Vascular Cognitive Impairment: Information from Animal Models on the Pathogenic Mechanisms of Cognitive Deficits
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
31096580
PubMed Central
PMC6566630
DOI
10.3390/ijms20102405
PII: ijms20102405
Knihovny.cz E-zdroje
- Klíčová slova
- IGF-1, glial cells, neuroinflammation, oxidative stress, vascular cognitive impairment,
- MeSH
- Alzheimerova nemoc metabolismus MeSH
- amyloidní beta-protein metabolismus MeSH
- astrocyty metabolismus MeSH
- cytokiny metabolismus MeSH
- endoteliální buňky metabolismus MeSH
- insulinu podobný růstový faktor I metabolismus MeSH
- kognice * MeSH
- kognitivní dysfunkce metabolismus patologie MeSH
- lidé MeSH
- mikroglie metabolismus MeSH
- modely u zvířat MeSH
- mozek metabolismus MeSH
- oxid dusnatý MeSH
- oxidační stres MeSH
- pericyty metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- amyloidní beta-protein MeSH
- cytokiny MeSH
- IGF1 protein, human MeSH Prohlížeč
- insulinu podobný růstový faktor I MeSH
- oxid dusnatý MeSH
Vascular cognitive impairment (VCI) is the second most common cause of cognitive deficit after Alzheimer's disease. Since VCI patients represent an important target population for prevention, an ongoing effort has been made to elucidate the pathogenesis of this disorder. In this review, we summarize the information from animal models on the molecular changes that occur in the brain during a cerebral vascular insult and ultimately lead to cognitive deficits in VCI. Animal models cannot effectively represent the complex clinical picture of VCI in humans. Nonetheless, they allow some understanding of the important molecular mechanisms leading to cognitive deficits. VCI may be caused by various mechanisms and metabolic pathways. The pathological mechanisms, in terms of cognitive deficits, may span from oxidative stress to vascular clearance of toxic waste products (such as amyloid beta) and from neuroinflammation to impaired function of microglia, astrocytes, pericytes, and endothelial cells. Impaired production of elements of the immune response, such as cytokines, and vascular factors, such as insulin-like growth factor 1 (IGF-1), may also affect cognitive functions. No single event could be seen as being the unique cause of cognitive deficits in VCI. These events are interconnected, and may produce cascade effects resulting in cognitive impairment.
Zobrazit více v PubMed
Graff-Radford J. Vascular Cognitive Impairment. Contin. Lifelong Learn. Neurol. 2019;25:147–164. doi: 10.1212/CON.0000000000000684. PubMed DOI PMC
Tiel C., Sudo F.K., Alves G.S., Ericeira-Valente L., Moreira D.M., Laks J., Engelhardt E. Neuropsychiatric symptoms in Vascular Cognitive Impairment: A systematic review. Dement. Neuropsychol. 2015;9:230–236. doi: 10.1590/1980-57642015dn93000004. PubMed DOI PMC
Van der Flier W.M., Skoog I., Schneider J.A., Pantoni L., Mok V., Chen C.L.H., Scheltens P. Vascular cognitive impairment. Nat. Rev. Dis. Prim. 2018;4:18003. doi: 10.1038/nrdp.2018.3. PubMed DOI
Wiederkehr S., Simard M., Fortin C., van Reekum R. Comparability of the Clinical Diagnostic Criteria for Vascular Dementia: A Critical Review. Part I. J. Neuropsychiatr. 2008;20:150–161. doi: 10.1176/jnp.2008.20.2.150. PubMed DOI
McKhann G.M., Knopman D.S., Chertkow H., Hyman B.T., Jack C.R., Kawas C.H., Klunk W.E., Koroshetz W.J., Manly J.J., Mayeux R., et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011;7:263–269. doi: 10.1016/j.jalz.2011.03.005. PubMed DOI PMC
Jack C.R., Albert M.S., Knopman D.S., McKhann G.M., Sperling R.A., Carrillo M.C., Thies B., Phelps C.H. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011;7:257–262. doi: 10.1016/j.jalz.2011.03.004. PubMed DOI PMC
Sorbi S., Hort J., Erkinjuntti T., Fladby T., Gainotti G., Gurvit H., Nacmias B., Pasquier F., Popescu B.O., Rektorova I., et al. EFNS-ENS Guidelines on the diagnosis and management of disorders associated with dementia. Eur. J. Neurol. 2012;19:1159–1179. doi: 10.1111/j.1468-1331.2012.03784.x. PubMed DOI
Tomek A., Urbanová B., Hort J. Utility of transcranial ultrasound in predicting Alzheimer’s disease risk. J. Alzheimer’s Dis. 2014;42:S365–S374. doi: 10.3233/JAD-141803. PubMed DOI
Urbanova B., Tomek A., Mikulik R., Magerova H., Horinek D., Hort J. Neurosonological examination: A non-invasive approach for the detection of cerebrovascular impairment in AD. Front. Behav. Neurosci. 2014;8:4. doi: 10.3389/fnbeh.2014.00004. PubMed DOI PMC
Hort J., Glosova L., Vyhnalek M., Bojar M., Skoda D., Hladikova M. The liquor tau protein and beta amylold in Alzheimer’s disease. Ces. Slov. Neurol. Neurochir. 2007;70:30–36.
