Advances in Liposome-Encapsulated Phthalocyanines for Photodynamic Therapy

. 2023 Jan 21 ; 13 (2) : . [epub] 20230121

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36836662

Grantová podpora
2022 The League Against Cancer Prague

This updated review aims to describe the current status in the development of liposome-based systems for the targeted delivery of phthalocyanines for photodynamic therapy (PDT). Although a number of other drug delivery systems (DDS) can be found in the literature and have been studied for phthalocyanines or similar photosensitizers (PSs), liposomes are by far the closest to clinical practice. PDT itself finds application not only in the selective destruction of tumour tissues or the treatment of microbial infections, but above all in aesthetic medicine. From the point of view of administration, some PSs can advantageously be delivered through the skin, but for phthalocyanines, systemic administration is more suitable. However, systemic administration places higher demands on advanced DDS, active tissue targeting and reduction of side effects. This review focuses on the already described liposomal DDS for phthalocyanines, but also describes examples of DDS used for structurally related PSs, which can be assumed to be applicable to phthalocyanines as well.

Zobrazit více v PubMed

Daniell M.D., Hill J.S. A History of Photodynamic Therapy. ANZ J. Surg. 1991;61:340–348. doi: 10.1111/j.1445-2197.1991.tb00230.x. PubMed DOI

Tedesco A.C., Rotta J.C., Lunardi C.N. Synthesis, Photophysical and Photochemical Aspects of Phthalocyanines for Photodynamic Therapy. Curr. Org. Chem. 2003;7:187–196. doi: 10.2174/1385272033373076. DOI

Allen C.M., Sharman W.M., van Lier J.E. Current status of phthalocyanines in the photodynamic therapy of cancer. J. Porphyr. Phthalocyanines JPP. 2001;5:161–169. doi: 10.1002/jpp.324. DOI

Moreira L.M., dos Santos F.V., Lyon J.P., Maftoum-Costa M., Pacheco-Soares C., Soares Da Silva N. Photodynamic therapy: Porphyrins and phthalocyanines as photosensitizers. Aust. J. Chem. 2008;61:741–754. doi: 10.1071/CH08145. DOI

Isaacs N.S. Physical Organic Chemistry. 2nd ed. Longman Scientific & Technical; London, UK: 1998.

Kalyanasundaram K. Photochemistry of Polypyridine and Porphyrin Complexes. Academic Press; London, UK: San Diego, MA, USA: New York, NY, USA: 1992.

Konan Y.N., Gurny R., Allémann E. State of the art in the delivery of photosensitizers for photodynamic therapy. J. Photochem. Photobiol. B. 2002;66:89–106. doi: 10.1016/S1011-1344(01)00267-6. PubMed DOI

Dougherty T.J., Gomer C.J., Henderson B.W., Jori G., Kessel D., Korbelik M., Moan J., Peng Q. Photodynamic therapy. J. Natl. Cancer Inst. 1998;90:889–905. doi: 10.1093/jnci/90.12.889. PubMed DOI PMC

Ochsner M. Photophysical and photobiological processes in the photodynamic therapy of tumours. J. Photochem. Photobiol. B. 1997;39:1–18. doi: 10.1016/S1011-1344(96)07428-3. PubMed DOI

van Straten D., Mashayekhi V., de Bruijn H., Oliveira S., Robinson D. Oncologic Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions. Cancers. 2017;9:19. doi: 10.3390/cancers9020019. PubMed DOI PMC

Agostinis P., Berg K., Cengel K.A., Foster T.H., Girotti A.W., Gollnick S.O., Hahn S.M., Hamblin M.R., Juzeniene A., Kessel D., et al. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011;61:250–281. doi: 10.3322/caac.20114. PubMed DOI PMC

Kalka K., Merk H., Mukhtar H. Photodynamic therapy in dermatology. J. Am. Acad. Dermatol. 2000;42:389–416. doi: 10.1016/S0190-9622(00)90209-3. PubMed DOI

MacDonald I.J., Dougherty T.J. Basic principles of photodynamic therapy. J. Porphyr. Phthalocyanines JPP. 2001;5:105–129. doi: 10.1002/jpp.328. DOI

Dolmans D., Fukumura D., Jain R. Photodynamic therapy for cancer. Nat. Rev. Cancer. 2003;3:380–387. doi: 10.1038/nrc1071. PubMed DOI

Calixto G.M.F., Bernegossi J., de Freitas L.M., Fontana C.R., Chorilli M., Grumezescu A.M. Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: A review. Molecules. 2016;21:342. doi: 10.3390/molecules21030342. PubMed DOI PMC

de Rosa F.S., Bentley M.V.L. Photodynamic therapy of skin cancers: Sensitizers, clinical studies and future directives. Pharm. Res. 2000;17:1447–1455. doi: 10.1023/A:1007612905378. PubMed DOI

Zhang Z., Huang H. Breakthrough in construction of oxygen-independent photosensitizer for type III photodynamic therapy. Sci. China Chem. 2022;65:834–835. doi: 10.1007/s11426-022-1218-0. DOI

Yao Q., Fan J., Long S., Zhao X., Li H., Du J., Shao K., Peng X. The concept and examples of type-III photosensitizers for cancer photodynamic therapy. Chem. 2022;8:197–209. doi: 10.1016/j.chempr.2021.10.006. DOI

Hamblin M.R., Abrahamse H. Oxygen-Independent Antimicrobial Photoinactivation: Type III Photochemical Mechanism? Antibiotics. 2020;9:53. doi: 10.3390/antibiotics9020053. PubMed DOI PMC

Kharkwal G.B., Sharma S.K., Huang Y.-Y., Dai T., Hamblin M.R. Photodynamic therapy for infections: Clinical applications. Lasers Surg. Med. 2011;43:755–767. doi: 10.1002/lsm.21080. PubMed DOI PMC

Peng Q., Berg K., Moan J., Kongshaug M., Nesland J.M. 5-Aminolevulinic Acid-Based Photodynamic Therapy: Principles and Experimental Research. Photochem. Photobiol. 1997;65:235–251. doi: 10.1111/j.1751-1097.1997.tb08549.x. PubMed DOI

Gannon M.J., Brown S.B. Photodynamic therapy and its applications in gynaecology. BJOG. 1999;106:1246–1254. doi: 10.1111/j.1471-0528.1999.tb08177.x. PubMed DOI

Moan J., Streckyte G., Bagdonas S., Bech Ø., Berg K. Photobleaching of protoporphyrin IX in cells incubated with 5-aminolevulinic acid. Int. J. Cancer. 1997;70:90–97. doi: 10.1002/(SICI)1097-0215(19970106)70:1<90::AID-IJC14>3.0.CO;2-H. PubMed DOI

Leznoff C.C., Lever A.B.P. Phthalocyanines: Properties and Applications. Wiley; Hoboken, NJ, USA: 1989.

