Whole genome analysis of Neisseria meningitidis isolates from invasive meningococcal disease collected in the Czech Republic over 28 years (1993-2020)
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36913385
PubMed Central
PMC10010514
DOI
10.1371/journal.pone.0282971
PII: PONE-D-22-30336
Knihovny.cz E-zdroje
- MeSH
- antigeny bakteriální MeSH
- lidé MeSH
- meningokokové infekce * epidemiologie MeSH
- meningokokové vakcíny * MeSH
- Neisseria meningitidis séroskupiny B * genetika MeSH
- Neisseria meningitidis * MeSH
- sekvenování celého genomu MeSH
- séroskupina MeSH
- syntetické vakcíny genetika MeSH
- vakcinace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Názvy látek
- antigeny bakteriální MeSH
- meningokokové vakcíny * MeSH
- syntetické vakcíny MeSH
Invasive meningococcal disease belongs among the most dangerous infectious diseases in the world. Several polysaccharide conjugate vaccines against serogroups A, C, W and Y are available and two recombinant peptide vaccines against serogroup B (MenB vaccines) have been developed: MenB-4C (Bexsero) and MenB-fHbp (Trumenba). The aim of this study was to define the clonal composition of the Neisseria meningitidis population in the Czech Republic, to determine changes in this population over time and to estimate the theoretical coverage of isolates by MenB vaccines. This study presents the analysis of whole genome sequencing data of 369 Czech N. meningitidis isolates from invasive meningococcal disease covering 28 years. Serogroup B isolates (MenB) showed high heterogeneity and the most common clonal complexes were cc18, cc32, cc35, cc41/44, and cc269. Isolates of clonal complex cc11 were predominately serogroup C (MenC). The highest number of serogroup W isolates (MenW) belonged to clonal complex cc865, which we described as exclusive to the Czech Republic. Our study supports the theory that this cc865 subpopulation originated in the Czech Republic from MenB isolates by a capsule switching mechanism. A dominant clonal complex of serogroup Y isolates (MenY) was cc23, which formed two genetically quite distant subpopulations and which showed constant representation throughout the observed period. The theoretical coverage of isolates by two MenB vaccines was determined using the Meningococcal Deduced Vaccine Antigen Reactivity Index (MenDeVAR). Estimated Bexsero vaccine coverage was 70.6% (for MenB) and 62.2% (for MenC, W, Y). For Trumenba vaccine, estimated coverage was 74.6% (for MenB) and 65.7% (for MenC, W, Y). Our results demonstrated sufficient coverage of Czech heterogeneous population of N. meningitidis with MenB vaccines and, together with surveillance data on invasive meningococcal disease in the Czech Republic, were the basis for updating recommendations for vaccination against invasive meningococcal disease.
Zobrazit více v PubMed
Whittaker R, Dias JG, Ramliden M, Ködmön C, Economopoulou A, Beer N, et al.. The epidemiology of invasive meningococcal disease in EU/EEA countries, 2004–2014. Vaccine. 2017. Apr 11; 35(16):2034–2041. doi: 10.1016/j.vaccine.2017.03.007 . PubMed DOI
Parikh SR, Campbell H, Bettinger JA, Harrison LH, Marshall HS, Martinon-Torres F, et al.. The everchanging epidemiology of meningococcal disease worldwide and the potential for prevention through vaccination. J Infect. 2020. Oct; 81(4):483–498. doi: 10.1016/j.jinf.2020.05.079 . PubMed DOI
Dretler AW, Rouphael NG, Stephens DS. Progress toward the global control of Neisseria meningitidis: 21st century vaccines, current guidelines, and challenges for future vaccine development. Hum Vaccin Immunother. 2018. May 4; 14(5):1146–1160. doi: 10.1080/21645515.2018.1451810 . PubMed DOI PMC
European medicines agency [Internet]. Bexsero overview. 2013. https://www.ema.europa.eu/en/medicines/human/EPAR/bexsero.