Barbay M., Taillia H., Nedelec-Ciceri C., Arnoux A., Puy L., Wiener E., Canaple S., Lamy C., Godefroy O., Roussel M. Vascular cognitive impairment: Advances and trends. Rev. Neurol. 2017;173:473–480. doi: 10.1016/j.neurol.2017.06.009. PubMed DOI
Heiss W.-D., Rosenberg G.A., Thiel A., Berlot R., de Reuck J. Neuroimaging in vascular cognitive impairment: A state-of-the-art review. BMC Med. 2016;14:174. doi: 10.1186/s12916-016-0725-0. PubMed DOI PMC
Skrobot O.A., Love S., Kehoe P.G., O’Brien J., Black S., Chen C., DeCarli C., Erkinjuntti T., Ford G.A., Kalaria R.N., et al. The Vascular Impairment of Cognition Classification Consensus Study. Alzheimer’s Dement. 2017;13:624–633. doi: 10.1016/j.jalz.2016.10.007. PubMed DOI
Wang T., Xiao S., Chen K., Yang C., Dong S., Cheng Y., Li X., Wang J., Zhu M., Yang F., et al. Prevalence, incidence, risk and protective factors of amnestic mild cognitive impairment in the elderly in Shanghai. Curr. Alzheimer Res. 2017;14:460–466. PubMed
Corrao S., Lo Coco D., Lopez G. Cognitive impairment and stroke in elderly patients. Vasc. Health Risk Manag. 2016;12:105. doi: 10.2147/VHRM.S75306. PubMed DOI PMC
Sachdev P.S., Lipnicki D.M., Crawford J.D., Brodaty H. The VASCOG criteria for vascular cognitive disorders: A validation study. Eur. J. Neurol. 2019 doi: 10.1111/ene.13960. PubMed DOI
APA American Psychiatric Association . Diagnostic and Statistical Manual of Mental Disorders. 5th ed. APA American Psychiatric Association; Washington, DC, USA: 2013.
Bick K.L., Pajeau A.K., Kokmen E., Gorelick P.B., Yamaguchi T., Scheinberg P., Bermejo F., DeCarli C., Fisher M., Masdeu J.C., et al. Vascular dementia: Diagnostic criteria for research studies: Report of the NINDS-AIREN International Workshop. Neurology. 2012;43:250–260. PubMed
Urbanova B.S., Schwabova J.P., Magerova H., Jansky P., Markova H., Vyhnalek M., Laczo J., Hort J., Tomek A. Reduced Cerebrovascular Reserve Capacity as a Biomarker of Microangiopathy in Alzheimer’s Disease and Mild Cognitive Impairment. J. Alzheimer’s Dis. 2018;63:465–477. doi: 10.3233/JAD-170815. PubMed DOI
Ressner P. Recommendations for the diagnosis and management of Alzheimer’s disease and other disorders associated with dementia: EFNS guideline. Eur. J. Neurol. 2008;71:494–501. PubMed
Inzitari D., Simoni M., Pracucci G., Poggesi A., Basile A.M., Chabriat H., Erkinjuntti T., Fazekas F., Ferro J.M., Hennerici M., et al. Risk of rapid global functional decline in elderly patients with severe cerebral age-related white matter changes: The LADIS study. Arch. Intern. Med. 2007;167:81–88. doi: 10.1001/archinte.167.1.81. PubMed DOI
Dichgans M., Leys D. Vascular Cognitive Impairment. Circ. Res. 2017;120:573–591. doi: 10.1161/CIRCRESAHA.116.308426. PubMed DOI
Schaapsmeerders P., Tuladhar A.M., Arntz R.M., Franssen S., Maaijwee N.A.M., Rutten-Jacobs L.C.A., Schoonderwaldt H.C., Dorresteijn L.D.A., van Dijk E.J., Kessels R.P.C., et al. Remote Lower White Matter Integrity Increases the Risk of Long-Term Cognitive Impairment After Ischemic Stroke in Young Adults. Stroke. 2016;47:2517–2525. doi: 10.1161/STROKEAHA.116.014356. PubMed DOI
Mijajlović M.D., Pavlović A., Brainin M., Heiss W.-D., Quinn T.J., Ihle-Hansen H.B., Hermann D.M., Assayag E.B., Richard E., Thiel A., et al. Post-stroke dementia—a comprehensive review. BMC Med. 2017;15:11. doi: 10.1186/s12916-017-0779-7. PubMed DOI PMC
Mandzia J.L., Smith E.E., Horton M., Hanly P., Barber P.A., Godzwon C., Donaldson E., Asdaghi N., Patel S., Coutts S.B. Imaging and Baseline Predictors of Cognitive Performance in Minor Ischemic Stroke and Patients With Transient Ischemic Attack at 90 Days. Stroke. 2016;47:726–731. doi: 10.1161/STROKEAHA.115.011507. PubMed DOI
Choi B.-R., Kim D.-H., Back D.B., Kang C.H., Moon W.-J., Han J.-S., Choi D.-H., Kwon K.J., Shin C.Y., Kim B.-R., et al. Characterization of White Matter Injury in a Rat Model of Chronic Cerebral Hypoperfusion. Stroke. 2016;47:542–547. doi: 10.1161/STROKEAHA.115.011679. PubMed DOI
Moulin S., Labreuche J., Bombois S., Rossi C., Boulouis G., Hénon H., Duhamel A., Leys D., Cordonnier C. Dementia risk after spontaneous intracerebral haemorrhage: A prospective cohort study. Lancet Neurol. 2016;15:820–829. doi: 10.1016/S1474-4422(16)00130-7. PubMed DOI
You S., Wang X., Lindley R.I., Robinson T., Anderson C.S., Cao Y., Chalmers J. Early Cognitive Impairment after Intracerebral Hemorrhage in the INTERACT1 Study. Cerebrovasc. Dis. 2017;44:320–324. doi: 10.1159/000481443. PubMed DOI
Valenti R., Charidimou A., Xiong L., Boulouis G., Fotiadis P., Ayres A., Riley G., Kuijf H.J., Reijmer Y.D., Pantoni L., et al. Visuospatial Functioning in Cerebral Amyloid Angiopathy: A Pilot Study. J. Alzheimer’s Dis. 2017;56:1223–1227. doi: 10.3233/JAD-160927. PubMed DOI
