Mercury Content and Amelioration of Its Toxicity by Nitric Oxide in Lichens
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SGS_2022_002
University of Pardubice
1/0003/21
Slovak grant agency VEGA
PubMed
36840082
PubMed Central
PMC9967695
DOI
10.3390/plants12040727
PII: plants12040727
Knihovny.cz E-zdroje
- Klíčová slova
- antioxidants, biomonitoring, heavy metals, reactive oxygen species,
- Publikační typ
- časopisecké články MeSH
Mercury (Hg) content measured in five epiphytic lichen species collected in Slovakia mountain forests ranged from 30 to 100 ng/g DW and was species-specific, decreasing in the order Hypogymnia > Pseudevernia > Usnea > Xanthoria > Evernia prunastri (but polluted sites had no impact on Hg amount in Xanthoria). Evernia was therefore used to study the impact of short-term exogenous Hg (100 µM, 24 h) and possible amelioration of Hg toxicity by nitric oxide (NO) donor sodium nitroprusside (SNP). NO was efficiently released from SNP as detected by two staining reagents and fluorescence microscopy and reduced Hg-induced ROS signal and absorption of Hg by thalli of Evernia prunastri. At the same time, NO ameliorated Hg-induced depletion of metabolites such as ascorbic acid and non-protein thiols, but not of free amino acids. The amount of metabolites, including soluble phenols, was reduced by excess Hg per se. On the contrary, NO was unable to restore Hg-stimulated depletion of chlorophyll autofluorescence but mitigated the decline of some macronutrients (K and Ca). Data confirm that accumulation of Hg in the epiphytic lichens is species-specific and that NO is a vital molecule in Evernia prunastri that provides protection against Hg-induced toxicity with considerable positive impact on metabolic changes.
Zobrazit více v PubMed
Singh R., Srivastava P.K., Singh V., Dubey G., Prasad S.M. Light intensity determines the extent of mercury toxicity in the cyanobacterium Nostoc muscorum. Acta Physiol. Plant. 2012;34:1119–1131. doi: 10.1007/s11738-011-0909-3. PubMed DOI
Ortega-Villasante C., Hernández L.E., Rellán-Álvarez R., Del Campo F.F., Carpena-Ruiz R.O. Rapid alteration of cellular redox homeostasis upon exposure to cadmium and mercury in alfalfa seedlings. New Phytol. 2007;176:96–107. doi: 10.1111/j.1469-8137.2007.02162.x. PubMed DOI
Chen Z., Chen M., Jiang M. Hydrogen sulfide alleviates mercury toxicity by sequestering it in roots or regulating reactive oxygen species productions in rice seedlings. Plant Physiol. Biochem. 2017;111:179–192. doi: 10.1016/j.plaphy.2016.11.027. PubMed DOI
Mei L., Zhu Y., Zhang X., Zhou X., Zhong Z., Li H., Li Y., Li X., Daud M.K., Chen J., et al. Mercury-induced phytotoxicity and responses in upland cotton (Gossypium hirsutum L.) seedlings. Plants. 2021;10:1494. doi: 10.3390/plants10081494. PubMed DOI PMC
Kalinhoff C., Calderón N.-T. Mercury phytotoxicity and tolerance in three wild plants during germination and seedling development. Plants. 2022;11:2046. doi: 10.3390/plants11152046. PubMed DOI PMC
Bubach D., Catán S.P., Di Fonzo C., Dopchiz L., Arribére M., Ansaldo M. Elemental composition of Usnea sp lichen from Potter Peninsula, 25 de Mayo (King George) Island, Antarctica. Environ. Pollut. 2016;210:238–245. doi: 10.1016/j.envpol.2015.11.045. PubMed DOI
Panichev N., Mokgalaka N., Panicheva S. Assessment of air pollution by mercury in South African provinces using lichens Parmelia caperata as bioindicators. Environ. Geochem. Health. 2019;41:2239–2250. doi: 10.1007/s10653-019-00283-w. PubMed DOI
