Study on Sperm-Cell Detection Using YOLOv5 Architecture with Labaled Dataset

. 2023 Feb 09 ; 14 (2) : . [epub] 20230209

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36833377

Infertility has recently emerged as a severe medical problem. The essential elements in male infertility are sperm morphology, sperm motility, and sperm density. In order to analyze sperm motility, density, and morphology, laboratory experts do a semen analysis. However, it is simple to err when using a subjective interpretation based on laboratory observation. In this work, a computer-aided sperm count estimation approach is suggested to lessen the impact of experts in semen analysis. Object detection techniques concentrating on sperm motility estimate the number of active sperm in the semen. This study provides an overview of other techniques that we can compare. The Visem dataset from the Association for Computing Machinery was used to test the proposed strategy. We created a labelled dataset to prove that our network can detect sperms in images. The best not-super tuned result is mAP 72.15.

Zobrazit více v PubMed

Boivin J., Bunting L., Collins J.A., Nygren K.G. International estimates of infertility prevalence and treatment-seeking: Potential need and demand for infertility medical care. Hum. Reprod. 2007;22:1506–1512. doi: 10.1093/humrep/dem046. PubMed DOI

Schmidt L. Psychosocial Consequences of Infertility and Treatment. In: Carrell D.T., Peterson C.M., editors. Reproductive Endocrinology and Infertility: Integrating Modern Clinical and Laboratory Practice. Springer; New York, NY, USA: 2010. pp. 93–100. DOI

Maduro M.R., Lamb D.J. Understanding New Genetics of Male Infertility. J. Urol. 2002;168:2197–2205. doi: 10.1016/S0022-5347(05)64355-8. PubMed DOI

Gumuscu A., Tenekeci M.E. Estimation of active sperm count in spermiogram using motion detection methods. J. Fac. Eng. Archit. Gazi Univ. 2019;34:1274–1280. doi: 10.17341/gazimmfd.460524. DOI

Suttipasit P. Forensic Spermatozoa Detection. Am. J. Forensic Med. Pathol. 2019;40:304–311. doi: 10.1097/PAF.0000000000000517. PubMed DOI

Kucuk N. Sperm DNA and detection of DNA fragmentations in sperm. Turk. J. Urol. 2018;44:1–5. doi: 10.5152/tud.2018.49321. PubMed DOI PMC

Hidayatullah P., Mengko T.L.E.R., Munir R. A Survey on Multisperm Tracking for Sperm Motility Measurement. Int. J. Mach. Learn. Comput. 2017;7:144–151. doi: 10.18178/ijmlc.2017.7.5.637. DOI

Broekhuijse M.L.W.J., Šoštarić E., Feitsma H., Gadella B.M. Additional value of computer assisted semen analysis (CASA) compared to conventional motility assessments in pig artificial insemination. Theriogenology. 2011;76:1473–1486.e1. doi: 10.1016/j.theriogenology.2011.05.040. PubMed DOI

Iguer-ouada M., Verstegen J.P. Evaluation of the “Hamilton Thorn computer-based automated system” for dog semen analysis. Theriogenology. 2001;55:733–749. doi: 10.1016/S0093-691X(01)00440-X. PubMed DOI

Mambou S., Krejcar O., Selamat A., Dobrovolny M., Maresova P., Kuca K. Novel Thermal Image Classification Based on Techniques Derived from Mathematical Morphology: Case of Breast Cancer. In: Rojas I., Valenzuela O., Rojas F., Herrera L.J., Ortuño F., editors. Bioinformatics and Biomedical Engineering. Volume 12108. Springer International Publishing; New York, NY, USA: 2020. pp. 683–694. DOI

Dobrovolny M., Mls K., Krejcar O., Mambou S., Selamat A. Medical Image Data Upscaling with Generative Adversarial Networks. In: Rojas I., Valenzuela O., Rojas F., Herrera L.J., Ortuño F., editors. Bioinformatics and Biomedical Engineering. Volume 12108. Springer International Publishing; New York, NY, USA: 2020. pp. 739–749. DOI

Hidayatullah P., Mengko T.L.E.R., Munir R., Barlian A. Bull Sperm Tracking and Machine Learning-Based Motility Classification. IEEE Access. 2021;9:61159–61170. doi: 10.1109/ACCESS.2021.3074127. DOI

Martin R. Detection of Genetic-Damage in Human Sperm. Reprod Toxicol. 1993;7:47–52. doi: 10.1016/0890-6238(93)90068-I. PubMed DOI

Silva P.F.N., Gadella B.M. Detection of damage in mammalian sperm cells. Theriogenology. 2006;65:958–978. doi: 10.1016/j.theriogenology.2005.09.010. PubMed DOI

World Health Organization, Regional Office for the Eastern Mediterranean . List of Basic Sources in English for a Medical Faculty Library. World Health Organization; Rome, Itay: 2013. p. 133. Section Vi.