Banerjee G., Wilson D., Ambler G., Appiah K.O.B., Shakeshaft C., Lunawat S., Cohen H., Yousry T., Habil M., Lip G.Y.H., et al. Cognitive impairment before intracerebral hemorrhage is associated with cerebral amyloid angiopathy. Stroke. 2018;49:40–45. doi: 10.1161/STROKEAHA.117.019409. PubMed DOI PMC
Wong G.K.C., Lam S.W., Wong A., Ngai K., Mok V., Poon W.S. Acta Neurochirurgica Supplement. Springer; Cham, Switzerland: 2016. Early Cognitive Domain Deficits in Patients with Aneurysmal Subarachnoid Hemorrhage Correlate with Functional Status; pp. 129–132. PubMed
Da Costa L., Dunkley B.T., Bethune A., Robertson A., Keller A., Pang E.W. Increased Frontal Lobe Activation After Aneurysmal Subarachnoid Hemorrhage. Stroke. 2016;47:2503–2510. doi: 10.1161/STROKEAHA.116.013786. PubMed DOI
Su J., E T., Guo Q., Lei Y., Gu Y. Memory Deficits After Aneurysmal Subarachnoid Hemorrhage: A Functional Magnetic Resonance Imaging Study. World Neurosurg. 2018;111:e500–e506. doi: 10.1016/j.wneu.2017.12.102. PubMed DOI
Sahyouni R., Goshtasbi K., Mahmoodi A., Tran D.K., Chen J.W. Chronic Subdural Hematoma: A Perspective on Subdural Membranes and Dementia. World Neurosurg. 2017;108:954–958. doi: 10.1016/j.wneu.2017.09.063. PubMed DOI PMC
Tucsek Z., Noa Valcarcel-Ares M., Tarantini S., Yabluchanskiy A., Fülöp G., Gautam T., Orock A., Csiszar A., Deak F., Ungvari Z. Hypertension-induced synapse loss and impairment in synaptic plasticity in the mouse hippocampus mimics the aging phenotype: Implications for the pathogenesis of vascular cognitive impairment. GeroScience. 2017;39:385–406. doi: 10.1007/s11357-017-9981-y. PubMed DOI PMC
Dichgans M., Zietemann V. Prevention of Vascular Cognitive Impairment. Stroke. 2012;43:3137–3146. doi: 10.1161/STROKEAHA.112.651778. PubMed DOI
Scarmeas N., Stern Y., Mayeux R., Manly J.J., Schupf N., Luchsinger J.A. Mediterranean Diet and Mild Cognitive Impairment. Arch. Neurol. 2009;66:216–225. doi: 10.1001/archneurol.2008.536. PubMed DOI PMC
Lautenschlager N.T., Cox K.L., Flicker L., Foster J.K., van Bockxmeer F.M., Xiao J., Greenop K.R., Almeida O.P. Effect of Physical Activity on Cognitive Function in Older Adults at Risk for Alzheimer Disease. JAMA. 2008;300:1027. doi: 10.1001/jama.300.9.1027. PubMed DOI
Hainsworth A.H., Allan S.M., Boltze J., Cunningham C., Farris C., Head E., Ihara M., Isaacs J.D., Kalaria R.N., Lesnik Oberstein S.A.M.J., et al. Translational models for vascular cognitive impairment: A review including larger species. BMC Med. 2017;15:16. doi: 10.1186/s12916-017-0793-9. PubMed DOI PMC
Skrobot O.A., Attems J., Esiri M., Hortobágyi T., Ironside J.W., Kalaria R.N., King A., Lammie G.A., Mann D., Neal J., et al. Vascular cognitive impairment neuropathology guidelines (VCING): The contribution of cerebrovascular pathology to cognitive impairment. Brain. 2016;139:2957–2969. doi: 10.1093/brain/aww214. PubMed DOI
Hietamies T.M., Ostrowski C., Pei Z., Feng L., McCabe C., Work L.M., Quinn T.J. Variability of functional outcome measures used in animal models of stroke and vascular cognitive impairment—A review of contemporary studies. J. Cereb. Blood Flow Metab. 2018;38:1872–1884. doi: 10.1177/0271678X18799858. PubMed DOI PMC
Kleinschnitz C., Fluri F., Schuhmann M. Animal models of ischemic stroke and their application in clinical research. Drug Des. Devel. Ther. 2015;9:3445. doi: 10.2147/DDDT.S56071. PubMed DOI PMC
Yang Y., Kimura-Ohba S., Thompson J., Rosenberg G.A. Rodent Models of Vascular Cognitive Impairment. Transl. Stroke Res. 2016;7:407–414. doi: 10.1007/s12975-016-0486-2. PubMed DOI PMC
El Amki M., Clavier T., Perzo N., Bernard R., Guichet P.-O., Castel H. Hypothalamic, thalamic and hippocampal lesions in the mouse MCAO model: Potential involvement of deep cerebral arteries? J. Neurosci. Methods. 2015;254:80–85. doi: 10.1016/j.jneumeth.2015.07.008. PubMed DOI
Duncombe J., Kitamura A., Hase Y., Ihara M., Kalaria R.N., Horsburgh K. Chronic cerebral hypoperfusion: A key mechanism leading to vascular cognitive impairment and dementia. Closing the translational gap between rodent models and human vascular cognitive impairment and dementia. Clin. Sci. 2017;131:2451–2468. doi: 10.1042/CS20160727. PubMed DOI
Klebe D., Iniaghe L., Burchell S., Reis C., Akyol O., Tang J., Zhang J.H. Intracerebral Hemorrhage in Mice. Methods Mol. Biol. 2018:83–91. PubMed
Ma Q., Khatibi N.H., Chen H., Tang J., Zhang J.H. Intracerebral Hemorrhage Research. Springer; Vienna, Austria: 2011. History of Preclinical Models of Intracerebral Hemorrhage; pp. 3–8. PubMed PMC