European medicines agency [Internet]. Trumenba overview. 2017. https://www.ema.europa.eu/en/medicines/human/EPAR/trumenba.
Ladhani SN, Campbell H, Andrews N, Parikh SR, White J, Edelstein M, et al.. First Real-world Evidence of Meningococcal Group B Vaccine, 4CMenB, Protection Against Meningococcal Group W Disease: Prospective Enhanced National Surveillance, England. Clin Infect Dis. 2021. Oct 5; 73(7):e1661–e1668. doi: 10.1093/cid/ciaa1244 . PubMed DOI
Freudenburg-de Graaf W, Knol MJ, van der Ende A. Predicted coverage by 4CMenB vaccine against invasive meningococcal disease cases in the Netherlands. Vaccine. 2020. Nov 17; 38(49):7850–7857. doi: 10.1016/j.vaccine.2020.10.008 . PubMed DOI
Leo S, Lazarevic V, Girard M, Getaz-Jimenez Velasco GC, Gaïa N, Renzi G, et al.. Strain coverage of Bexsero vaccine assessed by whole-genome sequencing over a cohort of invasive meningococci of serogroups B and W isolated in Switzerland. Vaccine. 2020. Jul 14; 38(33):5324–5331. doi: 10.1016/j.vaccine.2020.05.071 . PubMed DOI
Säll O, Olofsson E, Jacobsson S. High genomic-based predicted strain coverage among invasive meningococcal isolates when combining Bexsero and Trumenba vaccines. Vaccine. 2020. Jun 9; 38(28):4374–4378. doi: 10.1016/j.vaccine.2020.04.074 . PubMed DOI
Ruiz García Y, Sohn WY, Seib KL, Taha MK, Vázquez JA, de Lemos APS, et al.. Looking beyond meningococcal B with the 4CMenB vaccine: the Neisseria effect. NPJ Vaccines. 2021. Oct 29; 6(1):130. doi: 10.1038/s41541-021-00388-3 . PubMed DOI PMC
National Reference Laboratory for Meningococcal Infections [Internet]. Recommendation vaccination against Invasive Meningococcal Disease. 2020. http://www.szu.cz/ockovani-proti-meningokokovym-onemocnenim.
European Centre for Disease Prevention and Control [Internet]. Vaccine schedules in all countries in the EU/EEA. 2022. https://vaccine-schedule.ecdc.europa.eu/Scheduler/.
Centers for Disease Control and Prevention [Internet]. PCR for Detection and Characterization of Bacterial Meningitis Pathogens: Neisseria meningitidis, Haemophilus infuenzae, and Streptococcus pneumoniae. CDC manual. 2016; Chapter 10. https://www.cdc.gov/meningitis/lab-manual/chpt10-pcr.html.