Tokumaru K. Photochemical and photophysical behaviour of porphyrins and phthalocyanines irradiated with violet or ultraviolet light. J. Porphyr. Phthalocyanines. 2001;5:77–86. doi: 10.1002/1099-1409(200101)5:1<77::AID-JPP302>3.0.CO;2-X. DOI

Ahmad N., Mukhtar H. Singlet Oxygen, UV-A, and Ozone. Volume 319. Academic Press; Cambridge, MA, USA: 2000. Mechanism of photodynamic therapy-induced cell death; pp. 342–358. PubMed

Edelson R.L. Light-Activated Drugs. Sci. Am. 1988;259:68–75. doi: 10.1038/scientificamerican0888-68. PubMed DOI

Allison R.R., Mota H.C., Sibata C.H. Clinical PD/PDT in North America: An historical review. Photodiagn. Photodyn. Ther. 2004;1:263–277. doi: 10.1016/S1572-1000(04)00084-5. PubMed DOI

Ball D.J., Wood S.R., Vernon D.I., Griffiths J., Dubbelman T.M.A.R., Brown S.B. The characterisation of three substituted zinc phthalocyanines of differing charge for use in photodynamic therapy. A comparative study of their aggregation and photosensitising ability in relation to mTHPC and polyhaematoporphyrin. J. Photochem. Photobiol. B. 1998;45:28–35. doi: 10.1016/S1011-1344(98)00156-0. PubMed DOI

Rak J., Pouckova P., Benes J., Vetvicka D. Drug Delivery Systems for Phthalocyanines for Photodynamic Therapy. Anticancer Res. 2019;39:3323–3339. doi: 10.21873/anticanres.13475. PubMed DOI

Malatesti N., Munitic I., Jurak I. Porphyrin-based cationic amphiphilic photosensitisers as potential anticancer, antimicrobial and immunosuppressive agents. Biophys Rev. 2017;9:149–168. doi: 10.1007/s12551-017-0257-7. PubMed DOI PMC

Calzavara-Pinton P.G., Venturini M., Sala R. Photodynamic therapy: Update 2006. Part 1: Photochemistry and photobiology. J. Eur. Acad. Dermatol. Venereol. 2006;21:293–302. doi: 10.1111/j.1468-3083.2006.01902.x. PubMed DOI

Nyman E.S., Hynninen P.H. Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy. J. Photochem. Photobiol. B. 2004;73:1–28. doi: 10.1016/j.jphotobiol.2003.10.002. PubMed DOI

Ali H., van Lier J.E. Metal Complexes as Photo- and Radiosensitizers. Chem. Rev. 1999;99:2379–2450. doi: 10.1021/cr980439y. PubMed DOI

Reddi E., lo Castro G., Biolo R., Jori G. Pharmacokinetic studies with zinc(II)-phthalocyanine in tumour-bearing mice. Br. J. Cancer. 1987;56:597–600. doi: 10.1038/bjc.1987.247. PubMed DOI PMC

Mantareva V., Kussovski V., Angelov I., Borisova E., Avramov L., Schnurpfeil G., Wöhrle D. Photodynamic activity of water-soluble phthalocyanine zinc(II) complexes against pathogenic microorganisms. Bioorg. Med. Chem. 2007;15:4829–4835. doi: 10.1016/j.bmc.2007.04.069. PubMed DOI

Ogura S., Tabata K., Fukushima K., Kamachi T., Okura I. Development of phthalocyanines for photodynamic therapy. J. Porphyr. Phthalocyanines. 2006;10:1116–1124. doi: 10.1142/S1088424606000466. DOI

Brasseur N. Photodynamic Therapy. Royal Society of Chemistry; Cambridge, MA, USA: 2003. Sensitizers for PDT: Phthalocyanines; pp. 105–118.

U.S. National Library of Medicine-ClinicalTrials.gov. [(accessed on 29 December 2022)]; Available online: https://clinicaltrials.gov/ct2/results?term=phthalocyanine.

Brilkina A.A., Dubasova L.V., Sergeeva E.A., Pospelov A.J., Shilyagina N.Y., Shakhova N.M., Balalaeva I.V. Photobiological properties of phthalocyanine photosensitizers Photosens, Holosens and Phthalosens: A comparative in vitro analysis. J. Photochem. Photobiol. B. 2019;191:128–134. doi: 10.1016/j.jphotobiol.2018.12.020. PubMed DOI

Baron E.D., Lam M., Lee Y., Deng M., Hsia A.H., Morrissey K.A., Yan C., Azzizudin K., Oleinick N.L., McCormick T.S., et al. Photodynamic therapy with the silicon phthalocyanine Pc 4 induces apoptosis in mycosis fungoides and sezary syndrome. Adv. Hematol. 2010;2010:896161. PubMed PMC

Lam M., Hsia A.H., Liu Y., Guo M., Swick A.R., Berlin J.C., McCormick T.S., Kenney M.E., Oleinick N.L., Cooper K.D., et al. Successful cutaneous delivery of the photosensitizer silicon phthalocyanine 4 for photodynamic therapy. Clin. Exp. Dermatol. 2011;36:645–651. doi: 10.1111/j.1365-2230.2010.03989.x. PubMed DOI PMC

Baron E.D., Malbasa C.L., Santo-Domingo D., Fu P., Miller J.D., Hanneman K.K., Hsia A.H., Oleinick N.L., Colussi V.C., Cooper K.D. Silicon phthalocyanine (pc 4) photodynamic therapy is a safe modality for cutaneous neoplasms: Results of a phase 1 clinical trial. Lasers Surg. Med. 2010;42:888–895. doi: 10.1002/lsm.20984. PubMed DOI PMC

da Fonseca Orcina B., Reia VCB S.A., Lonni A.A.S.G., Fernandes T.M.F., Poleti M.L., Vilhena F.V., da Silva Santos P.S. A recommendation of PHTALOX® for preventing infection and progression of COVID-19: A 1-year summarized update of scientific approaches. GMS Hyg. Infect. Control. 2022;17 doi: 10.3205/dgkh000406. PubMed DOI PMC

Moan J. On the diffusion length of singlet oxygen in cells and tissues. J. Photochem. Photobiol. B. 1990;6:343–344. doi: 10.1016/1011-1344(90)85104-5. DOI

Allison R.R., Moghissi K. Photodynamic Therapy (PDT): PDT Mechanisms. Clin. Endosc. 2013;46:24–29. doi: 10.5946/ce.2013.46.1.24. PubMed DOI PMC

Chiaviello A., Postiglione I., Palumbo G. Targets and Mechanisms of Photodynamic Therapy in Lung Cancer Cells: A Brief Overview. Cancers. 2011;3:1014–1041. doi: 10.3390/cancers3011014. PubMed DOI PMC