Nishimura N., Schaffer C.B., Friedman B., Tsai P.S., Lyden P.D., Kleinfeld D. Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: Three models of stroke. Nat. Methods. 2006;3:99–108. doi: 10.1038/nmeth844. PubMed DOI
Jiwa N.S., Garrard P., Hainsworth A.H. Experimental models of vascular dementia and vascular cognitive impairment: A systematic review. J. Neurochem. 2010;115:814–828. doi: 10.1111/j.1471-4159.2010.06958.x. PubMed DOI
Sugawara T., Ayer R., Jadhav V., Zhang J.H. A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J. Neurosci. Methods. 2008;167:327–334. doi: 10.1016/j.jneumeth.2007.08.004. PubMed DOI PMC
Muiño E., Gallego-Fabrega C., Cullell N., Carrera C., Torres N., Krupinski J., Roquer J., Montaner J., Fernández-Cadenas I. Systematic Review of Cysteine-Sparing NOTCH3 Missense Mutations in Patients with Clinical Suspicion of CADASIL. Int. J. Mol. Sci. 2017;18:1964. doi: 10.3390/ijms18091964. PubMed DOI PMC
Joutel A. Pathogenesis of CADASIL. BioEssays. 2010;33:73–80. doi: 10.1002/bies.201000093. PubMed DOI
Grochowski C., Litak J., Kamieniak P., Maciejewski R. Oxidative stress in cerebral small vessel disease. Role of reactive species. Free Radic. Res. 2017;52:1–13. doi: 10.1080/10715762.2017.1402304. PubMed DOI
Skoumalová A., Hort J. Blood markers of oxidative stress in Alzheimer’s disease. J. Cell. Mol. Med. 2012 doi: 10.1111/j.1582-4934.2012.01585.x. PubMed DOI PMC
Liu H., Zhang J. Cerebral Hypoperfusion and Cognitive Impairment: The Pathogenic Role of Vascular Oxidative Stress. Int. J. Neurosci. 2012;122:494–499. doi: 10.3109/00207454.2012.686543. PubMed DOI
Bennett S., Grant M.M., Aldred S. Oxidative Stress in Vascular Dementia and Alzheimer’s Disease: A Common Pathology. J. Alzheimer’s Dis. 2008;17:245–257. doi: 10.3233/JAD-2009-1041. PubMed DOI
Gackowski D., Rozalski R., Siomek A., Dziaman T., Nicpon K., Klimarczyk M., Araszkiewicz A., Olinski R. Oxidative stress and oxidative DNA damage is characteristic for mixed Alzheimer disease/vascular dementia. J. Neurol. Sci. 2008;266:57–62. doi: 10.1016/j.jns.2007.08.041. PubMed DOI
Liu D., Yuan X., Chu S., Chen C., Ren Q., Luo P., Lin M., Wang S., Zhu T., Ai Q., et al. CZ-7, a new derivative of Claulansine F, ameliorates 2VO-induced vascular dementia in rats through a Nrf2-mediated antioxidant responses. Acta Pharmacol. Sin. 2018;40:425. doi: 10.1038/s41401-018-0078-7. PubMed DOI PMC
Li Y., Zhang Z. Gastrodin improves cognitive dysfunction and decreases oxidative stress in vascular dementia rats induced by chronic ischemia. Int. J. Clin. Exp. Pathol. 2015;8:14099. PubMed PMC
Csányi G., Miller F.J., Jr. Oxidative Stress in Cardiovascular Disease. Int. J. Mol. Sci. 2014;15:6002–6008. doi: 10.3390/ijms15046002. PubMed DOI PMC
White A., Culmsee C., Beart P. Oxidative stress and neurodegeneration. Neurochem. Int. 2013;62:521. doi: 10.1016/j.neuint.2013.03.006. PubMed DOI
Tönnies E., Trushina E. Oxidative Stress, Synaptic Dysfunction, and Alzheimer’s Disease. J. Alzheimer’s Dis. 2017;57:1105–1121. doi: 10.3233/JAD-161088. PubMed DOI PMC
Drummond G.R., Selemidis S., Griendling K.K., Sobey C.G. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat. Rev. Drug Discov. 2011;10:453–471. doi: 10.1038/nrd3403. PubMed DOI PMC
Choi D.-H., Lee K.-H., Kim J.-H., Seo J.-H., Kim H.Y., Shin C.Y., Han J.-S., Han S.-H., Kim Y.-S., Lee J. NADPH Oxidase 1, a Novel Molecular Source of ROS in Hippocampal Neuronal Death in Vascular Dementia. Antioxid. Redox Signal. 2014;21:533–550. doi: 10.1089/ars.2012.5129. PubMed DOI PMC
Kim H.A., Miller A.A., Drummond G.R., Thrift A.G., Arumugam T.V., Phan T.G., Srikanth V.K., Sobey C.G. Vascular cognitive impairment and Alzheimer’s disease: Role of cerebral hypoperfusion and oxidative stress. Naunyn. Schmiedebergs. Arch. Pharmacol. 2012;385:953–959. doi: 10.1007/s00210-012-0790-7. PubMed DOI
Casado Á., Encarnación López-Fernández M., Concepción Casado M., de La Torre R. Lipid Peroxidation and Antioxidant Enzyme Activities in Vascular and Alzheimer Dementias. Neurochem. Res. 2007;33:450–458. doi: 10.1007/s11064-007-9453-3. PubMed DOI
Famulari A.L., Marschoff E.R., Llesuy S.F., Kohan S., Serra J.A., Dominguez R.O., Repetto M., Reides C., de Lustig E.S. The antioxidant enzymatic blood profile in Alzheimer’s and vascular diseases. Their association and a possible assay to differentiate demented subjects and controls. J. Neurol. Sci. 1996;141:69–78. doi: 10.1016/0022-510X(96)00163-3. PubMed DOI
Shi G.-X., Liu C.-Z., Wang L.-P., Guan L.-P., Li S.-Q. Biomarkers of Oxidative Stress in Vascular Dementia Patients. Can. J. Neurol. Sci. 2012;39:65–68. doi: 10.1017/S0317167100012701. PubMed DOI
Wang M., Norman J.E., Srinivasan V.J., Rutledge J.C. Metabolic, inflammatory, and microvascular determinants of white matter disease and cognitive decline. Am. J. Neurodegener. Dis. 2016;5:171. PubMed PMC
