Regulation of the regulators: Transcription factors controlling biosynthesis of plant secondary metabolites during biotic stresses and their regulation by miRNAs
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
36938003
PubMed Central
PMC10017880
DOI
10.3389/fpls.2023.1126567
Knihovny.cz E-zdroje
- Klíčová slova
- miRNAs, pathogen infection, pest attack, plant specialized/secondary metabolites, transcription factors,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Biotic stresses threaten to destabilize global food security and cause major losses to crop yield worldwide. In response to pest and pathogen attacks, plants trigger many adaptive cellular, morphological, physiological, and metabolic changes. One of the crucial stress-induced adaptive responses is the synthesis and accumulation of plant secondary metabolites (PSMs). PSMs mitigate the adverse effects of stress by maintaining the normal physiological and metabolic functioning of the plants, thereby providing stress tolerance. This differential production of PSMs is tightly orchestrated by master regulatory elements, Transcription factors (TFs) express differentially or undergo transcriptional and translational modifications during stress conditions and influence the production of PSMs. Amongst others, microRNAs, a class of small, non-coding RNA molecules that regulate gene expression post-transcriptionally, also play a vital role in controlling the expression of many such TFs. The present review summarizes the role of stress-inducible TFs in synthesizing and accumulating secondary metabolites and also highlights how miRNAs fine-tune the differential expression of various stress-responsive transcription factors during biotic stress.
Department of Botany Hansraj College University of Delhi Delhi India
Department of Zoology Deshbandhu College University of Delhi New Delhi India
Jagdish Chandra Bose Center for Plant Genomics Hansraj College University of Delhi Delhi India
Zobrazit více v PubMed
Abdalla M. A., Mühling K. H. (2019). Plant-derived sulfur-containing natural products produced as a response to biotic and abiotic stresses: A review of their structural diversity and medicinal importance. J. Appl. Bot. Food Qual 92, 204–215. doi:? 10.5073/JABFQ.2019.092.029 DOI
Abiri R., Shaharuddin N. A., Maziah M., Yusof Z. N. B., Atabaki N., Sahebi M., et al. (2017). Role of ethylene and the APETALA 2/ethylene response factor superfamily in rice under various abiotic and biotic stress conditions. Environ. Exp. Bot. 134, 33–44. doi: 10.1016/j.envexpbot.2016.10.015 DOI
Aftab T. (2019). A review of medicinal and aromatic plants and their secondary metabolites status under abiotic stress. J. Medicinal Plants 7 (3), 99–106.
Ahmed E. F., Elkhateeb W. A., Taie H. A., Rateb M. E., Fayad W. (2017). Biological capacity and chemical composition of secondary metabolites from representatives Japanese lichens. J. Appl. Pharm. Sci. 7 (1), 098–103. doi: 10.7324/JAPS.2017.70113 DOI
Ahuja I., de Vos R. C., A.M. and Hall R. D. (2010). Plant molecular stress responses face climate change. Trends Plant Sci. 15 (12), 664–674. doi: 10.1016/j.tplants.2010.08.002 PubMed DOI
Ahuja I., Kissen R., Bones A. M. (2012). Phytoalexins in defense against pathogens. Trends Plant Sci. 17 (2), 73–90. doi: 10.1016/j.tplants.2011.11.002 PubMed DOI
Ahuja I., Rohloff J., Bones A. M. (2011). “Defence mechanisms of brassicaceae: implications for plant-insect interactions and potential for integrated pest management,” in Sustainable agriculture, vol. 2. (Dordrecht: Springer; ), 623–670.
Alfieri M., Vaccaro M. C., Cappetta E., Ambrosone A., De Tommasi N., Leone A. (2018). Coactivation of MEP-biosynthetic genes and accumulation of abietane diterpenes in salvia sclarea by heterologous expression of WRKY and MYC2 transcription factors. Sci. Rep. 8 (1), 1–13. doi: 10.1038/s41598-018-29389-4 PubMed DOI PMC
Almagro L., Gutierrez J., Pedreño Sottomayor M.A. M. (2014). Synergistic and additive influence of cyclodextrins and methyl jasmonate on the expression of the terpenoid indole alkaloid pathway genes and metabolites in C atharanthus roseus cell cultures. Plant Cell, Tissue and Organ Culture (PCTOC), 119, pp.543–551.
Alves M. S., Dadalto S. P., Gonçalves A. B., De Souza G. B., Barros V. A., Fietto L. G. (2013). Plant bZIP transcription factors responsive to pathogens: a review. Int. J. Mol. Sci. 14 (4), 7815–7828. doi: 10.3390/ijms14047815 PubMed DOI PMC
Alves M. S., Soares Z. G., Vidigal P. M., Barros E. G., Poddanosqui A. M., Aoyagi L. N., et al. (2015). Differential expression of four soybean bZIP genes during phakopsora pachyrhizi infection. Funct. Integr. Genomics 15 (6), 685–696. doi: 10.1007/s10142-015-0445-0 PubMed DOI
Ambawat S., Sharma P., Yadav N. R., Yadav R. C. (2013). MYB transcription factor genes as regulators for plant responses: an overview. Physiol. Mol. Biol. Plants 19 (3), 307–321. doi: 10.1007/s12298-013-0179-1 PubMed DOI PMC
An J. P., Zhang X. W., You C. X., Bi S. Q., Wang X. F., Hao Y. J. (2019). Md WRKY 40 promotes wounding-induced anthocyanin biosynthesis in association with md MYB 1 and undergoes md BT 2-mediated degradation. New Phytol. 224 (1), 380–395. doi: 10.1111/nph.16008 PubMed DOI
Asadollahi M. A., Maury J., Møller K., Nielsen K. F., Schalk M., Clark A., et al. (2008). Production of plant sesquiterpenes in saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis. Biotechnol. bioengineering 99 (3), 666–677. doi: 10.1002/bit.21581 PubMed DOI
Atchley W. R., Terhalle W., Dress A. (1999). Positional dependence, cliques, and predictive motifs in the bHLH protein domain. J. Mol. Evol. 48 (5), 501–516. doi: 10.1007/PL00006494 PubMed DOI
Avato P., Bucci R., Tava A., Vitali C., Rosato A., Bialy Z., et al. (2006). Antimicrobial activity of saponins from medicago sp.: structure-activity relationship. Phytotherapy Research: Int. J. Devoted to Pharmacol. Toxicological Eval. Natural Product Derivatives 20 (6), 454–457. doi: 10.1002/ptr.1876 PubMed DOI
Awad V., Kuvalekar A., Harsulkar A. (2014). Microbial elicitation in root cultures of taverniera cuneifolia (Roth) arn. for elevated glycyrrhizic acid production. Ind. Crops Products 54, 13–16. doi: 10.1016/j.indcrop.2013.12.036 DOI
Babitha K. C., Vemanna R. S., Nataraja K. N., Udayakumar M. (2015). Overexpression of EcbHLH57 transcription factor from eleusine coracana l. @ in tobacco confers tolerance to salt, oxidative and drought stress. PloS One 10 (9), e0137098. PubMed PMC
Bai Y., Sunarti S., Kissoudis C., Visser R. G., van der Linden C. (2018). The role of tomato WRKY genes in plant responses to combined abiotic and biotic stresses. Front. Plant Sci. 9, 801. doi: 10.3389/fpls.2018.00801 PubMed DOI PMC
Baillo E. H., Kimotho R. N., Zhang Z., Xu P. (2019). Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes 10 (10), p.771. doi: 10.3390/genes10100771 PubMed DOI PMC
Bakhshi D., Arakawa O. (2006). Induction of phenolic compounds biosynthesis with light irradiation in the flesh of red and yellow apples. J. Appl. Horticulture 8 (2), 101–104. doi: 10.37855/jah.2006.v08i02.23 DOI
Banerjee A., Roy choudhury A. (2015). WRKY proteins: signaling and regulation of expression during abiotic stress responses. Sci. World J. 2015. PubMed PMC
Banerjee A., Roy choudhury A. (2017). Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress. Protoplasma 254 (1), 3–16. doi: 10.1007/s00709-015-0920-4 PubMed DOI
Baulcombe D. (2004). RNA Silencing in plants. Nature 431 (7006), 356–363. PubMed
Baumann K., Perez-Rodriguez M., Bradley D., Venail J., Bailey P., Jin H., et al. (2007). Control of cell and petal morphogenesis by R2R3 MYB transcription factors. doi: 10.1242/dev.02836 PubMed DOI
Bechtold U., Field B. (2018). Molecular mechanisms controlling plant growth during abiotic stress. J. Exp. Bot. 69 (11), 2753–2758. doi: 10.1093/jxb/ery157 PubMed DOI PMC
Bloem E., Haneklaus S., Schnug E. (2007). Changes in the sulphur and glucosinolate content of developing pods and seeds of oilseed rape (Brassica napus l.) in relation to different cultivars. Landbauforschung Volkenrode 57 (4), 297.