Kim J., Lim W., Kim S., Jeon S., Hui Z., Ni K., Kim C., Im Y., Choi H., Kim O. Photodynamic therapy (PDT) resistance by PARP1 regulation on PDT-induced apoptosis with autophagy in head and neck cancer cells. J. Oral Pathol. Med. 2014;43:675–684. doi: 10.1111/jop.12195. PubMed DOI

Buytaert E., Dewaele M., Agostinis P. Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim. Et. Biophys. Acta BBA-Rev. Cancer. 2007;1776:86–107. doi: 10.1016/j.bbcan.2007.07.001. PubMed DOI

Andrzejak M., Price M., Kessel D.H. Apoptotic and autophagic responses to photodynamic therapy in 1c1c7 murine hepatoma cells. Autophagy. 2011;7:979–984. doi: 10.4161/auto.7.9.15865. PubMed DOI PMC

Piette J. Signalling pathway activation by photodynamic therapy: NF-κB at the crossroad between oncology and immunology. Photochem. Photobiol. Sci. 2015;14:1510–1517. doi: 10.1039/c4pp00465e. PubMed DOI

de Castro Pazos M., Pacheco-Soares C., Soares da Silva N., DaMatta R.A., Pacheco M.T.T. Ultrastructural effects of two phthalocyanines in CHO-K1 and HeLa cells after laser irradiation. Biocell. 2003;27:301–309. doi: 10.32604/biocell.2003.27.301. PubMed DOI

Moan J., Berg K. Photochemotherapy of Cancer: Experimental Research. Photochem. Photobiol. 1992;55:931–948. doi: 10.1111/j.1751-1097.1992.tb08541.x. PubMed DOI

Santus R., Morliere P., Kohen E. The Photobiology of The Living Cell as Studied by Microspectrometric Techniques. Photochem. Photobiol. 1991;54:1071–1077. doi: 10.1111/j.1751-1097.1991.tb02131.x. PubMed DOI

Cavalcante A.K.D., Martinez G.R., di Mascio P., Menck C.F.M., Agnez-Lima L.F. Cytotoxicity and mutagenesis induced by singlet oxygen in wild type and DNA repair deficient Escherichia coli strains. DNA Repair. 2002;1:1051–1056. doi: 10.1016/S1568-7864(02)00164-7. PubMed DOI

Challenging paradigms in tumour drug delivery. Nat. Mater. 2020;19:477. doi: 10.1038/s41563-020-0676-x. PubMed DOI

Wilhelm S., Tavares A.J., Dai Q., Ohta S., Audet J., Dvorak H.F., Chan W.C.W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016;1:16014. doi: 10.1038/natrevmats.2016.14. DOI

Sindhwani S., Syed A.M., Ngai J., Kingston B.R., Maiorino L., Rothschild J., MacMillan P., Zhang Y., Rajesh N.U., Hoang T., et al. The entry of nanoparticles into solid tumours. Nat. Mater. 2020;19:566–575. doi: 10.1038/s41563-019-0566-2. PubMed DOI

Hang Y., Tang S., Tang W., Větvička D., Zhang C., Xie Y., Yu F., Yu A., Sil D., Li J., et al. Polycation fluorination improves intraperitoneal siRNA delivery in metastatic pancreatic cancer. J. Control. Release. 2021;333:139–150. doi: 10.1016/j.jconrel.2021.03.028. PubMed DOI PMC

Vetvicka D., Sivak L., Jogdeo C.M., Kumar R., Khan R., Hang Y., Oupický D. Gene silencing delivery systems for the treatment of pancreatic cancer: Where and what to target next? J. Control. Release. 2021;331:246–259. doi: 10.1016/j.jconrel.2021.01.020. PubMed DOI

Maeda H. The 35th anniversary of the discovery of EPR effect: A new wave of nanomedicines for tumor-targeted drug delivery-personal remarks and future prospects. J. Pers. Med. 2021;11:229. doi: 10.3390/jpm11030229. PubMed DOI PMC

Donnelly R., McCarron P., Woolfson D. Drug Delivery Systems for Photodynamic Therapy. Recent Pat. Drug Deliv. Formul. 2009;3:1–7. doi: 10.2174/187221109787158319. PubMed DOI

Pottier R., Kennedy J.C. New trends in photobiology: The possible role of ionic species in selective biodistribution of photochemotherapeutic agents toward neoplastic tissue. J. Photochem. Photobiol. B. 1990;8:1–16. doi: 10.1016/1011-1344(90)85183-W. PubMed DOI

Jori G., Beltramini M., Reddi E., Salvato B., Pagnan A., Ziron L., Tomio L., Tsanov T. Evidence for a major role of plasma lipoproteins as hematoporphyrin carriers in vivo. Cancer Lett. 1984;24:291–297. doi: 10.1016/0304-3835(84)90025-9. PubMed DOI

Harada M., Woodhams J., MacRobert A.J., Feneley M.R., Kato H., Bown S.G. The vascular response to photodynamic therapy with ATX-S10Na(II) in the normal rat colon. J. Photochem. Photobiol. B. 2005;79:223–230. doi: 10.1016/j.jphotobiol.2004.08.011. PubMed DOI

Nyokong T., Gledhill I. The use of phthalocyanines in cancer therapy. AIP Conf. Proc. 2013;1517:49–52.

Oleinick N.L., Morris R.L., Belichenko I. The role of apoptosis in response to photodynamic therapy: What, where, why, and how. Photochem. Photobiol. Sci. 2002;1:1–21. doi: 10.1039/b108586g. PubMed DOI

Tesniere A., Apetoh L., Ghiringhelli F., Joza N., Panaretakis T., Kepp O., Schlemmer F., Zitvogel L., Kroemer G. Immunogenic cancer cell death: A key-lock paradigm. Curr. Opin. Immunol. 2008;20:504–511. doi: 10.1016/j.coi.2008.05.007. PubMed DOI

Krysko D.V., Garg A.D., Kaczmarek A., Krysko O., Agostinis P., Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer. 2012;12:860–875. doi: 10.1038/nrc3380. PubMed DOI

Rodrigues M.C., de Sousa Júnior W.T., Mundim T., Vale C.L.C., de Oliveira J.V., Ganassin R., Pacheco T.J.A., Vasconcelos Morais J.A., Longo J.P.F., Azevedo R.B., et al. Induction of Immunogenic Cell Death by Photodynamic Therapy Mediated by Aluminum-Phthalocyanine in Nanoemulsion. Pharmaceutics. 2022;14:196. doi: 10.3390/pharmaceutics14010196. PubMed DOI PMC

Huang K., Yan M., Zhang H., Xue J., Chen J. A phthalocyanine-based photosensitizer for effectively combating triple negative breast cancer with enhanced photodynamic anticancer activity and immune response. Eur. J. Med. Chem. 2022;241:114644. doi: 10.1016/j.ejmech.2022.114644. PubMed DOI