Sood R., Yang Y., Taheri S., Candelario-Jalil E., Estrada E.Y., Walker E.J., Thompson J., Rosenberg G.A. Increased Apparent Diffusion Coefficients on MRI Linked with Matrix Metalloproteinases and Edema in White Matter after Bilateral Carotid Artery Occlusion in Rats. J. Cereb. Blood Flow Metab. 2008;29:308–316. doi: 10.1038/jcbfm.2008.121. PubMed DOI
Zhang F., Chen X.-C., Ren H.-M., Bao W.-M. Effects of ischemic preconditioning on blood–brain barrier permeability and MMP-9 expression of ischemic brain. Neurol. Res. 2006;28:21–24. doi: 10.1179/016164106X91825. PubMed DOI
Jiang P., Chen L., Sun J., Li J., Xu J., Liu W., Feng F., Qu W. Chotosan ameliorates cognitive impairment and hippocampus neuronal loss in experimental vascular dementia via activating the Nrf2-mediated antioxidant pathway. J. Pharmacol. Sci. 2019;139:105–111. doi: 10.1016/j.jphs.2018.12.003. PubMed DOI
Block M.L., Zecca L., Hong J.-S. Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nat. Rev. Neurosci. 2007;8:57–69. doi: 10.1038/nrn2038. PubMed DOI
Xu X., Zhang B., Lu K., Deng J., Zhao F., Zhao B., Zhao Y. Prevention of Hippocampal Neuronal Damage and Cognitive Function Deficits in Vascular Dementia by Dextromethorphan. Mol. Neurobiol. 2016;53:3494–3502. doi: 10.1007/s12035-016-9786-5. PubMed DOI
Origlia N., Criscuolo C., Arancio O., Yan S.S., Domenici L. RAGE Inhibition in Microglia Prevents Ischemia-Dependent Synaptic Dysfunction in an Amyloid-Enriched Environment. J. Neurosci. 2014;34:8749–8760. doi: 10.1523/JNEUROSCI.0141-14.2014. PubMed DOI PMC
Lue L.-F., Walker D.G., Brachova L., Beach T.G., Rogers J., Schmidt A.M., Stern D.M., Yan S.D. Involvement of Microglial Receptor for Advanced Glycation Endproducts (RAGE) in Alzheimer’s Disease: Identification of a Cellular Activation Mechanism. Exp. Neurol. 2001;171:29–45. doi: 10.1006/exnr.2001.7732. PubMed DOI
Wei J., Sun C., Liu C., Zhang Q. Effects of Rat Anti-mouse Interleukin-6 Receptor Antibody on the Recovery of Cognitive Function in Stroke Mice. Cell. Mol. Neurobiol. 2017;38:507–515. doi: 10.1007/s10571-017-0499-8. PubMed DOI PMC
Wytrykowska A., Prosba-Mackiewicz M., Nyka W.M. IL-1β, TNF-α, and IL-6 levels in gingival fluid and serum of patients with ischemic stroke. J. Oral Sci. 2016;58:509–513. doi: 10.2334/josnusd.16-0278. PubMed DOI
Miwa K., Okazaki S., Sakaguchi M., Mochizuki H., Kitagawa K. Interleukin-6, interleukin-6 receptor gene variant, small-vessel disease and incident dementia. Eur. J. Neurol. 2016;23:656–663. doi: 10.1111/ene.12921. PubMed DOI
Dukic L., Simundic A.-M., Martinic-Popovic I., Kackov S., Diamandis A., Begcevic I., Diamandis E.P. The role of human kallikrein 6, clusterin and adiponectin as potential blood biomarkers of dementia. Clin. Biochem. 2016;49:213–218. doi: 10.1016/j.clinbiochem.2015.10.014. PubMed DOI
Price B.R., Norris C.M., Sompol P., Wilcock D.M. An emerging role of astrocytes in vascular contributions to cognitive impairment and dementia. J. Neurochem. 2018;144:644–650. doi: 10.1111/jnc.14273. PubMed DOI PMC
Stanimirovic D.B., Friedman A. Pathophysiology of the neurovascular unit: Disease cause or consequence? Blood Flow Metab. 2012;32:1207–1221. doi: 10.1038/jcbfm.2012.25. PubMed DOI PMC
Wilcock D.M., Vitek M.P., Colton C.A. Vascular amyloid alters astrocytic water and potassium channels in mouse models and humans with Alzheimer’s disease. Neuroscience. 2009;159:1055–1069. doi: 10.1016/j.neuroscience.2009.01.023. PubMed DOI PMC
Sudduth T.L., Weekman E.M., Price B.R., Gooch J.L., Woolums A., Norris C.M., Wilcock D.M. Time-course of glial changes in the hyperhomocysteinemia model of vascular cognitive impairment and dementia (VCID) Neuroscience. 2017;341:42–51. doi: 10.1016/j.neuroscience.2016.11.024. PubMed DOI PMC
Weekman E.M., Wilcock D.M. Matrix Metalloproteinase in Blood-Brain Barrier Breakdown in Dementia. J. Alzheimer’s Dis. 2015;49:893–903. doi: 10.3233/JAD-150759. PubMed DOI
Tarantini S., Tran C.H.T., Gordon G.R., Ungvari Z., Csiszar A. Impaired neurovascular coupling in aging and Alzheimer’s disease: Contribution of astrocyte dysfunction and endothelial impairment to cognitive decline. Exp. Gerontol. 2017;94:52–58. doi: 10.1016/j.exger.2016.11.004. PubMed DOI PMC
Kraner S.D., Norris C.M. Astrocyte Activation and the Calcineurin/in Cerebrovascular Disease. Front. Aging Neurosci. 2018;10 doi: 10.3389/fnagi.2018.00287. PubMed DOI PMC
Rouach N., Dallérac G. Astrocytes as new targets to improve cognitive functions. Prog. Neurobiol. 2016;144:48–67. PubMed
Santello M., Toni N., Volterra A. Astrocyte function from information processing to cognition and cognitive impairment. Nat. Neurosci. 2019;1 doi: 10.1038/s41593-018-0325-8. PubMed DOI