Brading P. A., Hammond-Kosack K. E., Parr A., Jones J. D. (2000). Salicylic acid is not required for cf-2-and cf-9-dependent resistance of tomato to cladosporium fulvum. Plant J. 23 (3), 305–318. doi: 10.1046/j.1365-313x.2000.00778.x PubMed DOI
Brand L. H., Fischer N. M., Harter K., Kohlbacher O., Wanke D. (2013). Elucidating the evolutionary conserved DNA-binding specificities of WRKY transcription factors by molecular dynamics and PubMed DOI PMC
Bulgakov V. P., Avramenko T. V. (2015). New opportunities for the regulation of secondary metabolism in plants: focus on microRNAs. Biotechnol. Lett. 37 (9), 1719–1727. doi: 10.1007/s10529-015-1863-8 PubMed DOI
Butelli E., Titta L., Giorgio M., Mock H. P., Matros A., Peterek S., et al. (2008). Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat. Biotechnol. 26 (11), 1301–1308. doi: 10.1038/nbt.1506 PubMed DOI
Cai H., Yang S., Yan Y., Xiao Z., Cheng J., Wu J., et al. (2015). CaWRKY6 transcriptionally activates CaWRKY40, regulates ralstonia solanacearum resistance, and confers high-temperature and high-humidity tolerance in pepper. J. Exp. Bot. 66 (11), 3163–3174. doi: 10.1093/jxb/erv125 PubMed DOI
Camargo Ramírez R., San Segundo B., Tolrá Pérez R. (2017). Function of microRNAs in plant innate immunity. Available at: https://ddd.uab.cat/record/186986.
Cao W., Wang Y., Shi M., Hao X., Zhao W., Wang Y., et al. (2018). Transcription factor SmWRKY1 positively promotes the biosynthesis of tanshinones in salvia miltiorrhiza. Front. Plant Sci. 9, 554. doi: 10.3389/fpls.2018.00554 PubMed DOI PMC
Cao Y., Zhai J., Wang Q., Yuan H., Huang X. (2017). Function of hevea brasiliensis NAC1 in dehydration-induced laticifer differentiation and latex biosynthesis. Planta 245 (1), 31–44. doi: 10.1007/s00425-016-2589-0 PubMed DOI
Cárdenas P. D., Sonawane P. D., Pollier J., Vanden Bossche R., Dewangan V., Weithorn E., et al. (2016). GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway. Nat. Commun. 7 (1), 1–16. PubMed PMC
Carretero-Paulet L., Galstyan A., Roig-Villanova I., Martínez-García J. F., Bilbao-Castro J. R., Robertson D. L. (2010). Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in arabidopsis, poplar, rice, moss, and algae. Plant Physiol. 153 (3), 1398–1412. doi: 10.1104/pp.110.153593 PubMed DOI PMC
Chacón-Cerdas R., Barboza-Barquero L., Albertazzi F. J., Rivera-Méndez W. (2020). Transcription factors controlling biotic stress response in potato plants. Physiol. Mol. Plant Pathol. 112, 101527. doi: 10.1016/j.pmpp.2020.101527 DOI
Chandler J. W. (2018). Class VIIIb APETALA2 ethylene response factors in plant development. Trends Plant Sci. 23 (2), 151–162. doi: 10.1016/j.tplants.2017.09.016 PubMed DOI
Chen Y. H., Cao Y. Y., Wang L. J., Li L. M., Yang J., Zou M. X. (2018). Identification of MYB transcription factor genes and their expression during abiotic stresses in maize. Biol. plantarum 62 (2), 222–230. doi: 10.1007/s10535-017-0756-1 DOI
Chen H. C., Chien T. C., Chen T. Y., Chiang M. H., Lai M. H., Chang M. C. (2021). Overexpression of a novel ERF-x-type transcription factor, OsERF106MZ, reduces shoot growth and tolerance to salinity stress in rice. Rice 14 (1), 1–18. doi: 10.1186/s12284-021-00525-5 PubMed DOI PMC
Chen F., Hu Y., Vannozzi A., Wu K., Cai H., Qin Y., et al. (2017). The WRKY transcription factor family in model plants and crops. Crit. Rev. Plant Sci. 36 (5-6), 311–335. doi: 10.1080/07352689.2018.1441103 DOI
Chen Y. J., Perera V., Christiansen M. W., Holme I. B., Gregersen P. L., Grant M. R., et al. (2013). The barley HvNAC6 transcription factor affects ABA accumulation and promotes basal resistance against powdery mildew. Plant Mol. Biol. 83 (6), 577–590. doi: 10.1007/s11103-013-0109-1 PubMed DOI
Cheng F., Li W., Zhou Y., Shen J., Wu Z., Liu G., et al. (2012). admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. doi: 10.1021/ci300367a PubMed DOI
Cheng Z., Luan Y., Meng J., Sun J., Tao J., Zhao D. (2021). WRKY transcription factor response to high-temperature stress. Plants 10 (10), .2211. doi: 10.3390/plants10102211 PubMed DOI PMC
Chinnapandi B., Bucki P., Braun Miyara S. (2017). SlWRKY45, nematode-responsive tomato WRKY gene, enhances susceptibility to the root knot nematode; PubMed DOI PMC
Chinnapandi B., Bucki P., Fitoussi N., Kolomiets M., Borrego E., Braun Miyara S. (2019). Tomato SlWRKY3 acts as a positive regulator for resistance against the root-knot nematode meloidogyne javanica by activating lipids and hormone-mediated defense-signaling pathways. Plant Signaling Behav. 14 (6), 1601951. doi: 10.1080/15592324.2019.1601951 PubMed DOI PMC
Chu X., Wang C., Chen X., Lu W., Li H., Wang X., et al. (2015). The cotton WRKY gene GhWRKY41 positively regulates salt and drought stress tolerance in transgenic PubMed DOI PMC
Cia M. C., de Carvalho G., Azevedo R. A., Monteiro-Vitorello C. B., Souza G. M., Nishiyama-Junior M. Y., et al. (2018). Novel insights into the early stages of ratoon stunting disease of sugarcane inferred from transcript and protein analysis. Phytopathology 108 (12), 1455–1466. doi: 10.1094/PHYTO-04-18-0120-R PubMed DOI
Ciolkowski I., Wanke D., Birkenbihl R. P., Somssich I. E. (2008). Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Mol. Biol. 68 (1), 81–92. doi: 10.1007/s11103-008-9353-1 PubMed DOI PMC
Coleto I., de la Peña M., Rodríguez-Escalante J., Bejarano I., Glauser G., Aparicio-Tejo P. M., et al. (2017). Leaves play a central role in the adaptation of nitrogen and sulfur metabolism to ammonium nutrition in oilseed rape (Brassica napus). BMC Plant Biol. 17 (1), 1–13. doi: 10.1186/s12870-017-1100-9 PubMed DOI PMC
Cominelli E., Tonelli C. (2009). A new role for plant R2R3-MYB transcription factors in cell cycle regulation. Cell Res. 19 (11), 1231–1232. doi: 10.1038/cr.2009.123 PubMed DOI
Costa P., Gonçalves S., Valentão P., Andrade P. B., Coelho N., Romano A. (2012). PubMed DOI
Crozier A., Jaganath I. B., Clifford M. N. (2006). Phenols, polyphenols and tannins: an overview. Plant secondary metabolites: Occurrence structure role Hum. diet 1, 1–25.