Zerbino DR. Using the Velvet de novo assembler for short-read sequencing technologies. Curr Protoc Bioinformatics. 2010. Sep; 11(5). doi: 10.1002/0471250953.bi1105s31 . PubMed DOI PMC
Jolley KA, Maiden MCJ. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics. 2010. Dec 10; 11:595. doi: 10.1186/1471-2105-11-595 . PubMed DOI PMC
Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018. Sep 24; 3:124. doi: 10.12688/wellcomeopenres.14826.1 . PubMed DOI PMC
Jolley KA, Brehony C, Maiden MC. Molecular typing of meningococci: recommendations for target choice and nomenclature. FEMS Microbiol Rev. 2007. Jan; 31(1):89–96. doi: 10.1111/j.1574-6976.2006.00057.x . PubMed DOI
Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, et al.. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A. 1998. Mar 17; 95(6):3140–5. doi: 10.1073/pnas.95.6.3140 . PubMed DOI PMC
Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony C, Colles FM, et al.. Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiology (Reading). 2012. Apr; 158(Pt 4):1005–1015. doi: 10.1099/mic.0.055459-0 . PubMed DOI PMC
Vernikos G, Medini D. Bexsero® chronicle. Pathog Glob Health. 2014. Oct; 108(7):305–16. doi: 10.1179/2047773214Y.0000000162 . PubMed DOI PMC
Bratcher HB, Corton C, Jolley KA, Parkhill J, Maiden MC. A gene-by-gene population genomics platform: de novo assembly, annotation and genealogical analysis of 108 representative Neisseria meningitidis genomes. BMC Genomics. 2014. Dec 18; 15(1):1138. doi: 10.1186/1471-2164-15-1138 . PubMed DOI PMC
Huson DH. SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics. 1998; 14(1):68–73. doi: 10.1093/bioinformatics/14.1.68 . PubMed DOI
Brehony C, Rodrigues CMC, Borrow R, Smith A, Cunney R, Moxon ER, et al.. Distribution of Bexsero® Antigen Sequence Types (BASTs) in invasive meningococcal disease isolates: Implications for immunisation. Vaccine. 2016. Sep 7; 34(39):4690–4697. doi: 10.1016/j.vaccine.2016.08.015 . PubMed DOI PMC
Rodrigues CMC, Jolley KA, Smith A, Cameron JC, Feavers IM, Maiden MCJ. Meningococcal Deduced Vaccine Antigen Reactivity (MenDeVAR) Index: a Rapid and Accessible Tool That Exploits Genomic Data in Public Health and Clinical Microbiology Applications. J Clin Microbiol. 2020. Dec 17; 59(1):e02161–20. doi: 10.1128/JCM.02161-20 . PubMed DOI PMC
Muzzi A, Brozzi A, Serino L, Bodini M, Abad R, Caugant D, et al.. Genetic Meningococcal Antigen Typing System (gMATS): A genotyping tool that predicts 4CMenB strain coverage worldwide. Vaccine. 2019. Feb 8; 37(7):991–1000. doi: 10.1016/j.vaccine.2018.12.061 . PubMed DOI
Honskus M, Okonji Z, Musílek M, Kozáková J, Křížová P. Whole genome sequencing of Neisseria meningitidis W isolates from the Czech Republic recovered in 1984–2017. PLoS One. 2018. Sep 13; 13(9):e0199652. doi: 10.1371/journal.pone.0199652 . PubMed DOI PMC
Křížová P, Honskus M. Genomic surveillance of invasive meningococcal disease in the Czech Republic, 2015–2017. PLoS One. 2019. Jul 11; 14(7):e0219477. doi: 10.1371/journal.pone.0219477 . PubMed DOI PMC
Honskus M, Okonji Z, Musílek M, Křížová P. Whole genome sequencing of Neisseria meningitidis Y isolates collected in the Czech Republic in 1993–2018. PLoS One. 2022. Mar 10; 17(3):e0265066. doi: 10.1371/journal.pone.0265066 . PubMed DOI PMC
Abad R, García-Amil C, Navarro C, Martín E, Martín-Díaz A, Vázquez JA. Molecular characterization of invasive serogroup B Neisseria meningitidis isolates from Spain during 2015–2018: Evolution of the vaccine antigen factor H binding protein (FHbp). J Infect. 2021. Apr; 82(4):37–44. doi: 10.1016/j.jinf.2021.01.030 . PubMed DOI