Garg A.D., Krysko D.V., Vandenabeele P., Agostinis P. Hypericin-based photodynamic therapy induces surface exposure of damage-associated molecular patterns like HSP70 and calreticulin. Cancer Immunol. Immunother. 2012;61:215–221. doi: 10.1007/s00262-011-1184-2. PubMed DOI PMC

Hao Y., Gu Z., Yu Z., Schomann T., Sayedipour S., Aguilar J.C., ten Dijke P., Cruz L.J. Photodynamic Therapy in Combination with the Hepatitis B Core Virus-like Particles (HBc VLPs) to Prime Anticancer Immunity for Colorectal Cancer Treatment. Cancers. 2022;14:2724. doi: 10.3390/cancers14112724. PubMed DOI PMC

Panzarini E., Inguscio V., Fimia G.M., Dini L. Rose Bengal Acetate PhotoDynamic Therapy (RBAc-PDT) Induces Exposure and Release of Damage-Associated Molecular Patterns (DAMPs) in Human HeLa Cells. PLoS ONE. 2014;9:e105778. doi: 10.1371/journal.pone.0105778. PubMed DOI PMC

Tatsuno K., Yamazaki T., Hanlon D., Han P., Robinson E., Sobolev O., Yurter A., Rivera-Molina F., Arshad N., Edelson R.L., et al. Extracorporeal photochemotherapy induces bona fide immunogenic cell death. Cell Death Dis. 2019;10:578. doi: 10.1038/s41419-019-1819-3. PubMed DOI PMC

Garg A.D., Vandenberk L., Koks C., Verschuere T., Boon L., van Gool S.W., Agostinis P. Dendritic cell vaccines based on immunogenic cell death elicit danger signals and T cell–driven rejection of high-grade glioma. Sci. Transl. Med. 2016;8:328ra27. doi: 10.1126/scitranslmed.aae0105. PubMed DOI

Jin F., Qi J., Liu D., You Y., Shu G., Du Y., Wang J., Xu X., Ying X., Ji J., et al. Cancer-cell-biomimetic Upconversion nanoparticles combining chemo-photodynamic therapy and CD73 blockade for metastatic triple-negative breast cancer. J. Control. Release. 2021;337:90–104. doi: 10.1016/j.jconrel.2021.07.021. PubMed DOI

Baldea I., Filip A.G. Photodynamic therapy in melanoma-An update. J. Physiol. Pharmacol. 2012;63:109–118. PubMed

Babilas P., Schreml S., Landthaler M., Szeimies R.M. Photodynamic therapy in dermatology: State-of-the-art. Photodermatol. Photoimmunol. Photomed. 2010;26:118–132. doi: 10.1111/j.1600-0781.2010.00507.x. PubMed DOI

Crescenzi E., Varriale L., Iovino M., Chiaviello A., Veneziani B.M., Palumbo G. Photodynamic therapy with indocyanine green complements and enhances low-dose cisplatin cytotoxicity in MCF-7 breast cancer cells. Mol. Cancer Ther. 2004;3:537–544. doi: 10.1158/1535-7163.537.3.5. PubMed DOI

Crescenzi E., Chiaviello A., Canti G., Reddi E., Veneziani B.M., Palumbo G. Low doses of cisplatin or gemcitabine plus Photofrin/photodynamic therapy: Disjointed cell cycle phase-related activity accounts for synergistic outcome in metastatic non–small cell lung cancer cells (H1299) Mol. Cancer Ther. 2006;5:776–785. doi: 10.1158/1535-7163.MCT-05-0425. PubMed DOI

Tiwari G., Tiwari R., Bannerjee S., Bhati L., Pandey S., Pandey P., Sriwastawa B. Drug delivery systems: An updated review. Int. J. Pharm. Investig. 2012;2:1–11. doi: 10.4103/2230-973X.96920. PubMed DOI PMC

Vemuri S., Rhodes C.T. Preparation and characterization of liposomes as therapeutic delivery systems: A review. Pharm. Acta Helv. 1995;70:95–111. doi: 10.1016/0031-6865(95)00010-7. PubMed DOI

Soncin M., Polo L., Reddi E., Jori G., Kenney M.E., Cheng G., Rodgers M.A. Effect of axial ligation and delivery system on the tumour-localising and-photosensitising properties of Ge(IV)-octabutoxy-phthalocyanines. Br. J. Cancer. 1995;71:727–732. doi: 10.1038/bjc.1995.142. PubMed DOI PMC

Decreau R., Richard M.J., Verrando P., Chanon M., Julliard M. Photodynamic activities of silicon phthalocyanines against achromic M6 melanoma cells and healthy human melanocytes and keratinocytes. J. Photochem. Photobiol. B. 1999;48:48–56. doi: 10.1016/S1011-1344(99)00008-1. PubMed DOI

Daziano J.-P., Steenken S., Chabannon C., Mannoni P., Chanon M., Julliard M. Photophysical and Redox Properties of a Series of Phthalocyanines: Relation with Their Photodynamic Activities on TF-1 and Daudi Leukemic Cells. Photochem. Photobiol. 1996;64:712–719. doi: 10.1111/j.1751-1097.1996.tb03129.x. PubMed DOI

Cuomo V., Jori G., Rihter B., Kenney M., Rodgers M. Tumour-localising and -photosensitizing properties of liposome-delivered Ge(IV)-octabutoxy-phthalocyanine. Br. J. Cancer. 1991;64:93–95. doi: 10.1038/bjc.1991.247. PubMed DOI PMC

Shopova M., Mantareva V., Krastev K., Hadjiolov D., Milev A., Spirov K., Jori G., Ricchelli F. Comparative pharmacokinetic and photodynamic studies with zinc(II) phthalocyanine in hamsters bearing an induced or transplanted rhabdomyosarcoma. J. Photochem. Photobiol. B. 1992;16:83–89. doi: 10.1016/1011-1344(92)85155-N. PubMed DOI

Reddi E., Cernuschi S., Biolo R., Jori G. Liposome- or LDL-administered Zn(II)-phthalocyanine as a photodynamic agent for tumours III. Effect of cholesterol on pharmacokinetic and phototherapeutic properties. Lasers Med. Sci. 1990;5:339–343. doi: 10.1007/BF02032589. PubMed DOI PMC

Sutoris K., Vetvicka D., Horak L., Benes J., Nekvasil M., Jezek P., Zadinova M., Pouckova P. Evaluation of topical photodynamic therapy of mammary carcinoma with an experimental gel containing liposomal hydroxyl-aluminium phthalocyanine. Anticancer Res. 2012;32:3769–3774. PubMed

Sutoris K., Rakusan J., Karaskova M., Mattova J., Benes J., Nekvasil M., Jezek P., Zadinova M., Pouckova P., Vetvicka D. Novel Topical photodynamic therapy of prostate carcinoma using hydroxy-aluminum phthalocyanine entrapped in liposomes. Anticancer Res. 2013;33:1563–1568. PubMed