Cui L. G., Shan J. X., Shi M., Gao J. P., Lin H. X. (2014). The miR156-SPL 9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. Plant J. 80 (6), 1108–1117. doi: 10.1111/tpj.12712 PubMed DOI
Dai X., Wang Y., Zhang W. H. (2016). OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice. J. Exp. Bot. 67 (3), 947–960. doi: 10.1093/jxb/erv515 PubMed DOI PMC
Dang F., Wang Y., She J., Lei Y., Liu Z., Eulgem T., et al. (2014). Overexpression of CaWRKY27, a subgroup IIe WRKY transcription factor of capsicum annuum, positively regulates tobacco resistance to ralstonia solanacearum infection. Physiologia plantarum 150 (3), 397–411. doi: 10.1111/ppl.12093 PubMed DOI
Danielsson M., Lundén K., Elfstrand M., Hu J., Zhao T., Arnerup J., et al. (2011). Chemical and transcriptional responses of Norway spruce genotypes with different susceptibility to heterobasidion s infection. BMC Plant Biol. 11 (1), 1–15. doi: 10.1186/1471-2229-11-154 PubMed DOI PMC
De Boer K., Tilleman S., Pauwels L., Vanden Bossche R., De Sutter V., Vanderhaeghen R., et al. (2011). APETALA2/ETHYLENE RESPONSE FACTOR and basic helix–loop–helix tobacco transcription factors cooperatively mediate jasmonate-elicited nicotine biosynthesis. Plant J. 66 (6), 1053–1065. doi: 10.1111/j.1365-313X.2011.04566.x PubMed DOI
Deng L. L., Yuan D., Zhou Z. Y., Wan J. Z., Zhang C. C., Liu C. Q., et al. (2017). Saponins from PubMed PMC
Deslandes L., Olivier J., Theulières F., Hirsch J., Feng D. X., Bittner-Eddy P., et al. (2002). Resistance to ralstonia solanacearum in arabidopsis thaliana is conferred by the recessive RRS1-r gene, a member of a novel family of resistance genes. Proc. Natl. Acad. Sci. 99 (4), 2404–2409. doi: 10.1073/pnas.032485099 PubMed DOI PMC
De Sutter V., Vanderhaeghen R., Tilleman S., Lammertyn F., Vanhoutte I., Karimi M., et al. (2005). Exploration of jasmonate signalling PubMed DOI
Ding M., Chen J., Jiang Y., Lin L., Cao Y., Wang M., et al. (2015). Genome-wide investigation and transcriptome analysis of the WRKY gene family in gossypium. Mol. Genet. Genomics 290 (1), 151–171. doi: 10.1007/s00438-014-0904-7 PubMed DOI
Ding Y., Mao Y., Cen Y., Hu L., Su Y., Ma X., et al. (2021). Small RNA sequencing reveals various microRNAs involved in piperine biosynthesis in black pepper (Piper nigrum l.). BMC Genomics 22 (1), 1–12. doi: 10.1186/s12864-021-08154-4 PubMed DOI PMC
Duan M., Zhang R., Zhu F., Zhang Z., Gou L., Wen J., et al. (2017). A lipid-anchored NAC transcription factor is translocated into the nucleus and activates glyoxalase I expression during drought stress. Plant Cell 29 (7), 1748–1772. doi: 10.1105/tpc.17.00044 PubMed DOI PMC
Dubos C., Stracke R., Grotewold E., Weisshaar B., Martin C., Lepiniec L. (2010). MYB transcription factors in arabidopsis. Trends Plant Sci. 15 (10), 573–581. doi: 10.1016/j.tplants.2010.06.005 PubMed DOI
Dzhavakhiya V. G., Ozeretskovskaya O. L., Zinovyeva S. V. (2007). “Immune response,” in Comprehensive and molecular phytopathology (Elsevier; ), 265–314.
Dzhavakhiya V. G., Shcherbakova L. A. (2007). “Creation of disease-resistant plants by gene engineering,” in Comprehensive and molecular phytopathology (Elsevier; ), 439–466.
Ellenberger T. E., Brandl C. J., Struhl K., Harrison S. C. (1992). The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted α helices: crystal structure of the protein-DNA complex. Cell 71 (7), 1223–1237. doi: 10.1016/S0092-8674(05)80070-4 PubMed DOI
Emendack Y., Burke J., Laza H., Sanchez J., Hayes C. (2018). Abiotic stress effects on sorghum leaf dhurrin and soluble sugar contents throughout plant development. Crop Sci. 58 (4), 1706–1716. doi: 10.2135/cropsci2018.01.0059 DOI
Eulgem T., Rushton P. J., Robatzek S., Somssich I. E. (2000). The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5 (5), 199–206. doi: 10.1016/S1360-1385(00)01600-9 PubMed DOI
Fahad S., Bajwa A. A., Nazir U., Anjum S. A., Farooq A., Zohaib A., et al. (2017). Crop production under drought and heat stress: plant responses and management options. Frontiers in Plant Science (CRC Press; ), 1147. PubMed PMC
Faria J. A., Reis P. A., Reis M. T., Rosado G. L., Pinheiro G. L., Mendes G. C., et al. (2011). The NAC domain-containing protein, GmNAC6, is a downstream component of the ER stress-and osmotic stress-induced NRP-mediated cell-death signaling pathway. BMC Plant Biol. 11 (1), 1–14. doi: 10.1186/1471-2229-11-129 PubMed DOI PMC
Feng J. X., Liu D. I., Pan Y. I., Gong W., Ma L. G., Luo J. C., et al. (2005). An annotation update PubMed DOI
Foyer C. H., Lam H. M., Nguyen H. T., Siddique K. H., Varshney R. K., Colmer T. D., et al. (2016). Neglecting legumes has compromised human health and sustainable food production. Nat. Plants 2 (8), 1–10. doi: 10.1038/nplants.2016.112 PubMed DOI
Frampton J., Gibson T. J., Ness S. A., Döderlein G., Graf T. (1991). Proposed structure for the DNA-binding domain of the myb oncoprotein based on model building and mutational analysis. Protein Engineering Design Selection 4 (8), 891–901. doi: 10.1093/protein/4.8.891 PubMed DOI
Frerigmann H., Berger B., Gigolashvili T. (2014). bHLH05 is an interaction partner of MYB51 and a novel regulator of glucosinolate biosynthesis in. doi: 10.1104/pp.114.240887 PubMed DOI PMC
Frerigmann H., Piślewska-Bednarek M., Sánchez-Vallet A., Molina A., Glawischnig E., Gigolashvili T., et al. (2016). Regulation of pathogen-triggered tryptophan metabolism in arabidopsis thaliana by MYB transcription factors and indole glucosinolate conversion products. Mol. Plant 9 (5), 682–695. doi: 10.1016/j.molp.2016.01.006 PubMed DOI
Friedman M. (2002). Tomato glycoalkaloids: role in the plant and in the diet. J. Agric. Food Chem. 50 (21), 5751–5780. doi: 10.1021/jf020560c PubMed DOI
Friedman M. (2006). Potato glycoalkaloids and metabolites: roles in the plant and in the diet. J. Agric. Food Chem. 54 (23), 8655–8681. doi: 10.1021/jf061471t PubMed DOI
Fu R., Zhang M., Zhao Y., He X., Ding C., Wang S., et al. (2017). Identification of salt tolerance-related microRNAs and their targets in maize ( PubMed PMC
Furihata T., Maruyama K., Fujita Y., Umezawa T., Yoshida R., Shinozaki K., et al. (2006). Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc. Natl. Acad. Sci. 103 (6), 1988–1993. doi: 10.1073/pnas.0505667103 PubMed DOI PMC
Ghasemzadeh A., Talei D., Jaafar H. Z., Juraimi A. S., Mohamed M. T. M., Puteh A., et al. (2016). Plant-growth regulators alter phytochemical constituents and pharmaceutical quality in Sweet potato (Ipomoea batatas L.). BMC complementary and alternative medicine 16, 1–13. PubMed PMC
Gibbs D. J., Conde J. V., Berckhan S., Prasad G., Mendiondo G. M., Holdsworth M. J. (2015). Group VII ethylene response factors coordinate oxygen and nitric oxide signal transduction and stress responses in plants. Plant Physiol. 169 (1), 23–31. doi: 10.1104/pp.15.00338 PubMed DOI PMC
Golldack D., Li C., Mohan H., Probst N. (2014). Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front. Plant Sci. 5, 151. doi: 10.3389/fpls.2014.00151 PubMed DOI PMC