Floreani F., Barago N., Acquavita A., Covelli S., Skert N., Higueras P. Spatial distribution and biomonitoring of atmospheric mercury concentrations over a contaminated coastal lagoon (Northern Adriatic, Italy) Atmosphere. 2020;11:1280. doi: 10.3390/atmos11121280. DOI
Catán S.P., Bubach D., Arribere M., Ansaldo M., Kitaura M.J., Scur M.C., Lirio J.M. Trace elements baseline levels in Usnea antarctica from Clearwater Mesa, James Ross Island, Antarctica. Environ. Monit. Assess. 2020;192:246. doi: 10.1007/s10661-020-8212-7. PubMed DOI
Fantozzi L., Guerrieri N., Manca G., Orrù A., Marziali L. An Integrated investigation of atmospheric gaseous elemental mercury transport and dispersion around a chlor-alkali plant in the Ossola Valley (Italian Central Alps) Toxics. 2021;9:172. doi: 10.3390/toxics9070172. PubMed DOI PMC
Monaci F., Ancora S., Paoli L., Loppi S., Wania F. Lichen transplants as indicators of gaseous elemental mercury concentrations. Environ. Pollut. 2022;313:120189. doi: 10.1016/j.envpol.2022.120189. PubMed DOI
Pisani T., Munzi S., Paoli L., Bačkor M., Kováčik J., Piovár J., Loppi S. Physiological effects of mercury in the lichens Cladonia arbuscula subsp. mitis (Sandst.) Ruoss and Peltigera rufescens (Weiss) Humb. Chemosphere. 2011;82:1030–1037. doi: 10.1016/j.chemosphere.2010.10.062. PubMed DOI
Vannini A., Jamal M.B., Gramigni M., Fedeli R., Ancora S., Monaci F., Loppi S. Accumulation and release of mercury in the lichen Evernia prunastri (L.) Ach. Biology. 2021;10:1198. doi: 10.3390/biology10111198. PubMed DOI PMC
Kováčik J., Rotková G., Bujdoš M., Babula P., Peterková V., Matúš P. Ascorbic acid protects Coccomyxa subellipsoidea against metal toxicity through modulation of ROS/NO balance and metal uptake. J. Hazard. Mater. 2017;339:200–207. doi: 10.1016/j.jhazmat.2017.06.035. PubMed DOI
Ibrahim M., Nawaz S., Iqbal K., Rehman S., Ullah R., Nawaz G., Almeer R., Sayed A.A., Peluso I. Plant-derived smoke solution alleviates cellular oxidative stress caused by arsenic and mercury by modulating the cellular antioxidative defense system in wheat. Plants. 2022;11:1379. doi: 10.3390/plants11101379. PubMed DOI PMC
Kováčik J., Klejdus B., Babula P., Hedbavny J. Nitric oxide donor modulates cadmium-induced physiological and metabolic changes in the green alga Coccomyxa subellipsoidea. Algal Res. 2015;8:45–52. doi: 10.1016/j.algal.2015.01.004. DOI
Kováčik J., Dresler S., Peterková V., Babula P. Metal-induced oxidative stress in terrestrial macrolichens. Chemosphere. 2018;203:402–409. doi: 10.1016/j.chemosphere.2018.03.112. PubMed DOI
Kováčik J., Dresler S., Babula P., Hladký J., Sowa I. Calcium has protective impact on cadmium-induced toxicity in lichens. Plant Physiol. Biochem. 2020;156:591–599. doi: 10.1016/j.plaphy.2020.10.007. PubMed DOI
Praveen A. Nitric oxide mediated alleviation of abiotic challenges in plants. Nitric Oxide. 2022;128:37–49. doi: 10.1016/j.niox.2022.08.005. PubMed DOI
Meng Y., Jing H., Huang J., Shen R., Zhu X. The role of nitric oxide signaling in plant responses to cadmium stress. Int. J. Mol. Sci. 2022;23:6901. doi: 10.3390/ijms23136901. PubMed DOI PMC
Chen Z., Zhang L., Zhu C. Exogenous nitric oxide mediates alleviation of mercury toxicity by promoting auxin transport in roots or preventing oxidative stress in leaves of rice seedlings. Acta Physiol. Plant. 2015;37:194. doi: 10.1007/s11738-015-1931-7. DOI
