AZG1 is a cytokinin transporter that interacts with auxin transporter PIN1 and regulates the root stress response
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36918499
DOI
10.1111/nph.18879
Knihovny.cz E-zdroje
- Klíčová slova
- auxin, auxin transport, crosstalk, cytokinin, cytokinin transport, lateral root, salt stress,
- MeSH
- Arabidopsis * MeSH
- chlorid sodný MeSH
- cytokininy * metabolismus MeSH
- kořeny rostlin metabolismus MeSH
- kyseliny indoloctové metabolismus MeSH
- membránové transportní proteiny * genetika metabolismus MeSH
- proteiny huseníčku * genetika metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chlorid sodný MeSH
- cytokininy * MeSH
- kyseliny indoloctové MeSH
- membránové transportní proteiny * MeSH
- PIN1 protein, Arabidopsis MeSH Prohlížeč
- proteiny huseníčku * MeSH
An environmentally responsive root system is crucial for plant growth and crop yield, especially in suboptimal soil conditions. This responsiveness enables the plant to exploit regions of high nutrient density while simultaneously minimizing abiotic stress. Despite the vital importance of root systems in regulating plant growth, significant gaps of knowledge exist in the mechanisms that regulate their architecture. Auxin defines both the frequency of lateral root (LR) initiation and the rate of LR outgrowth. Here, we describe a search for proteins that regulate root system architecture (RSA) by interacting directly with a key auxin transporter, PIN1. The native separation of Arabidopsis plasma membrane protein complexes identified several PIN1 co-purifying proteins. Among them, AZG1 was subsequently confirmed as a PIN1 interactor. Here, we show that, in Arabidopsis, AZG1 is a cytokinin (CK) import protein that co-localizes with and stabilizes PIN1, linking auxin and CK transport streams. AZG1 expression in LR primordia is sensitive to NaCl, and the frequency of LRs is AZG1-dependent under salt stress. This report therefore identifies a potential point for auxin:cytokinin crosstalk, which shapes RSA in response to NaCl.
BIOSS Centre for Biological Signalling Studies University of Freiburg 79104 Freiburg Germany
Centre of Biological Systems Analysis University of Freiburg 79104 Freiburg Germany
Institute of Biology 2 University of Freiburg Schänzlestrasse 1 79104 Freiburg Germany
Instituto Multidisciplinario de Biología Vegetal Velez Sarsfield 249 5000 Córdoba Argentina
Labormedizinisches Zentrum Ostschweiz Lagerstrasse 30 9470 Buchs SG Switzerland
Zobrazit více v PubMed
Abdelrahman M, Nishiyama R, Tran CD, Kusano M, Nakabayashi R, Okazaki Y, Matsuda F, Chávez Montes RA, Mostofa MG, Li W et al. 2021. Defective cytokinin signalling reprograms lipid and flavonoid gene-to-metabolite networks to mitigate high salinity in Arabidopsis. Proceedings of the National Academy of Sciences, USA 118: e2105021118.
Albacete A, Ghanem ME, Martínez-Andújar C, Acosta M, Sánchez-Bravo J, Martínez V, Lutts S, Dodd IC, Pérez-Alfocea F. 2008. Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. Journal of Experimental Botany 59: 4119-4131.
Antoniadi I, Novák O, Gelová Z, Johnson A, Plíhal O, Simerský R, Mik V, Vain T, Mateo-Bonmatí E, Karady M et al. 2020. Cell-surface receptors enable perception of extracellular cytokinins. Nature Communications 11: 4284.
Argueso CT, Ferreira FJ, Kieber JJ. 2009. Environmental perception avenues: the interaction of CK and environmental response pathways. Plant, Cell & Environment 32: 1147-1160.
Beck E, Wagner BM. 1994. Quantification of the daily CK transport from the root to the shoot of Urtica dioica. Botanica Acta 107: 342-348.