Gong Y., Hounsa A., Egal S., Turner P. C., Sutcliffe A. E., Hall A. J., et al. (2004). Postweaning exposure to aflatoxin results in impaired child growth: a longitudinal study in Benin, West Africa. Environ. Health Perspect. 112 (13), 1334–1338. doi: 10.1289/ehp.6954 PubMed DOI PMC
Gonzalez A., Zhao M., Leavitt J. M., Lloyd A. M. (2008). Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in arabidopsis seedlings. Plant J. 53 (5), 814–827. doi: 10.1111/j.1365-313X.2007.03373.x PubMed DOI
Griffith M., Yaish M. W. (2004). Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci. 9 (8), 399–405. doi: 10.1016/j.tplants.2004.06.007 PubMed DOI
Grover A., Mittal D., Negi M., Lavania D. (2013). Generating high temperature tolerant transgenic plants: achievements and challenges. Plant Sci. 205, 38–47. doi: 10.1016/j.plantsci.2013.01.005 PubMed DOI
Grunewald W., De Smet I., Lewis D. R., Löfke C., Jansen L., Goeminne G., et al. (2012). Transcription factor WRKY23 assists auxin distribution patterns during arabidopsis root development through local control on flavonol biosynthesis. Proc. Natl. Acad. Sci. 109 (5), 1554–1559. doi: 10.1073/pnas.1121134109 PubMed DOI PMC
Guillaumie S., Mzid R., Méchin V., Léon C., Hichri I., Destrac-Irvine A., et al. (2010). The grapevine transcription factor WRKY2 influences the lignin pathway and xylem development in tobacco. Plant Mol. Biol. 72 (1), 215–234. doi: 10.1007/s11103-009-9563-1 PubMed DOI
Guo W., Jin L., Miao Y., He X., Hu Q., Guo K., et al. (2016). An ethylene response-related factor, GbERF1-like, from gossypium barbadense improves resistance to verticillium dahliae PubMed DOI
Guo R., Yu F., Gao Z., An H., Cao X., Guo X. (2011). GhWRKY3, a novel cotton ( PubMed DOI
Guo D., Zhang J., Wang X., Han X., Wei B., Wang J., et al. (2015). The WRKY transcription factor WRKY71/EXB1 controls shoot branching by transcriptionally regulating RAX genes in arabidopsis. Plant Cell 27 (11), 3112–3127. doi: 10.1105/tpc.15.00829 PubMed DOI PMC
Hamamouch N., Winkel B. S., Li C., Davis E. L. (2020). Modulation of PubMed DOI PMC
Hassani D., Fu X., Shen Q., Khalid M., Rose J. K., Tang K. (2020). Parallel transcriptional regulation of artemisinin and flavonoid biosynthesis. Trends Plant Sci. 25 (5), 466–476. doi: 10.1016/j.tplants.2020.01.001 PubMed DOI
He Y., Mao S., Gao Y., Zhu L., Wu D., Cui Y., et al. (2016). Genome-wide identification and expression analysis of WRKY transcription factors under multiple stresses in PubMed DOI PMC
Hu Y., Chen L., Ha S., Gross B., Falcone B., Walker D., et al. (2003). Crystal structure of the MurG: UDP-GlcNAc complex reveals common structural principles of a superfamily of glycosyltransferases. Proc. Natl. Acad. Sci. 100 (3), 845–849. doi: 10.1073/pnas.0235749100 PubMed DOI PMC
Huang Y., Li M. Y., Wu P., Xu Z. S., Que F., Wang F., et al. (2016). Members of WRKY group III transcription factors are important in TYLCV defense signaling pathway in tomato ( PubMed DOI PMC
Huang Y. F., Vialet S., Guiraud J. L., Torregrosa L., Bertrand Y., Cheynier V., et al. (2014). A negative MYB regulator of proanthocyanidin accumulation, identified through expression quantitative locus mapping in the grape berry. New Phytol. 201 (3), 795–809. doi: 10.1111/nph.12557 PubMed DOI
Humphreys J. M., Hemm M. R., Chapple C. (1999). New routes for lignin biosynthesis defined by biochemical characterization of recombinant ferulate 5-hydroxylase, a multifunctional cytochrome P450-dependent monooxygenase. Proc. Natl. Acad. Sci. 96 (18), 10045–10050. doi: 10.1073/pnas.96.18.10045 PubMed DOI PMC
Ibraheem F., Gaffoor I., Tan Q., Shyu C. R., Chopra S. (2015). A sorghum MYB transcription factor induces 3-deoxyanthocyanidins and enhances resistance against leaf blights in maize. Molecules 20 (2), 2388–2404. doi: 10.3390/molecules20022388 PubMed DOI PMC
Inoue H., Hayashi N., Matsushita A., Xinqiong L., Nakayama A., Sugano S., et al. (2013). Blast resistance of CC-NB-LRR protein Pb1 is mediated by WRKY45 through protein–protein interaction. Proc. Natl. Acad. Sci. 110 (23), 9577–9582. doi: 10.1073/pnas.1222155110 PubMed DOI PMC
Iqbal Z., Iqbal M. S., Hashem A., E.F. and Ansari M. I. (2021). Plant defense responses to biotic stress and its interplay with fluctuating dark/light conditions. Front. Plant Sci. 12, 631810. doi: 10.3389/fpls.2021.631810 PubMed DOI PMC
Irmer S., Podzun N., Langel D., Heidemann F., Kaltenegger E., Schemmerling B., et al. (2015). New aspect of plant–rhizobia interaction: alkaloid biosynthesis in crotalaria depends on nodulation. Proc. Natl. Acad. Sci. 112 (13), 4164–4169. doi: 10.1073/pnas.1423457112 PubMed DOI PMC
Ishiguro K. I., Kim J., Fujiyama-Nakamura S., Kato S., Watanabe Y. (2011). A new meiosis-specific cohesin complex implicated in the cohesin code for homologous pairing. EMBO Rep. 12 (3), 267–275. doi: 10.1038/embor.2011.2 PubMed DOI PMC
Itkin M., Heinig U., Tzfadia O., Bhide A. J., Shinde B., Cardenas P. D., et al. (2013). Biosynthesis of antinutritional alkaloids in solanaceous crops is mediated by clustered genes. Science 341 (6142), 175–179. PubMed
Jahan M. A., Harris B., Lowery M., Coburn K., Infante A. M., Percifield R. J., et al. (2019). The NAC family transcription factor GmNAC42–1 regulates biosynthesis of the anticancer and neuroprotective glyceollins in soybean. BMC Genomics 20 (1), 1–21. doi: 10.1186/s12864-019-5524-5 PubMed DOI PMC
Jakoby M., Weisshaar B., Dröge-Laser W., Vicente-Carbajosa J., Tiedemann J., Kroj T., et al. (2002). bZIP transcription factors in arabidopsis. Trends Plant Sci. 7 (3), 106–111. doi: 10.1016/S1360-1385(01)02223-3 PubMed DOI
Jamwal K., Bhattacharya S., Puri S. (2018). Plant growth regulator mediated consequences of secondary metabolites in medicinal plants. J. Appl. Res. medicinal aromatic Plants 9, 26–38. doi: 10.1016/j.jarmap.2017.12.003 DOI
Jan R., Aaqil Khan M., Asaf S., Park J. R., Lee I. J., Kim K. M. (2021. a). Flavonone 3-hydroxylase relieves bacterial leaf blight stress in rice PubMed DOI PMC
Jan R., Asaf S., Numan M., Kim K. M. (2021. b). Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy 11 (5), 968. doi: 10.3390/agronomy11050968 DOI
Javed T., Shabbir R., Ali A., Afzal I., Zaheer U., Gao S. J. (2020). Transcription factors in plant stress responses: Challenges and potential for sugarcane improvement. Plants 9 (4), 491. doi: 10.3390/plants9040491 PubMed DOI PMC
Jeandet P., Clément C., Cordelier S. (2019). Regulation of resveratrol biosynthesis in grapevine: new approaches for disease resistance? J. Exp. Bot. 70 (2), 375–378. doi: 10.1093/jxb/ery446 PubMed DOI PMC
Jeyaraj A., Liu S., Zhang X., Zhang R., Shangguan M., Wei C. (2017). Genome-wide identification of microRNAs responsive to ectropis oblique feeding in tea plant (Camellia sinensis l.). Sci. Rep. 7 (1), 1–16. doi: 10.1038/s41598-017-13692-7 PubMed DOI PMC
Jha U. C., Bohra A., Jha R., Parida S. K. (2019). Salinity stress response and ‘omics’ approaches for improving salinity stress tolerance in major grain legumes. Plant cell reports 38, 255–277. PubMed
Jha U. C., Bohra A., Nayyar H. (2020). Advances in “omics” approaches to tackle drought stress in grain legumes. Plant Breed. 139 (1), 1–27.