Keene J.P., Kessel D., Land E.J., Redmond R.W., Truscott T.G. Direct detection of singlet oxygen sensitized by haematoporphyrin and related compounds. Photochem. Photobiol. 1986;43:117–120. doi: 10.1111/j.1751-1097.1986.tb09501.x. PubMed DOI

Lasic D.D., Martin F.J., Gabizon A., Huang S.K., Papahadjopoulos D. Sterically stabilized liposomes: A hypothesis on the molecular origin of the extended circulation times. Biochim. Et. Biophys. Acta BBA-Biomembr. 1991;1070:187–192. doi: 10.1016/0005-2736(91)90162-2. PubMed DOI

Schroit A.J., Madsen J., Nayar R. Liposome-cell interactions: In vitro discrimination of uptake mechanism and in vivo targeting strategies to mononuclear phagocytes. Chem. Phys. Lipids. 1986;40:373–393. doi: 10.1016/0009-3084(86)90080-0. PubMed DOI

Rensen P.C.N., Love W.G., Taylor P.W. In vitro interaction of zinc(II)-phthalocyanine-containing liposomes and plasma lipoproteins. J. Photochem. Photobiol. B. 1994;26:29–35. doi: 10.1016/1011-1344(94)85033-X. PubMed DOI

Milanesi C., Zhou C., Biolo R., Jori G. Zn(II)-phthalocyanine as a photodynamic agent for tumours. II. Studies on the mechanism of photosensitised tumour necrosis. Br. J. Cancer. 1990;61:846–850. doi: 10.1038/bjc.1990.189. PubMed DOI PMC

Cuomo V., Jori G., Rihter B., Kenney M., Rodgers M. Liposome-delivered Si(IV)-naphthalocyanine as a photodynamic sensitiser for experimental tumours: Pharmacokinetic and phototherapeutic studies. Br. J. Cancer. 1990;62:966–970. doi: 10.1038/bjc.1990.418. PubMed DOI PMC

Allison B.A., Crespo M.T., Jain A.K., Richter A.M., Hsiang Y.N., Levy J.G. Delivery of Benzoporphyrin Derivative, a Photosensitizer, into Atherosclerotic Plaque of Watanabe Heritable Hyperlipidemic Rabbits and Balloon-Injured New Zealand Rabbits. Photochem. Photobiol. 1997;65:877–883. doi: 10.1111/j.1751-1097.1997.tb01938.x. PubMed DOI

Renno R.Z., Miller J.W. Photosensitizer delivery for photodynamic therapy of choroidal neovascularization. Adv. Drug Deliv. Rev. 2001;52:63–78. doi: 10.1016/S0169-409X(01)00195-8. PubMed DOI

Moreira J.N., Gaspar R., Allen T.M. Targeting Stealth liposomes in a murine model of human small cell lung cancer. Biochim. Et. Biophys. Acta BBA-Biomembr. 2001;1515:167–176. doi: 10.1016/S0005-2736(01)00411-4. PubMed DOI

Takeuchi H., Kojima H., Yamamoto H., Kawashima Y. Passive Targeting of Doxorubicin with Polymer Coated Liposomes in Tumor Bearing Rats. Biol. Pharm. Bull. 2001;24:795–799. doi: 10.1248/bpb.24.795. PubMed DOI

Derycke A. Liposomes for photodynamic therapy. Adv. Drug Deliv. Rev. 2004;56:17–30. doi: 10.1016/j.addr.2003.07.014. PubMed DOI

Longo J.P.F., Leal S.C., Simioni A.R., de Fátima Menezes Almeida-Santos M., Tedesco A.C., Azevedo R.B. Photodynamic therapy disinfection of carious tissue mediated by aluminum-chloride-phthalocyanine entrapped in cationic liposomes: An in vitro and clinical study. Lasers Med. Sci. 2012;27:575–584. doi: 10.1007/s10103-011-0962-6. PubMed DOI

Barbugli P.A., Alves C.P., Espreafico E.M., Tedesco A.C. Photodynamic therapy utilizing liposomal ClAlPc in human melanoma 3D cell cultures. Exp. Dermatol. 2015;24:970–972. doi: 10.1111/exd.12815. PubMed DOI

Broekgaarden M., Weijer R., van Wijk A.C., Cox R.C., Egmond M.R., Hoebe R., van Gulik T.M., Heger M. Photodynamic therapy with liposomal zinc phthalocyanine and tirapazamine increases tumor cell death via DNA damage. J. Biomed. Nanotechnol. 2017;13:204–220. doi: 10.1166/jbn.2017.2327. PubMed DOI

Cheung J., Furukawa D., Pandez R., Yıldırım M., Frazier A., Piskorz J., Düzgüneş N., Konopka K. Photocytotoxicity of liposomal zinc phthalocyanine in oral squamous cell carcinoma and pharyngeal carcinoma cells. Ther. Deliv. 2020;11:547–556. doi: 10.4155/tde-2020-0077. PubMed DOI

Nombona N., Maduray K., Antunes E., Karsten A., Nyokong T. Synthesis of phthalocyanine conjugates with gold nanoparticles and liposomes for photodynamic therapy. J. Photochem. Photobiol. B. 2012;107:35–44. doi: 10.1016/j.jphotobiol.2011.11.007. PubMed DOI

Needham D., McIntosh T.J., Lasic D.D. Repulsive interactions and mechanical stability of polymer-grafted lipid membranes. Biochim. Et. Biophys. Acta BBA-Biomembr. 1992;1108:40–48. doi: 10.1016/0005-2736(92)90112-Y. PubMed DOI

Francis G.E., Delgado C., Fisher D., Malik F., Agrawal A.K. Polyethylene Glycol Modification: Relevance of Improved Methodology to Tumour Targeting. J. Drug. Target. 1996;3:321–340. doi: 10.3109/10611869608996824. PubMed DOI

Allen T.M. Long-circulating (sterically stabilized) liposomes for targeted drug delivery. Trends Pharmacol. Sci. 1994;15:215–220. doi: 10.1016/0165-6147(94)90314-X. PubMed DOI

Krishna R., Pandit J.K. Carboxymethylcellulose-sodium Based Transdermal Drug Delivery System for Propranolol. J. Pharm. Pharmacol. 2011;48:367–370. doi: 10.1111/j.2042-7158.1996.tb05934.x. PubMed DOI

Rao P.R., Diwan P.V. Permeability studies of cellulose acetate free films for transdermal use: Influence of plasticizers. Pharm. Acta Helv. 1997;72:47–51. doi: 10.1016/S0031-6865(96)00060-X. PubMed DOI

Allen T.M., Lopes de Menezes D., Hansen C.B., Moase E.H. Stealth™ Liposomes for the Targeting of Drugs in Cancer Therapy. In: Gregoriadis G., McCormack B., editors. Targeting of Drugs 6: Strategies for Stealth Therapeutic Systems. Springer; Boston, MA, USA: 1998. pp. 61–75.