Maiuolo J., Gliozzi M., Musolino V., Scicchitano M., Carresi C., Scarano F., Bosco F., Nucera S., Ruga S., Zito M.C., et al. The “Frail” Brain Blood Barrier in Neurodegenerative Diseases: Role of Early Disruption of Endothelial Cell to Cell Connections. Int. J. Mol. Sci. 2018;19:2693. doi: 10.3390/ijms19092693. PubMed DOI PMC
Wang F., Cao Y., Ma L., Pei H., Rausch W.D., Li H. Dysfunction of Cerebrovascular Endothelial Cells: Prelude to Vascular Dementia. Front. Aging Neurosci. 2018;10:367. doi: 10.3389/fnagi.2018.00376. PubMed DOI PMC
Stephan B.C.M., Harrison S.L., Keage H.A.D., Babateen A., Robinson L., Siervo M. Cardiovascular Disease, the Nitric Oxide Pathway and Risk of Cognitive Impairment and Dementia. Curr. Cardiol. Rep. 2017;19:87. doi: 10.1007/s11886-017-0898-y. PubMed DOI PMC
Džoljić E. Why is nitric oxide important for our brain? Funct. Neurol. 2015;30:159. doi: 10.11138/FNeur/2015.30.3.159. PubMed DOI PMC
Ren C., Li N., Li S., Han R., Huang Q., Hu J., Jin K., Ji X. Limb Ischemic Conditioning Improved Cognitive Deficits via eNOS-Dependent Augmentation of Angiogenesis after Chronic Cerebral Hypoperfusion in Rats. Aging Dis. 2018;9:869. doi: 10.14336/AD.2017.1106. PubMed DOI PMC
Zhang L., Zheng H., Luo J., Li L., Pan X., Jiang T., Xiao C., Pei Z., Hu X. Inhibition of endothelial nitric oxide synthase reverses the effect of exercise on improving cognitive function in hypertensive rats. Hypertens Res. 2018;41:414–425. doi: 10.1038/s41440-018-0033-5. PubMed DOI
Manukhina E.B., Pshennikova M.G., Goryacheva A.V., Khomenko I.P., Mashina S.Y., Pokidyshev D.A., Malyshev I.Y. Role of nitric oxide in prevention of cognitive disorders in neurodegenerative brain injuries in rats. Bull. Exp. Biol. Med. 2008;146:391–395. doi: 10.1007/s10517-009-0315-7. PubMed DOI
Zhao X., Liu J., Yang S., Song D., Wang C., Chen C., Li X., Wang Q., Ge S., Yang R., et al. Ling-Yang-Gou-Teng-decoction prevents vascular dementia through inhibiting oxidative stress induced neurovascular coupling dysfunction. J. Ethnopharmacol. 2018;222:229–238. doi: 10.1016/j.jep.2018.03.015. PubMed DOI
Ledo A., Barbosa R.M., Laranjinha J., Lourenço C.F. Neurovascular-neuroenergetic coupling axis in the brain: Master regulation by nitric oxide and consequences in aging and neurodegeneration. Free Radic. Biol. Med. 2017;108:668–682. PubMed
Balez R., Ooi L. Getting to NO Alzheimer’s disease: Neuroprotection versus neurotoxicity mediated by nitric oxide. Oxid. Med. Cell Longev. 2016 doi: 10.1155/2016/3806157. PubMed DOI PMC
Cai W., Liu H., Zhao J., Chen L.Y., Chen J., Lu Z., Hu X. Pericytes in Brain Injury and Repair After Ischemic Stroke. Transl. Stroke Res. 2017;8:107–121. doi: 10.1007/s12975-016-0504-4. PubMed DOI PMC
Armulik A., Abramsson A., Betsholtz C. Endothelial/pericyte interactions. Circ. Res. 2005;97:512–523. doi: 10.1161/01.RES.0000182903.16652.d7. PubMed DOI
Bhowmick S., D’Mello V., Caruso D., Wallerstein A., Abdul-Muneer P.M. Impairment of pericyte-endothelium crosstalk leads to blood-brain barrier dysfunction following traumatic brain injury. Exp. Neurol. 2019;317:260–270. doi: 10.1016/j.expneurol.2019.03.014. PubMed DOI
Takahashi Y., Maki T., Liang A.C., Itoh K., Lok J., Osumi N., Arai K. p38 MAP kinase mediates transforming-growth factor-β1-induced upregulation of matrix metalloproteinase-9 but not -2 in human brain pericytes. Brain Res. 2014;1593:1–8. doi: 10.1016/j.brainres.2014.10.029. PubMed DOI PMC
Hill J., Rom S., Ramirez S.H., Persidsky Y. Emerging Roles of Pericytes in the Regulation of the Neurovascular Unit in Health and Disease. J. Neuroimmune Pharmacol. 2014;9:591–605. doi: 10.1007/s11481-014-9557-x. PubMed DOI PMC
Winkler E.A., Sagare A.P., Zlokovic B.V. The pericyte: A forgotten cell type with important implications for alzheimer’s disease? Brain Pathol. 2014;24:371–386. doi: 10.1111/bpa.12152. PubMed DOI PMC
Sengillo J.D., Winkler E.A., Walker C.T., Sullivan J.S., Johnson M., Zlokovic B.V. Deficiency in mural vascular cells coincides with blood-brain barrier disruption in alzheimer’s disease. Brain Pathol. 2013;24:371–386. doi: 10.1111/bpa.12004. PubMed DOI PMC
Nikolakopoulou A.M., Zhao Z., Montagne A., Zlokovic B.V. Regional early and progressive loss of brain pericytes but not vascular smooth muscle cells in adult mice with disrupted platelet-derived growth factor receptor-β signaling. PLoS ONE. 2017;12:e0176225. doi: 10.1371/journal.pone.0176225. PubMed DOI PMC
Beltramo E., Porta M. Pericyte Loss in Diabetic Retinopathy: Mechanisms and Consequences. Curr. Med. Chem. 2013;20:3218–3225. doi: 10.2174/09298673113209990022. PubMed DOI