Jha U. C., Nayyar H., Parida S. K., Siddique K. H. (2022). “Horse gram, an underutilized climate-resilient legume: Breeding and genomic approach for improving future genetic gain,” in Developing climate resilient grain and forage legumes (Singapore: Springer; ), 167–178.
Jia L., Clegg M. T., Jiang T. (2004). Evolutionary dynamics of the DNA-binding domains in putative R2R3-MYB genes identified from rice subspecies indica and japonica genomes. Plant Physiol. 134 (2), 575–585. doi: 10.1104/pp.103.027201 PubMed DOI PMC
Jiang X., Cao Y., Wang Y., Liu L., Shen F., Wang R. (2010). A unique approach to the concise synthesis of highly optically active spirooxazolines and the discovery of a more potent oxindole-type phytoalexin analogue. J. Am. Chem. Soc. 132 (43), 15328–15333. doi: 10.1021/ja106349m PubMed DOI
Jiang S., Cui J. L., Li X. K. (2021). MicroRNA-mediated gene regulation of secondary metabolism in plants. Crit. Rev. Plant Sci. 40 (6), 459–478. doi: 10.1080/07352689.2022.2031674 DOI
Jiang J., Ma S., Ye N., Jiang M., Cao J., Zhang J. (2017). WRKY transcription factors in plant responses to stresses. J. Integr. Plant Biol. 59 (2), 86–101. doi: 10.1111/jipb.12513 PubMed DOI
Jiang J., Xi H., Dai Z., Lecourieux F., Yuan L., Liu X., et al. (2019). VvWRKY8 represses stilbene synthase genes through direct interaction with VvMYB14 to control resveratrol biosynthesis in grapevine. J. Exp. Bot. 70 (2), 715–729. doi: 10.1093/jxb/ery401 PubMed DOI PMC
Jin J., Tian F., Yang D. C., Meng Y. Q., Kong L., Luo J., et al. (2016). PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 45, gkw982. doi: 10.1093/nar/gkw982 PubMed DOI PMC
Joaquin Á., Watson R. J. (2003). Cell cycle regulation by the b-myb transcription factor. Cell. Mol. Life Sci. CMLS 60 (11), 2389–2401. doi: 10.1007/s00018-003-3037-4 PubMed DOI PMC
Jones-Rhoades M. W., Bartel D. P., Bartel B. (2006). MicroRNAs and their regulatory roles in plants. Annu. Rev. Plant Biol. 57, 19–53. doi: 10.1146/annurev.arplant.57.032905.105218 PubMed DOI
Joo J., Lee Y. H., Song S. I. (2019). OsbZIP42 is a positive regulator of ABA signaling and confers drought tolerance to rice. Planta 249 (5), 1521–1533. doi: 10.1007/s00425-019-03104-7 PubMed DOI
Kage U., Yogendra K. N., Kushalappa A. C. (2017). TaWRKY70 transcription factor in wheat QTL-2DL regulates downstream metabolite biosynthetic genes to resist PubMed DOI PMC
Karre S., Kumar A., Yogendra K., Kage U., Kushalappa A., Charron J. B. (2019). HvWRKY23 regulates flavonoid glycoside and hydroxycinnamic acid amide biosynthetic genes in barley to combat fusarium head blight. Plant Mol. Biol. 100 (6), 591–605. doi: 10.1007/s11103-019-00882-2 PubMed DOI
Kato-Noguchi H., Takeshita S. (2013). Contribution of a phytotoxic compound to the allelopathy of ginkgo biloba. Plant Signaling Behav. 8 (11), e26999. doi: 10.4161/psb.26999 PubMed DOI PMC
Kavas M., Kizildogan A., Gökdemir G., Baloglu M. C. (2015). Genome-wide investigation and expression analysis of AP2-ERF gene family in salt tolerant common bean. EXCLI J. 14, 1187. doi: 10.17179/excli2015-600 PubMed DOI PMC
Kettles G. J., Drurey C., Schoonbeek H. J., Maule A. J., Hogenhout S. A. (2013). Resistance of a rabidopsis thaliana to the green peach aphid, m yzus persicae, involves camalexin and is regulated by micro RNA s. New Phytol. 198 (4), 1178–1190. doi: 10.1111/nph.12218 PubMed DOI PMC
Khan S., Ali A., Saifi M., Saxena P., Ahlawat S., Abdin M. Z. (2020). Identification and the potential involvement of miRNAs in the regulation of artemisinin biosynthesis in PubMed DOI PMC
Khare S., Singh N. B., Singh A., Hussain I., Niharika K., Yadav V., et al. (2020). Plant secondary metabolites synthesis and their regulations under biotic and abiotic constraints. J. Plant Biol. 63 (3), 203–216. doi: 10.1007/s12374-020-09245-7 DOI
Khraiwesh B., Zhu J. K., Zhu J. (2012). Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim. Biophys. Acta (BBA)-Gene Regul. Mech. 1819 (2), 137–148. doi: 10.1016/j.bbagrm.2011.05.001 PubMed DOI PMC
Kim D. O., Jeong S. W., Lee C. Y. (2003). Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 81 (3), 321–326. doi: 10.1016/S0308-8146(02)00423-5 DOI
Kim S. S., Ko Y. J., Jang J. Y., Lee T., Lim M. H., Park S. Y., et al. (2008). Isolation and expression analysis of DOI
Kim W. C., Ko J. H., Kim J. Y., Kim J., Bae H. J., Han K. H. (2013). MYB 46 directly regulates the gene expression of secondary wall-associated cellulose synthases in PubMed DOI
Kishi-Kaboshi M., Seo S., Takahashi A., Hirochika H. (2018). The MAMP-responsive MYB transcription factors MYB30, MYB55 and MYB110 activate the HCAA synthesis pathway and enhance immunity in rice. Plant Cell Physiol. 59 (5), 903–915. doi: 10.1093/pcp/pcy062 PubMed DOI
Kloth K. J., Wiegers G. L., Busscher-Lange J., van Haarst J. C., Kruijer W., Bouwmeester H. J., et al. (2016). AtWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling. J. Exp. Bot. 67 (11), 3383–3396. doi: 10.1093/jxb/erw159 PubMed DOI PMC
Koroban N. V., Kudryavtseva A. V., Krasnov G. S., Sadritdinova A. F., Fedorova M. S., Snezhkina A. V., et al. (2016). The role of microRNA in abiotic stress response in plants. Mol. Biol. 50 (3), 337–343. doi: 10.1134/S0026893316020102 PubMed DOI
Kumar R. (2014). Role of microRNAs in biotic and abiotic stress responses in crop plants. Appl. Biochem. Biotechnol. 174 (1), 93–115. doi: 10.1007/s12010-014-0914-2 PubMed DOI
Kumar S., Pandey A. K. (2013). Chemistry and biological activities of flavonoids: an overview. Sci. World J, 2013. PubMed PMC
Kumar N., Srivastava P., Vishwakarma K., Kumar R., Kuppala H., Maheshwari S. K., et al. (2020). The rhizobium–plant symbiosis: state of the art. Plant Microbe symbiosis, 1–20. doi: 10.1007/978-3-030-36248-5_1 DOI
Lai D., Pičmanová M., Abou Hachem M., Motawia M. S., Olsen C. E., Møller B. L., et al. (2015). Lotus japonicus flowers are defended by a cyanogenic β-glucosidase with highly restricted expression to essential reproductive organs. Plant Mol. Biol. 89 (1), 21–34. doi: 10.1007/s11103-015-0348-4 PubMed DOI
Landschulz W. H., Johnson P. F., McKnight S. L. (1988). The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240 (4860), 1759–1764. PubMed
Lanz T., Tropf S., Marner F. J., Schröder J., Schröder G. (1991). The role of cysteines in polyketide synthases. site-directed mutagenesis of resveratrol and chalcone synthases, two key enzymes in different plant-specific pathways. J. Biol. Chem. 266 (15), 9971–9976. PubMed
Lewis W. J., Van Lenteren J. C., Phatak S. C., Tumlinson Iii J. H. (1997). A total system approach to sustainable pest management. Proc. Natl. Acad. Sci. 94 (23), 12243–12248. doi: 10.1073/pnas.94.23.12243 PubMed DOI PMC
Li H., Deng Y., Wu T., Subramanian S., Yu O. (2010). Misexpression of miR482, miR1512, and miR1515 increases soybean nodulation. Plant Physiol. 153 (4), 1759–1770. doi: 10.1104/pp.110.156950 PubMed DOI PMC