Benjamins R, Scheres B. 2008. Auxin: the looping star in plant development. Annual Review of Plant Biology 59: 443-465.
Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J. 2003. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115: 591-602.
van den Berg C, Willemsen V, Hendriks G, Weisbeek B, Scheres B. 1997. Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390: 287-289.
Beveridge CA. 2000. Long-distance signalling and a mutational analysis of branching in pea. Plant Growth Regulation 32: 193-203.
Bielach A, Podlesáková K, Marhavy P, Duclercq J, Cuesta C, Müller B, Grunewald W, Tarkowski P, Benková E. 2012. Spatiotemporal regulation of lateral root organogenesis in Arabidopsis by CK. Plant Cell 24: 3967-3981.
Bishopp A, Help H, El-Showk S, Weijers D, Scheres B, Friml J, Benková E, Mähönen AP, Helariutta Y. 2011a. A mutually inhibitory interaction between auxin and CK specifies vascular pattern in roots. Current Biology 21: 917-926.
Bishopp A, Lehesranta S, Vaten A, Help H, El-Showk S, Scheres B, Helariutta K, Mahonen AP, Sakakibara H, Helariutta Y. 2011b. Phloem-transported CK regulates polar auxin transport and maintains vascular pattern in the root meristem. Current Biology 21: 927-932.
Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B. 2005. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433: 39-44.
Bürkle L, Cedzich A, Döpke C, Stransky H, Okumoto S, Gillissen B, Kühn C, Frommer WB. 2003. Transport of CKs mediated by purine transporters of the PUP family expressed in phloem, hydathodes, and pollen of Arabidopsis. The Plant Journal 34: 13-26.
Carland FM, Fujioka S, Takatsuto S, Yoshida S, Nelson T. 2002. The identification of CVP1 reveals a role for sterols in vascular patterning. Plant Cell 14: 2045-2058.
Cecchetto G, Amillis S, Diallinas G, Scazzocchio C, Drevet C. 2004. The AzgA purine transporter of Aspergillus nidulans. Characterization of a protein belonging to a new phylogenetic cluster. The Journal of Biological Chemistry 279: 3132-3141.
Chang L, Ramireddy E, Schmülling T. 2015. CK as a positional cue regulating lateral root spacing in Arabidopsis. Journal of Experimental Botany 66: 4759-4768.
De Rybel B, Adibi M, Breda AS, Wendrich JR, Smit ME, Novák O, Yamaguchi N, Yoshida S, Van Isterdael G, Palovaara J et al. 2014. Plant development. Integration of growth and patterning during vascular tissue formation in Arabidopsis. Science 345: 1255215.
Dello Ioio R, Nakamura K, Moubayidin L, Perilli S, Taniguchi M, Morita MT, Aoyama T, Costantino P, Sabatini S. 2008. A genetic framework for the control of cell division and differentiation in the root meristem. Science 322: 1380-1384.
Desimone M, Catoni E, Ludewig U, Hilpert M, Schneider A, Kunze R, Tegeder M, Frommer WB, Schumacher K. 2002. A novel superfamily of transporters for allantoin and other oxo derivatives of nitrogen heterocyclic compounds in Arabidopsis. Plant Cell 14: 847-856.
Fahnenstich H, Saigo M, Niessen M, Zanor MI, Andreo CS, Fernie AR, Drincovich MF, Flügge UI, Maurino VG. 2007. Alteration of organic acid metabolism in Arabidopsis overexpressing the maize C4 NADP-malic enzyme causes accelerated senescence during extended darkness. Plant Physiology 145: 640-652.
Gillissen B, Bürkle L, André B, Kühn C, Rentsch D, Brandl B, Frommer WB. 2000. A new family of high-affinity transporters for adenine, cytosine, and purine derivatives in Arabidopsis. Plant Cell 12: 291-300.