Kisler K., Nelson A.R., Rege S.V., Ramanathan A., Wang Y., Ahuja A., Lazic D., Tsai P.S., Zhao Z., Zhou Y., et al. Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat. Neurosci. 2017;20:406. doi: 10.1038/nn.4489. PubMed DOI PMC
Montagne A., Nikolakopoulou A.M., Zhao Z., Sagare A.P., Si G., Lazic D., Barnes S.R., Daianu M., Ramanathan A., Go A., et al. Pericyte degeneration causes white matter dysfunction in the mouse central nervous system. Nat. Med. 2018;24:326. doi: 10.1038/nm.4482. PubMed DOI PMC
Winkler E.A., Bell R.D., Zlokovic B.V. Pericyte-specific expression of PDGF beta receptor in mouse models with normal and deficient PDGF beta receptor signaling. Mol. Neurodegener. 2010;5:32. doi: 10.1186/1750-1326-5-32. PubMed DOI PMC
Zlokovic B.V., Deane R., Sagare A.P., Bell R.D., Winkler E.A. Low-density lipoprotein receptor-related protein-1: A serial clearance homeostatic mechanism controlling Alzheimer’s amyloid β-peptide elimination from the brain. J. Neurochem. 2010;115:1077–1089. doi: 10.1111/j.1471-4159.2010.07002.x. PubMed DOI PMC
Sagare A.P., Bell R.D., Zhao Z., Ma Q., Winkler E.A., Ramanathan A., Zlokovic B.V. Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat. Commun. 2013;4:2932. doi: 10.1038/ncomms3932. PubMed DOI PMC
Nakazaki M., Sasaki M., Kataoka-Sasaki Y., Oka S., Suzuki J., Sasaki Y., Nagahama H., Hashi K., Kocsis J.D., Honmou O. Intravenous infusion of mesenchymal stem cells improves impaired cognitive function in a cerebral small vessel disease model. Neuroscience. 2019;408:361–377. doi: 10.1016/j.neuroscience.2019.04.018. PubMed DOI
Uchiyama Y., Shibata M., Koike M., Yoshimura K., Sasaki M. Autophagy-physiology and pathophysiology. Histochem. Cell Biol. 2008;129:407–420. doi: 10.1007/s00418-008-0406-y. PubMed DOI PMC
Mariño G., Madeo F., Kroemer G. Autophagy for tissue homeostasis and neuroprotection. Curr. Opin. Cell Biol. 2011;23:198–206. doi: 10.1016/j.ceb.2010.10.001. PubMed DOI
Kiffin R., Bandyopadhyay U., Cuervo A.M. Oxidative stress and autophagy. Antioxid Redox Signal. 2006;8:152–162. doi: 10.1089/ars.2006.8.152. PubMed DOI
Thornton C., Leaw B., Mallard C., Nair S., Jinnai M., Hagberg H. Cell Death in the Developing Brain after Hypoxia-Ischemia. Front. Cell. Neurosci. 2017;11:248. doi: 10.3389/fncel.2017.00248. PubMed DOI PMC
Alers S., Loffler A.S., Wesselborg S., Stork B. Role of AMPK-mTOR-Ulk1/2 in the Regulation of Autophagy: Cross Talk, Shortcuts, and Feedbacks. Mol. Cell. Biol. 2011;32:2–11. doi: 10.1128/MCB.06159-11. PubMed DOI PMC
Liu B., Tang J., Li S., Zhang J., Yuan M., Wang R. Autophagy activation aggravates neuronal injury in the hippocampus of vascular dementia rats. Neural Regen Res. 2014;9:1288. doi: 10.4103/1673-5374.137576. PubMed DOI PMC
Zou W., Song Y., Li Y., Du Y., Zhang X., Fu J. The Role of Autophagy in the Correlation Between Neuron Damage and Cognitive Impairment in Rat Chronic Cerebral Hypoperfusion. Mol. Neurobiol. 2017;55:776–791. doi: 10.1007/s12035-016-0351-z. PubMed DOI
Wang D.P., Yin H., Kang K., Lin Q., Su S.H., Hai J. The potential protective effects of cannabinoid receptor agonist WIN55, on cognitive dysfunction is associated with the suppression of autophagy and inflammation in an experimental model of vascular dementia. Psychiatry Res. 2018;267:281–288. doi: 10.1016/j.psychres.2018.06.012. PubMed DOI
Wang D., Lin Q., Su S., Liu K., Wu Y., Hai J. URB597 improves cognitive impairment induced by chronic cerebral hypoperfusion by inhibiting mTOR-dependent autophagy. Neuroscience. 2017;344:293–304. doi: 10.1016/j.neuroscience.2016.12.034. PubMed DOI
Wang L., Wang J., Wang F., Liu C., Yang X., Yang J., Ming D. VEGF-Mediated Cognitive and Synaptic Improvement in Chronic Cerebral Hypoperfusion Rats Involves Autophagy Process. Neuromol. Med. 2017;19:423–435. doi: 10.1007/s12017-017-8458-6. PubMed DOI
Xia D., Sui R., Min L., Zhang L., Zhang Z. Fastigial nucleus stimulation ameliorates cognitive impairment via modulating autophagy and inflammasomes activation in a rat model of vascular dementia. J. Cell. Biochem. 2018;120:5108–5117. doi: 10.1002/jcb.27787. PubMed DOI
Ferrucci M., Biagioni F., Ryskalin L., Limanaqi F., Gambardella S., Frati A., Fornai F. Ambiguous Effects of Autophagy Activation Following Hypoperfusion/Ischemia. Int. J. Mol. Sci. 2018;19:2756. doi: 10.3390/ijms19092756. PubMed DOI PMC
Sonntag W.E., Deak F., Ashpole N., Toth P., Csiszar A., Freeman W., Ungvari Z. Insulin-like growth factor-1 in CNS and cerebrovascular aging. Front. Aging Neurosci. 2013;5:27. doi: 10.3389/fnagi.2013.00027. PubMed DOI PMC
Dyer A.H., Vahdatpour C., Sanfeliu A., Tropea D. The role of Insulin-Like Growth Factor 1 (IGF-1) in brain development, maturation and neuroplasticity. Neuroscience. 2016;325:89–99. doi: 10.1016/j.neuroscience.2016.03.056. PubMed DOI