Li X., Fan S., Hu W., Liu G., Wei Y., He C., et al. (2017). Two cassava basic leucine zipper (bZIP) transcription factors (MebZIP3 and MebZIP5) confer disease resistance against cassava bacterial blight. Front. Plant Sci. 8, 2110. doi: 10.3389/fpls.2017.02110 PubMed DOI PMC
Li H., Gao Y., Xu H., Dai Y., Deng D., Chen J. (2013). ZmWRKY33, a WRKY maize transcription factor conferring enhanced salt stress tolerances in DOI
Li D., He Y., Li S., Shi S., Li L., Liu Y., et al. (2021). Genome-wide characterization and expression analysis of AP2/ERF genes in eggplant ( PubMed DOI
Li W., Pang S., Lu Z., Jin B. (2020). Function and mechanism of WRKY transcription factors in abiotic stress responses of plants. Plants 9 (11), p.1515. doi: 10.3390/plants9111515 PubMed DOI PMC
Li T., Wang Y. H., Liu J. X., Feng K., Xu Z. S., Xiong A. S. (2019). Advances in genomic, transcriptomic, proteomic, and metabolomic approaches to study biotic stress in fruit crops. Crit. Rev. Biotechnol. 39 (5), 680–692. doi: 10.1080/07388551.2019.1608153 PubMed DOI
Li Z. G., Xie L. R., Li X. J. (2015). Hydrogen sulfide acts as a downstream signal molecule in salicylic acid-induced heat tolerance in maize ( PubMed DOI
Li M. Y., Xu Z. S., Huang Y., Tian C., Wang F., Xiong A. S. (2015). Genome-wide analysis of AP2/ERF transcription factors in carrot (Daucus carota l.) reveals evolution and expression profiles under abiotic stress. Mol. Genet. Genomics 290 (6), 2049–2061. PubMed
Li C., Zhang B. (2016). MicroRNAs in control of plant development. J. Cell. Physiol. 231 (2), 303–313. doi: 10.1002/jcp.25125 PubMed DOI
Li R., Zhang J., Li J., Zhou G., Wang Q., Bian W., et al. (2015). Prioritizing plant defence over growth through WRKY regulation facilitates infestation by non-target herbivores. Elife 4, e04805. doi: 10.7554/eLife.04805.021 PubMed DOI PMC
Li J., Zhang K., Meng Y., Hu J., Ding M., Bian J., et al. (2018). Jasmonic acid/ethylene signaling coordinates hydroxycinnamic acid amides biosynthesis through ORA 59 transcription factor. Plant J. 95 (3), 444–457. doi: 10.1111/tpj.13960 PubMed DOI
Liao W., Yang Y., Li Y., Wang G., Peng M. (2016). Genome-wide identification of cassava R2R3 MYB family genes related to abscission zone separation after environmental-stress-induced abscission. Sci. Rep. 6 (1), 1–12. doi: 10.1038/srep32006 PubMed DOI PMC
Liao Y., Zou H. F., Wei W., Hao Y. J., Tian A. G., Huang J., et al. (2008). Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic arabidopsis. Planta 228 (2), 225–240. doi: 10.1007/s00425-008-0731-3 PubMed DOI
Licausi F., Ohme-Takagi M., Perata P. (2013). APETALA 2/Ethylene responsive factor (AP 2/ERF) transcription factors: Mediators of stress responses and developmental programs. New Phytol. 199 (3), 639–649. doi: 10.1111/nph.12291 PubMed DOI
Lima J. C. D., Loss-Morais G., Margis R. (2012). MicroRNAs play critical roles during plant development and in response to abiotic stresses. Genet. Mol. Biol. 35, 1069–1077. doi: 10.1590/S1415-47572012000600023 PubMed DOI PMC
Lin Y., Qasim M., Hussain M., Akutse K. S., Avery P. B., C.K. and Wang L. (2017). The herbivore-induced plant volatiles methyl salicylate and menthol positively affect growth and pathogenicity of entomopathogenic fungi. Sci. Rep. 7 (1), 1–11. doi: 10.1038/srep40494 PubMed DOI PMC
Liu J., Li J., Wang H., Fu Z., Liu J., Yu Y., et al. (2011). Identification and expression analysis of ERF transcription factor genes in petunia during flower senescence and in response to hormone treatments. Experimental Botany 62 (2), 825–840. PubMed PMC
Liu J., Chen X., Liang X., Zhou X., Yang F., Liu J., et al. (2016). Alternative splicing of rice WRKY62 and WRKY76 transcription factor genes in pathogen defense. Plant Physiol. 171 (2), 1427–1442. doi: 10.1104/pp.15.01921 PubMed DOI PMC
Liu D., Chen X., Liu J., Ye J., Guo Z. (2012). The rice ERF transcription factor OsERF922 negatively regulates resistance to magnaporthe oryzae and salt tolerance. J. Exp. Bot. 63 (10), 3899–3911. doi: 10.1093/jxb/ers079 PubMed DOI PMC
Liu C., Long J., Zhu K., Liu L., Yang W., Zhang H., et al. (2016). Characterization of a citrus R2R3-MYB transcription factor that regulates the flavonol and hydroxycinnamic acid biosynthesis. Sci. Rep. 6 (1), 1–16. doi: 10.1038/srep25352 PubMed DOI PMC
Liu J., Osbourn A., Ma P. (2015). MYB transcription factors as regulators of phenylpropanoid metabolism in plants. Mol. Plant 8 (5), 689–708. doi: 10.1016/j.molp.2015.03.012 PubMed DOI
Liu Q., Yan S., Huang W., Yang J., Dong J., Zhang S., et al. (2018). NAC transcription factor ONAC066 positively regulates disease resistance by suppressing the ABA signaling pathway in rice. Plant Mol. Biol. 98 (4), 289–302. doi: 10.1007/s11103-018-0768-z PubMed DOI
López-Galiano M. J., González-Hernández A. I., Crespo-Salvador O., Rausell C., Real M. D., Escamilla M., et al. (2018). Epigenetic regulation of the expression of WRKY75 transcription factor in response to biotic and abiotic stresses in solanaceae plants. Plant Cell Rep. 37 (1), 167–176. doi: 10.1007/s00299-017-2219-8 PubMed DOI
Lorenzo O., Piqueras R., Sánchez-Serrano J. J., Solano R. (2003). ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15 (1), 165–178. doi: 10.1105/tpc.007468 PubMed DOI PMC
Ludwig S. R., Habera L. F., Dellaporta S. L., Wessler S. (1989). Lc, a member of the maize r gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proc. Natl. Acad. Sci. 86 (18), 7092–7096. doi: 10.1073/pnas.86.18.7092 PubMed DOI PMC
Ma J., Lu J., Xu J., Duan B., He X., Liu J. (2015). Genome-wide identification of WRKY genes in the desert poplar PubMed DOI PMC
Mahmood K., Xu Z., El-Kereamy A., Casaretto J. A., Rothstein S. J. (2016). The arabidopsis transcription factor ANAC032 represses anthocyanin biosynthesis in response to high sucrose and oxidative and abiotic stresses. Front. Plant Sci. 7, 1548. doi: 10.3389/fpls.2016.01548 PubMed DOI PMC
Maillet A., Bouju-Albert A., Roblin S., Vaissié P., Leuillet S., Dousset X., et al. (2021). Impact of DNA extraction and sampling methods on bacterial communities monitored by 16S rDNA metabarcoding in cold-smoked salmon and processing plant surfaces. Food Microbiol. 95, 103705. doi: 10.1016/j.fm.2020.103705 PubMed DOI
Mao G., Meng X., Liu Y., Zheng Z., Chen Z., Zhang S. (2011). Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in. Arabidopsis. Plant Cell 23 (4), 1639–1653. doi: 10.1105/tpc.111.084996 PubMed DOI PMC
Marchive C., Léon C., Kappel C., Coutos-Thévenot P., Corio-Costet M. F., Delrot S., et al. (2013). Over-expression of VvWRKY1 in grapevines induces expression of jasmonic acid pathway-related genes and confers higher tolerance to the downy mildew. PloS One 8 (1), e54185. doi: 10.1371/journal.pone.0054185 PubMed DOI PMC
Massari M. E., Murre C. (2000). Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol. Cell. Biol. 20 (2), 429–440. doi: 10.1128/MCB.20.2.429-440.2000 PubMed DOI PMC
Mazid M., Khan T. A., Mohammad F. (2011). Role of secondary metabolites in defense mechanisms of plants. Biol. Med. 3 (2), 232–249.