Hirose N, Takei K, Kuroha T, Kamada-Nobusada T, Hayashi H, Sakakibara H. 2008. Regulation of CK biosynthesis, compartmentalization and translocation. Journal of Experimental Botany 59: 75-83.
Hyoung S, Cho SH, Chung JH, So WM, Cui MH, Shin JS. 2020. CK oxidase PpCKX1 plays regulatory roles in development and enhances dehydration and salt tolerance in Physcomitrella patens. Plant Cell Reports 39: 419-430.
Julkowska MM, Hoefsloot H, Mol S, Feron R, de Boer GJ, Haring MA, Testerink C. 2014. Capturing Arabidopsis root architecture dynamics with ROOT-FIT reveals diversity in responses to salinity. Plant Physiology 166: 1387-1402.
Julkowska MM, Koevoets IT, Mol S, Hoefsloot H, Feron R, Tester MA, Keurentjes JJB, Korte A, Haring MA, de Boer GJ et al. 2017. Genetic components of root architecture remodeling in response to salt stress. Plant Cell 29: 3198-3321.
Julkowska MM, Testerink C. 2017. Tuning plant signalling and growth to survive salt. Trends in Plant Science 9: 586-594.
Kieber JJ, Schaller GE. 2018. CK signalling in plant development. Development 145: dev149344.
Kjellbom P, Larsson C. 1984. Preparation and polypeptide composition of chlorophyll-free plasma membranes from leaves of light-grown spinach and barley. Physiologia Plantarum 62: 501-509.
Ko D, Kang J, Kiba T, Park J, Kojima M, Do J, Kim KY, Kwon M, Endler A, Song WY et al. 2014. Arabidopsis ABCG14 is essential for the root-to-shoot translocation of CK. Proceedings of the National Academy of Sciences, USA 111: 7150-7155.
Kubiasová K, Montesinos JC, Šamajová O, Nisler J, Mik V, Semerádová H, Plíhalová L, Novák O, Marhavý P, Cavallari N et al. 2020. Cytokinin fluoroprobe reveals multiple sites of cytokinin perception at plasma membrane and endoplasmic reticulum. Nature Communications 11: 4285.
Kudo T, Kiba T, Sakakibara H. 2010. Metabolism and long-distance translocation of CKs. Journal of Integrated Plant Biology 52: 53-60.
Kuroha T, Tokunaga H, Kojima M, Ueda N, Ishida T, Nagawa S, Fukuda H, Sugimoto K, Sakakibara H. 2009. Functional analyses of LONELY GUY CK-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell 21: 3152-3169.
Laplaze L, Benkova E, Casimiro I, Maes L, Vanneste S, Swarup R, Weijers D, Calvo V, Parizot B, Herrera-Rodriguez MB et al. 2007. CKs act directly on lateral root founder cells to inhibit root initiation. Plant Cell 19: 3889-3900.
Li SM, Zheng HX, Zhang XS, Sui N. 2021. CKs as central regulators during plant growth and stress response. Plant Cell Reports 40: 271-282.
Li Z, Sheerin DJ, von Roepenack-Lahaye E, Stahl M, Hiltbrunner A. 2022. The phytochrome interacting proteins ERF55 and ERF58 repress light-induced seed germination in Arabidopsis thaliana. Nature Communications 13: 1656.
Liu CJ, Zhao Y, Zhang K. 2019. CK transporters: multisite players in CK homeostasis and signal distribution. Frontiers in Plant Science 10: 693.
Mähönen AP, Bishopp A, Higuchi M, Nieminen KM, Kinoshita K, Törmäkangas K, Ikeda Y, Oka A, Kakimoto T, Helariutta Y. 2006. CK signalling and its inhibitor AHP6 regulate cell fate during vascular development. Science 311: 94-98.
Mansfield TA, Schultes NP, Mourad GS. 2009. AZG1 and AtAzg2 comprise a novel family of purine transporters in Arabidopsis. FEBS Letters 583: 481-486.