Dresler S., Kováčik J., Sowa I., Wójciak M., Strzemski M., Rysiak A., Babula P., Todd C.D. Allantoin overaccumulation enhances production of metabolites under excess of metals but is not tightly regulated by nitric oxide. J. Hazard. Mater. 2022;436:129138. doi: 10.1016/j.jhazmat.2022.129138. PubMed DOI
Rahim W., Khan M., Al Azzawi T.N.I., Pande A., Methela N.J., Ali S., Imran M., Lee D.-S., Lee G.-M., Mun B.-G., et al. Exogenously applied sodium nitroprusside mitigates lead toxicity in rice by regulating antioxidants and metal stress-related transcripts. Int. J. Mol. Sci. 2022;23:9729. doi: 10.3390/ijms23179729. PubMed DOI PMC
Kováčik J., Dresler S., Micalizzi G., Babula P., Hladký J., Mondello L. Nitric oxide affects cadmium-induced changes in the lichen Ramalina farinacea. Nitric Oxide. 2019;83:11–18. doi: 10.1016/j.niox.2018.12.001. PubMed DOI
Expósito J.R., Coello A.J., Barreno E., Casano L.M., Catalá M. Endogenous NO is involved in dissimilar responses to rehydration and Pb(NO3)2 in Ramalina farinacea thalli and its isolated phycobionts. Microb. Ecol. 2020;79:604–616. doi: 10.1007/s00248-019-01427-2. PubMed DOI
Shishido S.M., Ganzarolli de Oliveira M. Photosensitivity of aqueous sodium nitroprusside solutions: Nitric oxide release versus cyanide toxicity. Prog. React. Kinet. Mech. 2001;26:239–261. doi: 10.3184/007967401103165271. DOI
Vannini A., Nicolardi V., Bargagli R., Loppi S. Estimating atmospheric mercury concentrations with lichens. Environ. Sci. Technol. 2014;48:8754–8759. doi: 10.1021/es500866k. PubMed DOI
Bozkurt Z. Determination of airborne trace elements in an urban area using lichens as biomonitor. Environ. Monit. Assess. 2017;189:573. doi: 10.1007/s10661-017-6275-x. PubMed DOI
Kłos A., Rajfur M., Šrámek I., Wacławek M. Mercury concentration in lichen, moss and soil samples collected from the forest areas of Praded and Glacensis Euroregions (Poland and Czech Republic) Environ. Monit. Assess. 2012;184:6765–6774. doi: 10.1007/s10661-011-2456-1. PubMed DOI PMC
Yang L., Yang H., Bian Z., Lu H., Zhang L., Chen J. The defensive role of endogenous H2S in Brassica rapa against mercury-selenium combined stress. Int. J. Mol. Sci. 2022;23:2854. doi: 10.3390/ijms23052854. PubMed DOI PMC
Santos A.M.d., Vitorino L.C., Cruvinel B.G., Ávila R.G., Vasconcelos Filho S.d.C., Batista P.F., Bessa L.A. Impacts of Cd pollution on the vitality, anatomy and physiology of two morphologically different lichen species of the genera Parmotrema and Usnea, evaluated under experimental conditions. Diversity. 2022;14:926. doi: 10.3390/d14110926. DOI
Weissman L., Garty J., Hochman A. Rehydration of the lichen Ramalina lacera results in production of reactive oxygen species and nitric oxide and a decrease in antioxidants. Appl. Environ. Microbiol. 2005;71:2121–2129. doi: 10.1128/AEM.71.4.2121-2129.2005. PubMed DOI PMC
Nicolardi V., Cai G., Parrotta L., Puglia M., Bianchi L., Bini L., Gaggi C. The adaptive response of lichens to mercury exposure involves changes in the photosynthetic machinery. Environ. Pollut. 2012;160:1–10. doi: 10.1016/j.envpol.2011.09.015. PubMed DOI
Kováčik J., Husáková L., Graziani G., Patočka J., Vydra M., Rouphael Y. Nickel uptake in hydroponics and elemental profile in relation to cultivation reveal variability in three Hypericum species. Plant Physiol. Biochem. 2022;185:357–367. doi: 10.1016/j.plaphy.2022.06.009. PubMed DOI