Mazis G. A., Sakellariou V. I., Kontos F., Zerva L., Spyridonos S. G. (2011). Recurrent fluctuant mass of the wrist and forearm associated with chronic tenosynovitis by PubMed DOI
Meena K. K., Sorty A. M., Bitla U. M., Choudhary K., Gupta P., Pareek A., et al. (2017). Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front. Plant Sci. 8, 172. doi: 10.3389/fpls.2017.00172 PubMed DOI PMC
Menke F. L., Champion A., Kijne J. W., Memelink J. (1999). A novel jasmonate-and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene str interacts with a jasmonate-and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO J. 18 (16), 4455–4463. doi: 10.1093/emboj/18.16.4455 PubMed DOI PMC
Meraj T. A., Fu J., Raza M. A., Zhu C., Shen Q., Xu D., et al. (2020). Transcriptional factors regulate plant stress responses through mediating secondary metabolism. Genes 11 (4), p.346. doi: 10.3390/genes11040346 PubMed DOI PMC
Mertens J., Pollier J., Vanden Bossche R., Lopez-Vidriero I., J.M. and Goossens A. (2016). The bHLH transcription factors TSAR1 and TSAR2 regulate triterpene saponin biosynthesis in PubMed DOI PMC
Meshnick S. R., Taylor T. E., Kamchonwongpaisan S. (1996). Artemisinin and the antimalarial endoperoxides: from herbal remedy to targeted chemotherapy. Microbiological Rev. 60 (2), 301–315. doi: 10.1128/mr.60.2.301-315.1996 PubMed DOI PMC
Mishra B. B., Moura-Alves P., Sonawane A., Hacohen N., Griffiths G., Moita L. F., et al. (2010). Mycobacterium tuberculosis protein ESAT-6 is a potent activator of the NLRP3/ASC inflammasome. Cell. Microbiol. 12 (8), 1046–1063. doi: 10.1111/j.1462-5822.2010.01450.x PubMed DOI
Miyamoto K., Nishizawa Y., Minami E., Nojiri H., Yamane H., Okada K. (2015). Overexpression of the bZIP transcription factor OsbZIP79 suppresses the production of diterpenoid phytoalexin in rice cells. J. Plant Physiol. 173, 19–27. doi: 10.1016/j.jplph.2014.09.001 PubMed DOI
Mizoi J., Shinozaki K., Yamaguchi-Shinozaki K. (2012). AP2/ERF family transcription factors in plant abiotic stress responses. Biochim. Biophys. Acta (BBA)-Gene Regul. Mech. 1819 (2), 86–96. doi: 10.1016/j.bbagrm.2011.08.004 PubMed DOI
Moffat C. S., Ingle R. A., Wathugala D. L., Saunders N. J., Knight H., Knight M. R. (2012). ERF5 and ERF6 play redundant roles as positive regulators of JA/Et-mediated defense against botrytis cinerea in arabidopsis. PloS One 7 (4), e35995. doi: 10.1371/journal.pone.0035995 PubMed DOI PMC
Moulin M., Deleu C., Larher F., Bouchereau A. (2006). The lysine-ketoglutarate reductase–saccharopine dehydrogenase is involved in the osmo-induced synthesis of pipecolic acid in rapeseed leaf tissues. Plant Physiol. Biochem. 44 (7-9), 474–482. doi: 10.1016/j.plaphy.2006.08.005 PubMed DOI
Müller M., Munné-Bosch S. (2015). Ethylene response factors: a key regulatory hub in hormone and stress signaling. Plant Physiol. 169 (1), 32–41. doi: 10.1104/pp.15.00677 PubMed DOI PMC
Naik P. M., Al-Khayri J. M. (2016). “Abiotic and biotic elicitors-role in secondary metabolites production through in vitro culture of medicinal plants,” in Abiotic and biotic stress in plants–recent advances and future perspectives (Rijeka: InTech; ), 247–277.
Nakano T., Fujisawa M., Shima Y., Ito Y. (2014). The AP2/ERF transcription factor SlERF52 functions in flower pedicel abscission in tomato. J. Exp. Bot. 65 (12), 3111–3119. doi: 10.1093/jxb/eru154 PubMed DOI PMC
Nakashima K., Takasaki H., Mizoi J., Shinozaki K., Yamaguchi-Shinozaki K. (2012). NAC transcription factors in plant abiotic stress responses. Biochim. Biophys. Acta (BBA)-Gene Regul. Mech. 1819 (2), 97–103. doi: 10.1016/j.bbagrm.2011.10.005 PubMed DOI
Nakayasu M., Shioya N., Shikata M., Thagun C., Abdelkareem A., Okabe Y., et al. (2018). JRE 4 is a master transcriptional regulator of defense-related steroidal glycoalkaloids in tomato. Plant J. 94 (6), 975–990. doi: 10.1111/tpj.13911 PubMed DOI
Nakayasu M., Umemoto N., Ohyama K., Fujimoto Y., Lee H. J., Watanabe B., et al. (2017). A dioxygenase catalyzes steroid 16α-hydroxylation in steroidal glycoalkaloid biosynthesis. Plant Physiol. 175 (1), 120–133. doi: 10.1104/pp.17.00501 PubMed DOI PMC
Nemesio-Gorriz M., Blair P. B., Dalman K., Hammerbacher A., Arnerup J., Stenlid J., et al. (2017). Identification of Norway spruce MYB-bHLH-WDR transcription factor complex members linked to regulation of the flavonoid pathway. Front. Plant Sci. 8, 305. doi: 10.3389/fpls.2017.00305 PubMed DOI PMC
Nguyen D., Rieu I., Mariani C., van Dam N. M. (2016). How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. Plant Mol. Biol. 91 (6), 727–740. doi: 10.1007/s11103-016-0481-8 PubMed DOI PMC
Nguyen N. H., Trotel-Aziz P., Clément C., Jeandet P., Baillieul F., Aziz A. (2022). Camalexin accumulation as a component of plant immunity during interactions with pathogens and beneficial microbes. Planta 255 (6), 1–17. doi: 10.1007/s00425-022-03907-1 PubMed DOI
Nijhawan A., Jain M., Tyagi A. K., Khurana J. P. (2008). Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol. 146 (2), p.333. doi: 10.1104/pp.107.112821 PubMed DOI PMC
Nisha S. N., Prabu G., Mandal A. K. A. (2018). Biochemical and molecular studies on the resistance mechanisms in tea [ PubMed DOI PMC
Nolan T., Chen J., Yin Y. (2017). Cross-talk of brassinosteroid signaling in controlling growth and stress responses. Biochem. J. 474 (16), 2641–2661. doi: 10.1042/BCJ20160633 PubMed DOI PMC
Noman A., Liu Z., Aqeel M., Zainab M., Khan M. I., Hussain A., et al. (2017). Basic leucine zipper domain transcription factors: the vanguards in plant immunity. Biotechnol. Lett. 39 (12), 1779–1791. doi: 10.1007/s10529-017-2431-1 PubMed DOI
Nuruzzaman M., Sharoni A. M., Kikuchi S. (2013). Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front. Microbiol. 4, 248. doi: 10.3389/fmicb.2013.00248 PubMed DOI PMC
Obata T. (2019). Metabolons in plant primary and secondary metabolism. Phytochem. Rev. 18 (6), 1483–1507. doi: 10.1007/s11101-019-09619-x DOI
Ogata K., Kanei-Ishii C., Sasaki M., Hatanaka H., Nagadoi A., Enari M., et al. (1996). The cavity in the hydrophobic core of myb DNA-binding domain is reserved for DNA recognition and trans-activation. Nat. Struct. Biol. 3 (2), 178–187. doi: 10.1038/nsb0296-178 PubMed DOI
Ohama N., Sato H., Shinozaki K., Yamaguchi-Shinozaki K. (2017). Transcriptional regulatory network of plant heat stress response. Trends Plant Sci. 22 (1), 53–65. doi: 10.1016/j.tplants.2016.08.015 PubMed DOI
Okada A., Okada K., Miyamoto K., Koga J., Shibuya N., Nojiri H., et al. (2009). OsTGAP1, a bZIP transcription factor, coordinately regulates the inductive production of diterpenoid phytoalexins in rice. J. Biol. Chem. 284 (39), 26510–26518. doi: 10.1074/jbc.M109.036871 PubMed DOI PMC
Onkokesung N., Reichelt M., van Doorn A., Schuurink R. C., van Loon J. J., Dicke M. (2014). Modulation of flavonoid metabolites in arabidopsis thaliana through overexpression of the MYB75 transcription factor: role of kaempferol-3, 7-dirhamnoside in resistance to the specialist insect herbivore PubMed DOI PMC
Owusu Adjei M., Zhou X., Mao M., Rafique F., Ma J. (2021). MicroRNAs roles in plants secondary metabolism. Plant Signaling Behav. 16 (7), 1915590. PubMed PMC
Pagano L., Rossi R., Paesano L., Marmiroli N., Marmiroli M. (2015). miRNA regulation and stress adaptation in plants. Environmental and Experimental Botany 184, 104369.