Marhavý P, Bielach A, Abas L, Abuzeineh A, Duclercq J, Tanaka H, Parezova M, Petrasek J, Friml J, Kleine-Vehn J et al. 2011. CK modulates endocytic trafficking of PIN1 auxin efflux carrier to control plant organogenesis. Developmental Cell 21: 796-804.
Marhavý P, Duclercq J, Weller B, Feraru E, Bielach A, Offringa R, Friml J, Schwechheimer C, Murphy A, Benkova E. 2014. CK controls polarity of PIN1-dependent auxin transport during lateral root organogenesis. Current Biology 24: 1031-1037.
Mason MG, Jha D, Salt DE, Tester M, Hill K, Kieber JJ, Schaller GE. 2010. Type-B response regulators ARR1 and ARR12 regulate expression of AtHKT1;1 and accumulation of sodium in Arabidopsis shoots. The Plant Journal 64: 753-763.
Matsumoto-Kitano M, Kusumoto T, Tarkowski P, Kinoshita-Tsujimura K, Václavíková K, Miyawaki K, Kakimoto T. 2008. CKs are central regulators of cambial activity. Proceedings of the National Academy of Sciences, USA 105: 20027-20031.
Maurino VG, Grube E, Zielinski J, Schild A, Fischer K, Flügge UI. 2006. Identification and expression analysis of twelve members of the nucleobase-ascorbate transporter (NAT) gene family in Arabidopsis thaliana. Plant Cell Physiology 47: 1381-1393.
McEnery MW, Pedersen PL. 1986. Diethylstilbestrol. A novel Fo-directed probe of the mitochondrial proton ATPase. Journal of Biological Chemistry 261: 1745-1752.
Menges M, Murray JA. 2002. Synchronous Arabidopsis suspension cultures for analysis of cell-cycle gene activity. The Plant Journal 30: 203-212.
Möhlmann T, Mezher Z, Schwerdtfeger G, Neuhaus HE. 2001. Characterisation of a concentrative type of adenosine transporter from Arabidopsis thaliana (ENT1,At). FEBS Letters 509: 370-374.
Mravec J, Petrášek J, Li N, Boeren S, Karlova R, Kitakura S, Pařezová M, Naramoto S, Nodzyński T, Dhonukshe P et al. 2011. Cell plate restricted association of DRP1A and PIN proteins is required for cell polarity establishment in Arabidopsis. Current Biology 21: 1055-1060.
Muller B, Sheen J. 2008. CK and auxin interaction in root stem-cell specification during early embryogenesis. Nature 453: 1094-1097.
Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiolgia Plantarum 15: 473-497.
Niopek-Witz S, Deppe J, Lemieux MJ, Möhlmann T. 2014. Biochemical characterization and structure-function relationship of two plant NCS2 proteins, the nucleobase transporters NAT3 and NAT12 from Arabidopsis thaliana. Biochimica et Biophysica Acta 1838: 3025-3035.
Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, Werner T, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Kakimoto T et al. 2011. Analysis of CK mutants and regulation of CK metabolic genes reveals important regulatory roles of CKs in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23: 2169-2183.
O'Brien JA, Benková E. 2013. CK cross-talking during biotic and abiotic stress responses. Frontiers in Plant Science 4: 451.
Ohashi-Ito K, Saegusa M, Iwamoto K, Oda Y, Katayama H, Kojima M, Sakakibara H, Fukuda H. 2014. A bHLH complex activates vascular cell division via CK action in root apical meristem. Current Biology 24: 2053-2058.
Ray DK, Mueller ND, West PC, Foley JA. 2013. Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8: e66428.
Romanov GA, Lomin SN, Schmülling T. 2018. CK signaling: from the ER or from the PM? That is the question! New Phytologist 218: 41-53.
Rozema J, Flowers T. 2008. Crops for a salinized world. Science 322: 1478-1480.
