.2087884. DOI
Dobrovolny M., Benes J., Krejcar O., Selamat A. Sperm-cell Detection Using YOLOv5 Architecture. In: Rojas I., Valenzuela O., Rojas F., Herrera L.J., Ortuño F., editors. Bioinformatics and Biomedical Engineering. Volume 13347. Springer International Publishing; New York, NY, USA: 2022. pp. 319–330. DOI
Chang V., Saavedra J.M., Castañeda V., Sarabia L., Hitschfeld N., Härtel S. Gold-standard and improved framework for sperm head segmentation. Comput. Methods Programs Biomed. 2014;117:225–237. doi: 10.1016/j.cmpb.2014.06.018. PubMed DOI
Nissen M.S., Krause O., Almstrup K., Kjærulff S., Nielsen T.T., Nielsen M. Convolutional Neural Networks for Segmentation and Object Detection of Human Semen. In: Sharma P., Bianchi F.M., editors. Image Analysis. Volume 10269. Springer International Publishing; New York, NY, USA: 2017. pp. 397–406. DOI
Ilhan H.O., Sigirci I.O., Serbes G., Aydin N. A fully automated hybrid human sperm detection and classification system based on mobile-net and the performance comparison with conventional methods. Med. Biol. Eng. Comput. 2020;58:1047–1068. doi: 10.1007/s11517-019-02101-y. PubMed DOI
Boumaza K., Loukil A. Computer-Assisted Analysis of Human Semen Concentration and Motility. Int. J. E-Health Med. Commun. 2020;11:17–33. doi: 10.4018/IJEHMC.2020100102. DOI
Prabaharan L., Raghunathan A. An improved convolutional neural network for abnormality detection and segmentation from human sperm images. J. Ambient. Intell. Humaniz. Comput. 2021;12:3341–3352. doi: 10.1007/s12652-020-02773-7. DOI
Alhaj Alabdulla A., Haşıloğlu A., Hicazi Aksu E. A robust sperm cell tracking algorithm using uneven lighting image fixing and improved branch and bound algorithm. Inst. Eng. Technol. 2021;15:2068–2079. doi: 10.1049/ipr2.12178. DOI
Hidayatullah P., Wang X., Yamasaki T., Mengko T.L.E.R., Munir R., Barlian A., Sukmawati E., Supraptono S. DeepSperm: A robust and real-time bull sperm-cell detection in densely populated semen videos. Comput. Methods Programs Biomed. 2021;209:106302. doi: 10.1016/j.cmpb.2021.106302. PubMed DOI
Wu D., Badamjav O., Reddy V., Eisenberg M., Behr B. A preliminary study of sperm identification in microdissection testicular sperm extraction samples with deep convolutional neural networks. Asian J. Androl. 2021;23:135. doi: 10.4103/aja.aja_66_20. PubMed DOI PMC
Fraczek A., Karwowska G., Miler M., Lis J., Jezierska A., Mazur-Milecka M. Sperm segmentation and abnormalities detection during the ICSI procedure using machine learning algorithms; Proceedings of the 2022 15th International Conference on Human System Interaction (HSI); Melbourne, Australia. 28–31 July 2022; New York, NY, USA: IEEE; 2022. pp. 1–6. DOI
Mashaal A.A., Eldosoky M.A.A., Mahdy L.N., Ezzat K.A. Automatic Healthy Sperm Head Detection using Deep Learning. Int. J. Adv. Comput. Sci. Appl. 2022;13:735–742. doi: 10.14569/IJACSA.2022.0130486. DOI
Pan X., Gao K., Yang N., Wang Y., Zhang X., Shao L., Zhai P., Qin F., Zhang X., Li J., et al. A Sperm Quality Detection System Based on Microfluidic Chip and Micro-Imaging System. Front. Vet. Sci. 2022;9:916861. doi: 10.3389/fvets.2022.916861. PubMed DOI PMC
Miahi E., Mirroshandel S.A., Nasr A. Genetic Neural Architecture Search for automatic assessment of human sperm images. Expert Syst. Appl. 2022;188:115937. doi: 10.1016/j.eswa.2021.115937. DOI
Zou S., Li C., Sun H., Xu P., Zhang J., Ma P., Yao Y., Huang X., Grzegorzek M. TOD-CNN: An effective convolutional neural network for tiny object detection in sperm videos. Comput. Biol. Med. 2022;146:105543. doi: 10.1016/j.compbiomed.2022.105543. PubMed DOI
Tumuklu Ozyer G., Ozyer B., Negin F., Alarabi İ., Agahian S. A hybrid IMM-JPDAF algorithm for tracking multiple sperm targets and motility analysis. Neural Comput. Appl. 2022;34:17407–17421. doi: 10.1007/s00521-022-07390-3. DOI
Urbano L.F., Masson P., VerMilyea M., Kam M. Automatic Tracking and Motility Analysis of Human Sperm in Time-Lapse Images. IEEE Trans. Med. Imaging. 2017;36:792–801. doi: 10.1109/TMI.2016.2630720. PubMed DOI
Haugen T.B., Hicks S.A., Andersen J.M., Witczak O., Hammer H.L., Borgli R., Halvorsen P., Riegler M. VISEM: A multimodal video dataset of human spermatozoa; Proceedings of the 10th ACM Multimedia Systems Conference; Amherst, MA, USA. 18–21 June 2019; New York, NY, USA: ACM; 2019. pp. 261–266. DOI
Wang C.Y., Liao H.Y.M., Yeh I.H., Wu Y.H., Chen P.Y., Hsieh J.W. CSPNet: A New Backbone that can Enhance Learning Capability of CNN. arXiv. 20191911.11929
Xu R., Lin H., Lu K., Cao L., Liu Y. A Forest Fire Detection System Based on Ensemble Learning. Forests. 2021;12:217. doi: 10.3390/f12020217. DOI
Wang K., Liew J.H., Zou Y., Zhou D., Feng J. PANet: Few-Shot Image Semantic Segmentation with Prototype Alignment. arXiv. 20201908.06391
Lin T.Y., Maire M., Belongie S., Bourdev L., Girshick R., Hays J., Perona P., Ramanan D., Zitnick C.L., Dollár P. Microsoft COCO: Common Objects in Context. arXiv. 20151405.0312