García-Olalla O., Alegre E., Fernández-Robles L., Malm P., Bengtsson E. Acrosome integrity assessment of boar spermatozoa images using an early fusion of texture and contour descriptors. Comput. Methods Programs Biomed. 2015;120:49–64. doi: 10.1016/j.cmpb.2015.03.005. PubMed DOI

Auger J., Eustache F., Ducot B., Blandin T., Daudin M., Diaz I., Matribi S., Gony B., Keskes L., Kolbezen M., et al. Intra- and inter-individual variability in human sperm concentration, motility and vitality assessment during a workshop involving ten laboratories. Hum. Reprod. 2000;15:2360–2368. doi: 10.1093/humrep/15.11.2360. PubMed DOI

Hoogewijs M.K., De Vliegher S.P., Govaere J.L., De Schauwer C., De Kruif A., Van Soom A. Influence of counting chamber type on CASA outcomes of equine semen analysis. Equine Vet. J. 2012;44:542–549. doi: 10.1111/j.2042-3306.2011.00523.x. PubMed DOI

Sørensen L., Østergaard J., Johansen P., Bruijne M.d. Multi-object tracking of human spermatozoa; Proceedings of the Medical Imaging 2008: Image Processing; San Diego, CA, USA. 16–21 February 2008; Philadelphia, PA, USA: SPIE; 2008. pp. 784–795. DOI

Jati G., Gunawan A.A.S., Lestari S.W., Jatmiko W., Hilman M.H. Multi-sperm tracking using Hungarian Kalman Filter on low frame rate video; Proceedings of the 2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS); Malang, Indonesia. 15–16 October 2016; pp. 530–535. DOI

Imani Y., Teyfouri N., Ahmadzadeh M.R., Golabbakhsh M. A new method for multiple sperm cells tracking. J. Med. Signals Sens. 2014;4:35. doi: 10.4103/2228-7477.128436. PubMed DOI PMC

Zhang W., Phoon K.K. Editorial for Advances and applications of deep learning and soft computing in geotechnical underground engineering. J. Rock Mech. Geotech. Eng. 2022;14:671–673. doi: 10.1016/j.jrmge.2022.01.001. DOI

Zhang W., Gu X., Tang L., Yin Y., Liu D., Zhang Y. Application of machine learning, deep learning and optimization algorithms in geoengineering and geoscience: Comprehensive review and future challenge. Gondwana Res. 2022;109:1–17. doi: 10.1016/j.gr.2022.03.015. DOI

Wu C., Hong L., Wang L., Zhang R., Pijush S., Zhang W. Prediction of wall deflection induced by braced excavation in spatially variable soils via convolutional neural network. Gondwana Res. 2022 doi: 10.1016/j.gr.2022.06.011. in press . DOI

Phoon K.K., Zhang W. Future of machine learning in geotechnics. Georisk. 2022:1–16. doi: 10.1080/17499518.2022.2087884. DOI

Dobrovolny M., Benes J., Krejcar O., Selamat A. Sperm-cell Detection Using YOLOv5 Architecture. In: Rojas I., Valenzuela O., Rojas F., Herrera L.J., Ortuño F., editors. Bioinformatics and Biomedical Engineering. Volume 13347. Springer International Publishing; New York, NY, USA: 2022. pp. 319–330. DOI

Chang V., Saavedra J.M., Castañeda V., Sarabia L., Hitschfeld N., Härtel S. Gold-standard and improved framework for sperm head segmentation. Comput. Methods Programs Biomed. 2014;117:225–237. doi: 10.1016/j.cmpb.2014.06.018. PubMed DOI

Nissen M.S., Krause O., Almstrup K., Kjærulff S., Nielsen T.T., Nielsen M. Convolutional Neural Networks for Segmentation and Object Detection of Human Semen. In: Sharma P., Bianchi F.M., editors. Image Analysis. Volume 10269. Springer International Publishing; New York, NY, USA: 2017. pp. 397–406. DOI

Ilhan H.O., Sigirci I.O., Serbes G., Aydin N. A fully automated hybrid human sperm detection and classification system based on mobile-net and the performance comparison with conventional methods. Med. Biol. Eng. Comput. 2020;58:1047–1068. doi: 10.1007/s11517-019-02101-y. PubMed DOI

Boumaza K., Loukil A. Computer-Assisted Analysis of Human Semen Concentration and Motility. Int. J. E-Health Med. Commun. 2020;11:17–33. doi: 10.4018/IJEHMC.2020100102. DOI