Sakakibara H. 2020. CK biosynthesis and transport for systemic nitrogen signaling. The Plant Journal 105: 421-430.
Sasaki T, Suzaki T, Soyano T, Kojima M, Sakakibara H, Kawaguchi M. 2014. Shoot-derived CKs systemically regulate root nodulation. Nature Communications 19: 4983.
Schmidt T, Pasternak T, Liu K, Blein T, Aubry-Hivet D, Dovzhenko A, Duerr J, Teale W, Ditengou FA, Burkhardt H et al. 2014. The iRoCS Toolbox-3D analysis of the plant root apical meristem at cellular resolution. The Plant Journal 77: 806-814.
Swamy M, Siegers GM, Minguet S, Wollscheid B, Schamel WW. 2006. Blue native polyacrylamide gel electrophoresis (BN-PAGE) for the identification and analysis of multiprotein complexes. Science's STKE 345: pl4.
Takei K, Ueda N, Aoki K, Kuromori T, Hirayama T, Shinozaki K, Yamaya T, Sakakibara H. 2004. AtIPT3 is a key determinant of nitrate-dependent CK biosynthesis in Arabidopsis. Plant Cell Physiology 45: 1053-1062.
Teale WD, Pasternak T, Dal Bosco C, Dovzhenko A, KratZat K, Bildl W, Schwörer M, Falk T, Ruperti B, Schaefer JV et al. 2021. Flavonol-mediated stabilization of PIN efflux complexes regulates polar auxin transport. EMBO Journal 40: e104416.
Tessi TM, Brumm S, Winklbauer E, Schumacher B, Lescano CI, González CA, Wanke D, Maurino VG, Harter K, Desimone M. 2021. Arabidopsis AZG2, an auxin induced putative CK transporter, regulates lateral root emergence. New Phytologist 229: 979-993.
Tran LP, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K. 2007. Functional analysis of AHK1/ATHK1 and CK receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proceedings of the National Academy of Sciences, USA 104: 20623-20628.
Vaughan-Hirsch J, Goodall B, Bishopp A. 2018. North, East, South, West: mapping vascular tissues onto the Arabidopsis root. Current Opinion in Plant Biology 41: 16-22.
Wang Y, Li K, Li X. 2009. Auxin redistribution modulates plastic development of root system architecture under salt stress in Arabidopsis thaliana. Journal of Plant Physiology 166: 1637-1645.
Werner T, Nehnevajova E, Köllmer I, Novák O, Strnad M, Krämer U, Schmülling T. 2010. Root-specific reduction of CK causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell 22: 3905-3920.
Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ. 2007. An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2: e718.
Xu J, Hofhuis H, Heidstra R, Sauer M, Friml J, Scheres B. 2006. A molecular framework for plant regeneration. Science 311: 385-388.
Zhang H, Jennings A, Barlow P, Forde B. 1999. Dual pathways for regulation of root branching by nitrate. Proceedings of the National Academy of Sciences, USA 96: 6529-6534.
Zhang K, Novak O, Wei Z, Gou M, Zhang X, Yu Y, Yang H, Cai Y, Strnad M, Liu CJ. 2014. Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized CKs. Nature Communications 5: 3274.
Zolla G, Heimer Y, Barak S. 2010. Mild salinity stimulates a stress-induced morphogenic response in Arabidopsis thaliana roots. Journal of Experimental Botany 61: 211-224.
Zürcher E, Liu J, di Donato M, Geisler M, Müller B. 2016. Plant development regulated by CK sinks. Science 353: 1027-1030.
Zürcher E, Tavor-Deslex D, Lituiev D, Enkerli K, Tarr PT, Müller B. 2013. A robust and sensitive synthetic sensor to monitor the transcriptional output of the CK signalling network in planta. Plant Physiology 161: 1066-1075.
Membrane transport of root-borne trans-zeatin riboside maintains the cytokinin homeostasis in shoots