Morgan J., MacRobert A., Gray A., Huehns E. Use of photosensitive, antibody directed liposomes to destroy target populations of cells in bone marrow: A potential purging method for autologous bone marrow transplantation. Br. J. Cancer. 1992;65:58–64. doi: 10.1038/bjc.1992.11. PubMed DOI PMC

Morgan J., Lottman H., Abbou C.C., Chopin D.K. A comparison of direct and liposomal antibody conjugates of sulfonated aluminum phthalocyanines for selective photoimmunotherapy of human bladder carcinoma. Photochem. Photobiol. 1994;60:486–496. doi: 10.1111/j.1751-1097.1994.tb05139.x. PubMed DOI

Broekgaarden M., van Vught R., Oliveira S., Roovers R.C., van Bergen en Henegouwen P.M.P., Pieters R.J., van Gulik T.M., Breukink E., Heger M. Site-specific conjugation of single domain antibodies to liposomes enhances photosensitizer uptake and photodynamic therapy efficacy. Nanoscale. 2016;8:6490–6494. doi: 10.1039/C6NR00014B. PubMed DOI

Ramírez-García G., Panikar S.S., López-Luke T., Piazza V., Honorato-Colin M.A., Camacho-Villegas T., Hernández-Gutiérrez R., de la Rosa E. An immunoconjugated up-conversion nanocomplex for selective imaging and photodynamic therapy against HER2-positive breast cancer. Nanoscale. 2018;10:10154–10165. doi: 10.1039/C8NR01512K. PubMed DOI

Panikar S.S., Ramírez-García G., Vallejo-Cardona A.A., Banu N., Patrón-Soberano O.A., Cialla-May D., Camacho-Villegas T.A., de la Rosa E. Novel anti-HER2 peptide-conjugated theranostic nanoliposomes combining NaYF4:Yb,Er nanoparticles for NIR-activated bioimaging and chemo-photodynamic therapy against breast cancer. Nanoscale. 2019;11:20598–20613. doi: 10.1039/C9NR06535K. PubMed DOI

Hamblin M.R. Upconversion in photodynamic therapy: Plumbing the depths. Dalton Trans. 2018;47:8571–8580. doi: 10.1039/C8DT00087E. PubMed DOI PMC

Liang G., Wang H., Shi H., Wang H., Zhu M., Jing A., Li J., Li G. Recent progress in the development of upconversion nanomaterials in bioimaging and disease treatment. J. Nanobiotechnol. 2020;18:154. doi: 10.1186/s12951-020-00713-3. PubMed DOI PMC

Gijsens A., Derycke A., Missiaen L., de Vos D., Huwyler J., Eberle A., de Witte P. Targeting of the photocytotoxic compound AlPcS4 to hela cells by transferrin conjugated peg-liposomes. Int. J. Cancer. 2002;101:78–85. doi: 10.1002/ijc.10548. PubMed DOI

Derycke A.S.L., Kamuhabwa A., Gijsens A., Roskams T., de Vos D., Kasran A., Huwyler J., Missiaen L., de Witte P.A.M. Transferrin-Conjugated Liposome Targeting of Photosensitizer AlPcS4 to Rat Bladder Carcinoma Cells. JNCI J. Natl. Cancer Inst. 2004;96:1620–1630. doi: 10.1093/jnci/djh314. PubMed DOI

Reddy J.A., Dean D., Kennedy M.D., Low P.S. Optimization of folate-conjugated liposomal vectors for folate receptor-mediated gene therapy. J. Pharm. Sci. 1999;88:1112–1118. doi: 10.1021/js990169e. PubMed DOI

Qualls M.M., Thompson D.H. Chloroaluminum phthalocyanine tetrasulfonate delivered via acid-labile diplasmenylcholine-folate liposomes: Intracellular localization and synergistic phototoxicity. Int. J. Cancer. 2001;93:384–392. doi: 10.1002/ijc.1339. PubMed DOI

Nwahara N., Abrahams G., Prinsloo E., Nyokong T. Folic acid-modified phthalocyanine-nanozyme loaded liposomes for targeted photodynamic therapy. Photodiagn. Photodyn. Ther. 2021;36:102527. doi: 10.1016/j.pdpdt.2021.102527. PubMed DOI

Liu X., Xiang J., Zhu D., Jiang L., Zhou Z., Tang J., Liu X., Huang Y., Shen Y. Fusogenic Reactive Oxygen Species Triggered Charge-Reversal Vector for Effective Gene Delivery. Adv. Mater. 2016;28:1743–1752. doi: 10.1002/adma.201504288. PubMed DOI

Cong C., He Y., Zhao S., Zhang X., Li L., Wang D., Liu L., Gao D. Diagnostic and therapeutic nanoenzymes for enhanced chemotherapy and photodynamic therapy. J. Mater. Chem. B. 2021;9:3925–3934. doi: 10.1039/D0TB02791J. PubMed DOI

Deng X., Song Q., Zhang Y., Liu W., Hu H., Zhang Y. Tumour microenvironment-responsive nanoplatform based on biodegradable liposome-coated hollow MnO2 for synergistically enhanced chemotherapy and photodynamic therapy. J. Drug Target. 2022;30:334–347. doi: 10.1080/1061186X.2021.1999961. PubMed DOI

Lin A.-L., Fan P.-P., Liu S.-F., Chen J.-H., Zhao Y.-Y., Zheng B.-Y., Ke M.-R., Huang J.-D. A phthalocyanine-based liposomal nanophotosensitizer with highly efficient tumor-targeting and photodynamic activity. Dye. Pigment. 2020;180:108455. doi: 10.1016/j.dyepig.2020.108455. DOI

Meyers J.D., Cheng Y., Broome A.-M., Agnes R.S., Schluchter M.D., Margevicius S., Wang X., Kenney M.E., Burda C., Basilion J.P. Peptide-Targeted Gold Nanoparticles for Photodynamic Therapy of Brain Cancer. Part. Part. Syst. Charact. 2015;32:448–457. doi: 10.1002/ppsc.201400119. PubMed DOI PMC

Gijsens A., Missiaen L., Merlevede W., de Witte P. Epidermal growth factor-mediated targeting of chlorin e6 selectively potentiates its photodynamic activity. Cancer Res. 2000;60:2197–2202. PubMed

Opanasopit P., Sakai M., Nishikawa M., Kawakami S., Yamashita F., Hashida M. Inhibition of liver metastasis by targeting of immunomodulators using mannosylated liposome carriers. J. Control. Release. 2002;80:283–294. doi: 10.1016/S0168-3659(02)00006-8. PubMed DOI

Xu Y., Yao Y., Wang L., Chen H., Tan N. Hyaluronic Acid Coated Liposomes Co-Delivery of Natural Cyclic Peptide RA-XII and Mitochondrial Targeted Photosensitizer for Highly Selective Precise Combined Treatment of Colon Cancer. Int. J. Nanomed. 2021;16:4929–4942. doi: 10.2147/IJN.S311577. PubMed DOI PMC