Prabaharan L., Raghunathan A. An improved convolutional neural network for abnormality detection and segmentation from human sperm images. J. Ambient. Intell. Humaniz. Comput. 2021;12:3341–3352. doi: 10.1007/s12652-020-02773-7. DOI

Alhaj Alabdulla A., Haşıloğlu A., Hicazi Aksu E. A robust sperm cell tracking algorithm using uneven lighting image fixing and improved branch and bound algorithm. Inst. Eng. Technol. 2021;15:2068–2079. doi: 10.1049/ipr2.12178. DOI

Hidayatullah P., Wang X., Yamasaki T., Mengko T.L.E.R., Munir R., Barlian A., Sukmawati E., Supraptono S. DeepSperm: A robust and real-time bull sperm-cell detection in densely populated semen videos. Comput. Methods Programs Biomed. 2021;209:106302. doi: 10.1016/j.cmpb.2021.106302. PubMed DOI

Wu D., Badamjav O., Reddy V., Eisenberg M., Behr B. A preliminary study of sperm identification in microdissection testicular sperm extraction samples with deep convolutional neural networks. Asian J. Androl. 2021;23:135. doi: 10.4103/aja.aja_66_20. PubMed DOI PMC

Fraczek A., Karwowska G., Miler M., Lis J., Jezierska A., Mazur-Milecka M. Sperm segmentation and abnormalities detection during the ICSI procedure using machine learning algorithms; Proceedings of the 2022 15th International Conference on Human System Interaction (HSI); Melbourne, Australia. 28–31 July 2022; New York, NY, USA: IEEE; 2022. pp. 1–6. DOI

Mashaal A.A., Eldosoky M.A.A., Mahdy L.N., Ezzat K.A. Automatic Healthy Sperm Head Detection using Deep Learning. Int. J. Adv. Comput. Sci. Appl. 2022;13:735–742. doi: 10.14569/IJACSA.2022.0130486. DOI

Pan X., Gao K., Yang N., Wang Y., Zhang X., Shao L., Zhai P., Qin F., Zhang X., Li J., et al. A Sperm Quality Detection System Based on Microfluidic Chip and Micro-Imaging System. Front. Vet. Sci. 2022;9:916861. doi: 10.3389/fvets.2022.916861. PubMed DOI PMC

Miahi E., Mirroshandel S.A., Nasr A. Genetic Neural Architecture Search for automatic assessment of human sperm images. Expert Syst. Appl. 2022;188:115937. doi: 10.1016/j.eswa.2021.115937. DOI

Zou S., Li C., Sun H., Xu P., Zhang J., Ma P., Yao Y., Huang X., Grzegorzek M. TOD-CNN: An effective convolutional neural network for tiny object detection in sperm videos. Comput. Biol. Med. 2022;146:105543. doi: 10.1016/j.compbiomed.2022.105543. PubMed DOI

Tumuklu Ozyer G., Ozyer B., Negin F., Alarabi İ., Agahian S. A hybrid IMM-JPDAF algorithm for tracking multiple sperm targets and motility analysis. Neural Comput. Appl. 2022;34:17407–17421. doi: 10.1007/s00521-022-07390-3. DOI

Urbano L.F., Masson P., VerMilyea M., Kam M. Automatic Tracking and Motility Analysis of Human Sperm in Time-Lapse Images. IEEE Trans. Med. Imaging. 2017;36:792–801. doi: 10.1109/TMI.2016.2630720. PubMed DOI

Haugen T.B., Hicks S.A., Andersen J.M., Witczak O., Hammer H.L., Borgli R., Halvorsen P., Riegler M. VISEM: A multimodal video dataset of human spermatozoa; Proceedings of the 10th ACM Multimedia Systems Conference; Amherst, MA, USA. 18–21 June 2019; New York, NY, USA: ACM; 2019. pp. 261–266. DOI

Wang C.Y., Liao H.Y.M., Yeh I.H., Wu Y.H., Chen P.Y., Hsieh J.W. CSPNet: A New Backbone that can Enhance Learning Capability of CNN. arXiv. 20191911.11929

Xu R., Lin H., Lu K., Cao L., Liu Y. A Forest Fire Detection System Based on Ensemble Learning. Forests. 2021;12:217. doi: 10.3390/f12020217. DOI

Wang K., Liew J.H., Zou Y., Zhou D., Feng J. PANet: Few-Shot Image Semantic Segmentation with Prototype Alignment. arXiv. 20201908.06391

Lin T.Y., Maire M., Belongie S., Bourdev L., Girshick R., Hays J., Perona P., Ramanan D., Zitnick C.L., Dollár P. Microsoft COCO: Common Objects in Context. arXiv. 20151405.0312

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...