Bianchi V., Locatelli V., Rizzi L. Neurotrophic and Neuroregenerative Effects of GH/IGF1. Int. J. Mol. Sci. 2017;18:2441. doi: 10.3390/ijms18112441. PubMed DOI PMC
Frater J., Lie D., Bartlett P., McGrath J.J. Insulin-like Growth Factor 1 (IGF-1) as a marker of cognitive decline in normal ageing: A review. Ageing Res. Rev. 2018;42:14–27. doi: 10.1016/j.arr.2017.12.002. PubMed DOI
Ramsey M.M., Adams M.M., Ariwodola O.J., Sonntag W.E., Weiner J.L. Functional characterization of des-IGF-1 action at excitatory synapses in the CA1 region of rat hippocampus. J. Neurophysiol. 2005;94:247–254. doi: 10.1152/jn.00768.2004. PubMed DOI
Lopez-Lopez C., Dietrich M.O., Metzger F., Loetscher H., Torres-Aleman I. Disturbed cross talk between insulin-like growth factor I and AMP-activated protein kinase as a possible cause of vascular dysfunction in the amyloid precursor protein/presenilin 2 mouse model of Alzheimer’s disease. J. Neurosci. 2007;27:824–831. doi: 10.1523/JNEUROSCI.4345-06.2007. PubMed DOI PMC
Trejo J.L., Carro E., Lopez-Lopez C., Torres-Aleman I., Suppl A. Role of serum insulin-like growth factor I in mammalian brain aging. Growth Horm. 2004;14:39–43. doi: 10.1016/j.ghir.2004.03.010. PubMed DOI
Åberg M.A.I., Åberg N.D., Hedbäcker H., Oscarsson J., Eriksson P.S. Peripheral Infusion of IGF-I Selectively Induces Neurogenesis in the Adult Rat Hippocampus. J. Neurosci. 2000;20:2896–2903. doi: 10.1523/JNEUROSCI.20-08-02896.2000. PubMed DOI PMC
Tucsek Z., Toth P., Tarantini S., Sosnowska D., Gautam T., Warrington J.P., Giles C.B., Wren J.D., Koller A., Ballabh P., et al. Aging exacerbates obesity-induced cerebromicrovascular rarefaction, neurovascular uncoupling, and cognitive decline in mice. Sci. Med. Sci. 2014;69:1339–1352. doi: 10.1093/gerona/glu080. PubMed DOI PMC
Tarantini S., Tucsek Z., Valcarcel-Ares M.N., Toth P., Gautam T., Giles C.B., Ballabh P., Wei J.Y., Wren J.D., Ashpole N.M., et al. Circulating IGF-1 deficiency exacerbates hypertension-induced microvascular rarefaction in the mouse hippocampus and retrosplenial cortex: Implications for cerebromicrovascular and brain aging. Age. 2016;38:273–289. doi: 10.1007/s11357-016-9931-0. PubMed DOI PMC
Toth P., Tarantini S., Ashpole N.M., Tucsek Z., Milne G.L., Valcarcel-Ares N.M., Menyhart A., Farkas E., Sonntag W.E., Csiszar A., et al. IGF-1 deficiency impairs neurovascular coupling in mice: Implications for cerebromicrovascular aging. Aging Cell. 2015;14:1034–1044. doi: 10.1111/acel.12372. PubMed DOI PMC
Toth P., Tucsek Z., Tarantini S., Sosnowska D., Gautam T., Mitschelen M., Koller A., Sonntag W.E., Csiszar A., Ungvari Z. IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice. Blood Flow Metab. 2014;34:1887–1897. doi: 10.1038/jcbfm.2014.156. PubMed DOI PMC
Gong X., Ma M., Fan X., Li M., Liu Q., Liu X., Xu G. Down-regulation of IGF-1/IGF-1R in hippocampus of rats with vascular dementia. Neurosci. Lett. 2012;513:20–24. doi: 10.1016/j.neulet.2012.01.077. PubMed DOI
Quinlan P., Horvath A., Nordlund A., Wallin A., Svensson J. Low serum insulin-like growth factor-I (IGF-I) level is associated with increased risk of vascular dementia. Psychoneuroendocrinology. 2017;86:169–175. doi: 10.1016/j.psyneuen.2017.09.018. PubMed DOI
Johnsen S.P., Hundborg H.H., Sørensen H.T., Ørskov H., Tjønneland A., Overvad K., Jørgensen J.O.L. Insulin-Like Growth Factor (IGF) I, -II, and IGF Binding Protein-3 and Risk of Ischemic Stroke. J. Clin. Endocrinol. Metab. 2005;90:5937–5941. doi: 10.1210/jc.2004-2088. PubMed DOI
Liu X.F., Fawcett J.R., Thorne R.G., Frey W.H., II Non-invasive intranasal insulin-like growth factor-I reduces infarct volume and improves neurologic function in rats following middle cerebral artery occlusion. Neurosci. Lett. 2001;308:91–94. doi: 10.1016/S0304-3940(01)01982-6. PubMed DOI
Zhu W., Fan Y., Frenzel T., Gasmi M., Bartus R.T., Young W.L., Yang G.Y., Chen Y. Insulin growth factor-1 gene transfer enhances neurovascular remodeling and improves long-term stroke outcome in mice. Stroke. 2008;39:1254–1261. doi: 10.1161/STROKEAHA.107.500801. PubMed DOI PMC
Ma X., Xu W., Zhang Z., Liu N., Yang J., Wang M., Wang Y. Salvianolic Acid B Ameliorates Cognitive Deficits Through IGF-1/Akt Pathway in Rats with Vascular Dementia. Cell. Physiol. Biochem. 2017;43:1381–1391. doi: 10.1159/000481849. PubMed DOI
Riikonen R. Insulin-like growth factor delivery across the blood-brain barrier. Chemotheraphy. 2006;52:279–281. doi: 10.1159/000095957. PubMed DOI
Farooq M.U., Min J., Goshgarian C., Gorelick P.B. Pharmacotherapy for Vascular Cognitive Impairment. CNS Drugs. 2017;31:759–776. doi: 10.1007/s40263-017-0459-3. PubMed DOI