Bennett DE, Meyler KL, Cafferkey MT, Cunney RJ. Diversity of meningococci associated with invasive meningococcal disease in the Republic of Ireland over a 19 year period, 1996–2015. PLoS One. 2020; 15(2):e0228629. doi: 10.1371/journal.pone.0228629 . PubMed DOI PMC
Lucidarme J, Hill DM, Bratcher HB, Gray SJ, du Plessis M, Tsang RS, et al.. Genomic resolution of an aggressive, widespread, diverse and expanding meningococcal serogroup B, C and W lineage. J Infect. 2015. Nov; 71(5):544–52. doi: 10.1016/j.jinf.2015.07.007 . PubMed DOI PMC
Stefanelli P, Miglietta A, Pezzotti P, Fazio C, Neri A, Vacca P, et al.. Increased incidence of invasive meningococcal disease of serogroup C / clonal complex 11, Tuscany, Italy, 2015 to 2016. Euro Surveill. 2016; 21(12). doi: 10.2807/1560-7917.ES.2016.21.12.30176 . PubMed DOI
Potts CC, Joseph SJ, Chang HY, Chen A, Vuong J, Hu F, et al.. Population structure of invasive Neisseria meningitidis in the United States, 2011–15. J Infect. 2018. Nov; 77(5):427–434. doi: 10.1016/j.jinf.2018.06.008 . PubMed DOI PMC
Lo Presti A, Neri A, Fazio C, Vacca P, Ambrosio L, Grazian C, et al.. Reconstruction of Dispersal Patterns of Hypervirulent Meningococcal Strains of Serogroup C:cc11 by Phylogenomic Time Trees. J Clin Microbiol. 2019. Dec 23; 58(1):e01351–19. doi: 10.1128/JCM.01351-19 . PubMed DOI PMC
Deghmane AE, Haeghebaert S, Hong E, Jousset A, Barret AS, Taha MK. Emergence of new genetic lineage, ST-9316, of Neisseria meningitidis group W in Hauts-de-France region, France 2013–2018. J Infect. 2020. May; 80(5):519–526. doi: 10.1016/j.jinf.2020.01.020 . PubMed DOI
Stefanelli P, Fazio C, Vacca P, Palmieri A, Ambrosio L, Neri A, et al.. An outbreak of severe invasive meningococcal disease due to a capsular switched Neisseria meningitidis hypervirulent strain B:cc11. Clin Microbiol Infect. 2019. Jan; 25(1):111.e1–111.e4. doi: 10.1016/j.cmi.2018.07.014 . PubMed DOI
Lucidarme J, Lekshmi A, Parikh SR, Bray JE, Hill DM, Bratcher HB, et al.. Frequent capsule switching in ’ultra-virulent’ meningococci—Are we ready for a serogroup B ST-11 complex outbreak? J Infect. 2017. Aug; 75(2):95–103. doi: 10.1016/j.jinf.2017.05.015 . PubMed DOI PMC
Krauland MG, Dunning Hotopp JC, Riley DR, Daugherty SC, Marsh JW, Messonnier NE, et al.. Whole genome sequencing to investigate the emergence of clonal complex 23 Neisseria meningitidis serogroup Y disease in the United States. PLoS One. 2012; 7(4):e35699. doi: 10.1371/journal.pone.0035699 . PubMed DOI PMC
Ladhani SN, Lucidarme J, Newbold LS, Gray SJ, Carr AD, Findlow J, et al.. Invasive meningococcal capsular group Y disease, England and Wales, 2007–2009. Emerg Infect Dis. 2012. Jan; 18(1):63–70. doi: 10.3201/eid1801.110901 . PubMed DOI PMC
Törös B, Hedberg ST, Unemo M, Jacobsson S, Hill DM, Olcén P, et al.. Genome-Based Characterization of Emergent Invasive Neisseria meningitidis Serogroup Y Isolates in Sweden from 1995 to 2012. J Clin Microbiol. 2015. Jul; 53(7):2154–62. doi: 10.1128/JCM.03524-14 . PubMed DOI PMC
Biolchi A, De Angelis G, Moschioni M, Tomei S, Brunelli B, Giuliani M, et al.. Multicomponent meningococcal serogroup B vaccination elicits cross-reactive immunity in infants against genetically diverse serogroup C, W and Y invasive disease isolates. Vaccine. 2020. Nov 3; 38(47):7542–7550. doi: 10.1016/j.vaccine.2020.09.050 . PubMed DOI