Moret F., Scheglmann D., Reddi E. Folate-targeted PEGylated liposomes improve the selectivity of PDT with meta-tetra(hydroxyphenyl)-chlorin (m-THPC) Photochem. Photobiol. Sci. 2013;12:823–834. doi: 10.1039/c3pp25384h. PubMed DOI

Syu W.-J., Yu H.-P., Hsu C.-Y., Rajan Y.C., Hsu Y.-H., Chang Y.-C., Hsieh W.-Y., Wang C.-H., Lai P.-S. Improved Photodynamic Cancer Treatment by Folate-Conjugated Polymeric Micelles in a KB Xenografted Animal Model. Small. 2012;8:2060–2069. doi: 10.1002/smll.201102695. PubMed DOI

Miyoshi N., Mišík V., Fukuda M., Riesz P., Misik V. Effect of Gallium-Porphyrin Analogue ATX-70 on Nitroxide Formation from a Cyclic Secondary Amine by Ultrasound: On the Mechanism of Sonodynamic Activation. Radiat. Res. 1995;143:194–202. doi: 10.2307/3579157. PubMed DOI

Bakhshizadeh M., Moshirian T., Esmaily H., Rajabi O., Nassirli H., Sazgarnia A. Sonophotodynamic therapy mediated by liposomal zinc phthalocyanine in a colon carcinoma tumor model: Role of irradiating arrangement. Iran J. Basic Med. Sci. 2017;20:1088–1092. PubMed PMC

Li W.M., Xue L., Mayer L.D., Bally M.B. Intermembrane transfer of polyethylene glycol-modified phosphatidylethanolamine as a means to reveal surface-associated binding ligands on liposomes. Biochim. Biophys. Acta BBA-Biomembr. 2001;1513:193–206. doi: 10.1016/S0005-2736(01)00351-0. PubMed DOI

Metselaar J., Mastrobattista E., Storm G. Liposomes for Intravenous Drug Targeting: Design and Applications. Mini-Rev. Med. Chem. 2002;2:319–329. doi: 10.2174/1389557023405873. PubMed DOI

He Y., Wang K., Lu Y., Sun B., Sun J., Liang W. Monensin Enhanced Generation of Extracellular Vesicles as Transfersomes for Promoting Tumor Penetration of Pyropheophorbide-a from Fusogenic Liposome. Nano Lett. 2022;22:1415–1424. doi: 10.1021/acs.nanolett.1c04962. PubMed DOI

Kim H., Lee J., Oh C., Park J.-H. Cooperative tumour cell membrane targeted phototherapy. Nat. Commun. 2017;8:15880. doi: 10.1038/ncomms15880. PubMed DOI PMC

Stubbs M. Tumour pH. In: Molls M., Vaupel P., editors. Blood Perfusion and Microenvironment of Human Tumors, Implications for Clinical Radiooncology: Implications for Clinical Radiooncology. Springer; Berlin, Germany: 2000. pp. 113–120.

Crommelin D.J., Schreier H. Liposomes. In: Kreuter J., editor. Colloidal Drug Delivery Systems. Volume 66. Dekker; New York, NY, USA: 1994. pp. 73–190.

Aicher A., Miller K., Reich E., Hautmann R. Photodynamic therapy of human bladder carcinoma cells in vitro with pH-sensitive liposomes as carriers for 9-acetoxy-tetra-n-propylporphycene. Urol. Res. 1994;22:25–32. doi: 10.1007/BF00431545. PubMed DOI

Liu J., Tian L., Zhang R., Dong Z., Wang H., Liu Z. Collagenase-Encapsulated pH-Responsive Nanoscale Coordination Polymers for Tumor Microenvironment Modulation and Enhanced Photodynamic Nanomedicine. ACS Appl. Mater. Interfaces. 2018;10:43493–43502. doi: 10.1021/acsami.8b17684. PubMed DOI

Ma J., Wu H., Li Y., Liu Z., Liu G., Guo Y., Hou Z., Zhao Q., Chen D., Zhu X. Novel Core-Interlayer-Shell DOX/ZnPc Co-loaded MSNs@ pH-Sensitive CaP@PEGylated Liposome for Enhanced Synergetic Chemo-Photodynamic Therapy. Pharm. Res. 2018;35:57. doi: 10.1007/s11095-017-2295-z. PubMed DOI

Miranda D., Lovell J.F. Mechanisms of light—Induced liposome permeabilization. Bioeng. Transl. Med. 2016;1:267–276. doi: 10.1002/btm2.10032. PubMed DOI PMC

Leung S.J., Romanowski M. Light-Activated Content Release from Liposomes. Theranostics. 2012;2:1020–1036. doi: 10.7150/thno.4847. PubMed DOI PMC

Nikolova M.P., Kumar E.M., Chavali M.S. Updates on Responsive Drug Delivery Based on Liposome Vehicles for Cancer Treatment. Pharmaceutics. 2022;14:2195. doi: 10.3390/pharmaceutics14102195. PubMed DOI PMC

Kano K., Tanaka Y., Ogawa T., Shimomura M., Kunitake T. Photoresponsive artificial membrane. Regulation of membrane permeability of liposomal membrane by photoreversible cis-trans isomerization of azobenzenes. Photochem. Photobiol. 1981;34:323–329. doi: 10.1111/j.1751-1097.1981.tb09004.x. DOI

Morgan C.G., Thomas E.W., Sandhu S.S., Yianni Y.P., Mitchell A.C. Light-induced fusion of liposomes with release of trapped marker dye is sensitised by photochromic phospholipid. Biochim. Biophys. Acta BBA-Biomembr. 1987;903:504–509. doi: 10.1016/0005-2736(87)90057-5. PubMed DOI

Bisby R.H., Mead C., Morgan C.G. Photosensitive liposomes as ‘cages’ for laser-triggered solute delivery: The effect of bilayer cholesterol on kinetics of solute release. FEBS Lett. 1999;463:165–168. doi: 10.1016/S0014-5793(99)01612-9. PubMed DOI

Bisby R.H., Mead C., Morgan C.G. Wavelength-Programmed Solute Release from Photosensitive Liposomes. Biochem. Biophys. Res. Commun. 2000;276:169–173. doi: 10.1006/bbrc.2000.3456. PubMed DOI

Lei Y., Hurst J.K. Photoregulated Potassium Ion Permeation through Dihexadecyl Phosphate Bilayers Containing Azobenzene and Stilbene Surfactants. Langmuir. 1999;15:3424–3429. doi: 10.1021/la981223u. DOI

Ohya Y., Okuyama Y., Fukunaga A., Ouchi T. Photo-sensitive lipid membrane perturbation by a single chain lipid having terminal spiropyran group. Supramol. Sci. 1998;5:21–29. doi: 10.1016/S0968-5677(97)00070-9. DOI

Anderson V.C., Thompson D.H. Triggered release of hydrophilic agents from plasmologen liposomes using visible light or acid. Biochim. Biophys. Acta BBA-Biomembr. 1992;1109:33–42. doi: 10.1016/0005-2736(92)90183-M. PubMed DOI

Thompson D.H., Gerasimov O.V., Wheeler J.J., Rui Y., Anderson V.C. Triggerable plasmalogen liposomes: Improvement of system efficiency. Biochim. Biophys. Acta BBA-Biomembr. 1996;1279:25–34. doi: 10.1016/0005-2736(95)00210-3. PubMed DOI

Dass C.R., Walker T.L., Burton M.A., Decruz E.E. Enhanced Anticancer Therapy Mediated by Specialized Liposomes. J. Pharm. Pharmacol. 2011;49:972–975. doi: 10.1111/j.2042-7158.1997.tb06025.x. PubMed DOI

Chowdhary R.K., Green C.A., Morgan C.G. Dye-sensitized destabilization of liposomes bearing photooxidizable lipid head groups. Photochem. Photobiol. 1993;58:362–366. doi: 10.1111/j.1751-1097.1993.tb09575.x. PubMed DOI

Luo D., Li N., Carter K.A., Lin C., Geng J., Shao S., Huang W.-C., Qin Y., Atilla-Gokcumen G.E., Lovell J.F. Rapid Light-Triggered Drug Release in Liposomes Containing Small Amounts of Unsaturated and Porphyrin-Phospholipids. Small. 2016;12:3039–3047. doi: 10.1002/smll.201503966. PubMed DOI PMC

Luo D., Carter K.A., Razi A., Geng J., Shao S., Lin C., Ortega J., Lovell J.F. Porphyrin-phospholipid liposomes with tunable leakiness. J. Control. Release. 2015;220:484–494. doi: 10.1016/j.jconrel.2015.11.011. PubMed DOI PMC

Luo D., Carter K.A., Razi A., Geng J., Shao S., Giraldo D., Sunar U., Ortega J., Lovell J.F. Doxorubicin encapsulated in stealth liposomes conferred with light-triggered drug release. Biomaterials. 2016;75:193–202. doi: 10.1016/j.biomaterials.2015.10.027. PubMed DOI PMC

Zheng K., Liu H., Liu X., Jiang L., Li L., Wu X., Guo N., Ding C., Huang M. Photo-triggered release of doxorubicin from liposomes formulated by amphiphilic phthalocyanines for combination therapy to enhance antitumor efficacy. J. Mater. Chem. B. 2020;8:8022–8036. doi: 10.1039/D0TB01093F. PubMed DOI

Li Q., Li W., Di H., Luo L., Zhu C., Yang J., Yin X., Yin H., Gao J., Du Y., et al. A photosensitive liposome with NIR light triggered doxorubicin release as a combined photodynamic-chemo therapy system. J. Control. Release. 2018;277:114–125. doi: 10.1016/j.jconrel.2018.02.001. PubMed DOI

Pashkovskaya A., Kotova E., Zorlu Y., Dumoulin F., Ahsen V., Agapov I., Antonenko Y. Light-Triggered Liposomal Release: Membrane Permeabilization by Photodynamic Action. Langmuir. 2010;26:5726–5733. doi: 10.1021/la903867a. PubMed DOI

Kong G., Anyarambhatla G., Petros W.P., Braun R.D., Colvin O.M., Needham D., Dewhirst M.W. Efficacy of liposomes and hyperthermia in a human tumor xenograft model: Importance of triggered drug release. Cancer Res. 2000;60:6950–6957. PubMed

Dayyih A.A., Gutberlet B., Preis E., Engelhardt K.H., Amin M.U., Abdelsalam A.M., Bonsu M., Bakowsky U. Thermoresponsive Liposomes for Photo-Triggered Release of Hypericin Cyclodextrin Inclusion Complex for Efficient Antimicrobial Photodynamic Therapy. ACS Appl. Mater. Interfaces. 2022;14:31525–31540. doi: 10.1021/acsami.2c02741. PubMed DOI PMC

Abu Dayyih A., Alawak M., Ayoub A.M., Amin M.U., Abu Dayyih W., Engelhardt K., Duse L., Preis E., Brüßler J., Bakowsky U. Thermosensitive liposomes encapsulating hypericin: Characterization and photodynamic efficiency. Int. J. Pharm. 2021;609:121195. doi: 10.1016/j.ijpharm.2021.121195. PubMed DOI

Dai Y., Su J., Wu K., Ma W., Wang B., Li M., Sun P., Shen Q., Wang Q., Fan Q. Multifunctional Thermosensitive Liposomes Based on Natural Phase-Change Material: Near-Infrared Light-Triggered Drug Release and Multimodal Imaging-Guided Cancer Combination Therapy. ACS Appl. Mater. Interfaces. 2019;11:10540–10553. doi: 10.1021/acsami.8b22748. PubMed DOI

Martínez-Carmona M., Lozano D., Baeza A., Colilla M., Vallet-Regí M. A novel visible light responsive nanosystem for cancer treatment. Nanoscale. 2017;9:15967–15973. doi: 10.1039/C7NR05050J. PubMed DOI

Sun C.-Y., Cao Z., Zhang X.-J., Sun R., Yu C.-S., Yang X. Cascade-amplifying synergistic effects of chemo-photodynamic therapy using ROS-responsive polymeric nanocarriers. Theranostics. 2018;8:2939–2953. doi: 10.7150/thno.24015. PubMed DOI PMC

Sun C., Wang L., Xianyu B., Li T., Gao S., Xu H. Selenoxide elimination manipulate the oxidative stress to improve the antitumor efficacy. Biomaterials. 2019;225:119514. doi: 10.1016/j.biomaterials.2019.119514. PubMed DOI

Yi H., Lu W., Liu F., Zhang G., Xie F., Liu W., Wang L., Zhou W., Cheng Z. ROS-responsive liposomes with NIR light-triggered doxorubicin release for combinatorial therapy of breast cancer. J. Nanobiotechnol. 2021;19:134. doi: 10.1186/s12951-021-00877-6. PubMed DOI PMC

Liu D., Shu G., Jin F., Qi J., Xu X., Du Y., Yu H., Wang J., Sun M., You Y., et al. ROS-responsive chitosan-SS31 prodrug for AKI therapy via rapid distribution in the kidney and long-term retention in the renal tubule. Sci. Adv. 2020;6 doi: 10.1126/sciadv.abb7422. PubMed DOI PMC

Hao Y., Chen Y., He X., Yu Y., Han R., Li Y., Yang C., Hu D., Qian Z. Polymeric Nanoparticles with ROS-Responsive Prodrug and Platinum Nanozyme for Enhanced Chemophotodynamic Therapy of Colon Cancer. Adv. Sci. 2020;7:2001853. doi: 10.1002/advs.202001853. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...