Pagare S., Bhatia M., Tripathi N., S. and Bansal Y. K. (2015). Secondary metabolites of plants and their role: Overview. Curr. Trends Biotechnol. Pharm. 9 (3), 293–304.
Papadopoulou K., Melton R. E., Leggett M., Daniels M. J., Osbourn A. E. (1999). Compromised disease resistance in saponin-deficient plants. Proc. Natl. Acad. Sci. 96 (22), 12923–12928. doi: 10.1073/pnas.96.22.12923 PubMed DOI PMC
Patra B., Schluttenhofer C., Wu Y., Pattanaik S., Yuan L. (2013). Transcriptional regulation of secondary metabolite biosynthesis in plants. Biochim. Biophys. Acta (BBA)-Gene Regul. Mech. 1829 (11), 1236–1247. doi: 10.1016/j.bbagrm.2013.09.006 PubMed DOI
Paul P., Singh S. K., Patra B., Liu X., Pattanaik S., Yuan L. (2020). Mutually regulated AP2/ERF gene clusters modulate biosynthesis of specialized metabolites in plants. Plant Physiol. 182 (2), 840–856. doi: 10.1104/pp.19.00772 PubMed DOI PMC
Paul P., Singh S. K., Patra B., Sui X., Pattanaik S., Yuan L. (2017). A differentially regulated AP 2/ERF transcription factor gene cluster acts downstream of a MAP kinase cascade to modulate terpenoid indole alkaloid biosynthesis in catharanthus roseus. New Phytol. 213 (3), 1107–1123. doi: 10.1111/nph.14252 PubMed DOI
Paz-Ares J., Ghosal D., Wienand U., Peterson P. A., Saedler H. (1987). The regulatory c1 locus of zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J. 6 (12), 3553–3558. doi: 10.1002/j.1460-2075.1987.tb02684.x PubMed DOI PMC
Peng X. X., TANG X. K., ZHOU P. L., HU Y. J., DENG X. B., Yan H. E., et al. (2011). Isolation and expression patterns of rice WRKY82 transcription factor gene responsive to both biotic and abiotic stresses. Agric. Sci. China 10 (6), 893–901. doi: 10.1016/S1671-2927(11)60074-6 DOI
Pérez-Rodríguez P., Riano-Pachon D. M., Corrêa L. G. G., Rensing S. A., Kersten B., Mueller-Roeber B. (2010). PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Res. 38 (suppl_1), D822–D827. doi: 10.1093/nar/gkp805 PubMed DOI PMC
Phukan U. J., Jeena G. S., Shukla R. K. (2016). WRKY transcription factors: molecular regulation and stress responses in plants. Front. Plant Sci. 7, 760. doi: 10.3389/fpls.2016.00760 PubMed DOI PMC
Puranik S., Sahu P. P., Srivastava P. S., Prasad M. (2012). NAC proteins: regulation and role in stress tolerance. Trends Plant Sci. 17 (6), 369–381. doi: 10.1016/j.tplants.2012.02.004 PubMed DOI
Qian Y., Zhang T., Yu Y., Gou L., Yang J., Xu J., et al. (2021). Regulatory mechanisms of bHLH transcription factors in plant adaptive responses to various abiotic stresses. Front. Plant Sci. 12, 1143. doi: 10.3389/fpls.2021.677611 PubMed DOI PMC
Raffaele S., Rivas S., Roby D. (2006). An essential role for salicylic acid in AtMYB30-mediated control of the hypersensitive cell death program in PubMed DOI
Raineri J., Wang S., Peleg Z., Blumwald E., Chan R. L. (2015). The rice transcription factor OsWRKY47 is a positive regulator of the response to water deficit stress. Plant Mol. Biol. 88 (4), 401–413. doi: 10.1007/s11103-015-0329-7 PubMed DOI
Rinerson C. I., Rabara R. C., Tripathi P., Shen Q. J., Rushton P. J. (2015). The evolution of WRKY transcription factors. BMC Plant Biol. 15 (1), 1–18. doi: 10.1186/s12870-015-0456-y PubMed DOI PMC
Robert-Seilaniantz A., MacLean D., Jikumaru Y., Hill L., Yamaguchi S., Kamiya Y., et al. (2011). The microRNA miR393 re-directs secondary metabolite biosynthesis away from camalexin and towards glucosinolates. Plant J. 67 (2), 218–231. doi: 10.1111/j.1365-313X.2011.04591.x PubMed DOI
Rodriguez-Salazar J., Moreno S., Espín G. (2017). LEA proteins are involved in cyst desiccation resistance and other abiotic stresses in PubMed DOI PMC
Roepke J., Salim V., Wu M., Thamm A. M., Murata J., Ploss K., et al. (2010). Vinca drug components accumulate exclusively in leaf exudates of PubMed DOI PMC
Roux J., Ham H. (2020). International year of plant health: a focus on tree health. South. Forests: J. For. Sci. 82 (3), iii–iiv. doi: 10.2989/20702620.2020.1852790 DOI
Roy A., Khan A., Ahmad I., Alghamdi S., Rajab B. S., Babalghith A. O., et al. (2022). Flavonoids a bioactive compound from medicinal plants and its therapeutic applications. BioMed. Res. Int. 2022. PubMed PMC
Ruiz-Ferrer V., Voinnet O. (2009). Roles of plant small RNAs in biotic stress responses. Annu. Rev. Plant Biol. 60 (1), 485–510. doi: 10.1146/annurev.arplant.043008.092111 PubMed DOI
Rushton P. J., Somssich I. E., Ringler P., Shen Q. J. (2010). WRKY transcription factors. Trends Plant Sci. 15 (5), 247–258. doi: 10.1016/j.tplants.2010.02.006 PubMed DOI
Rushton D. L., Tripathi P., Rabara R. C., Lin J., Ringler P., Boken A. K., et al. (2012). WRKY transcription factors: key components in abscisic acid signalling. Plant Biotechnol. J. 10 (1), 2–11. doi: 10.1111/j.1467-7652.2011.00634.x PubMed DOI
Saad A. S. I., Li X., Li H. P., Huang T., Gao C. S., Guo M. W., et al. (2013). A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses. Plant Sci. 203, 33–40. doi: 10.1016/j.plantsci.2012.12.016 PubMed DOI
Saga H., Ogawa T., Kai K., Suzuki H., Ogata Y., Sakurai N., et al. (2012). Identification and characterization of ANAC042, a transcription factor family gene involved in the regulation of camalexin biosynthesis in PubMed DOI
Samad A. F., Sajad M., Nazaruddin N., Fauzi I. A., Murad A. M., Zainal Z., et al. (2017). MicroRNA and transcription factor: key players in plant regulatory network. Front. Plant Sci. 8, 565. doi: 10.3389/fpls.2017.00565 PubMed DOI PMC
Samira R., Li B., Kliebenstein D., Li C., Davis E., Gillikin J. W., et al. (2018). The bHLH transcription factor ILR3 modulates multiple stress responses in arabidopsis. Plant Mol. Biol. 97 (4), 297–309. doi: 10.1007/s11103-018-0735-8 PubMed DOI
Sang M. K., Kim J. G., Kim K. D. (2010). Biocontrol activity and induction of systemic resistance in pepper by compost water extracts against. Phytophthora capsici. Phytopathol. 100 (8), 774–783. doi: 10.1094/PHYTO-100-8-0774 PubMed DOI
Schluttenhofer C., Yuan L. (2015). Regulation of specialized metabolism by WRKY transcription factors. Plant Physiol. 167 (2), 295–306. doi: 10.1104/pp.114.251769 PubMed DOI PMC
Schmutz J., Cannon S. B., Schlueter J., Ma J., Mitros T., Nelson W., et al. (2010). Genome sequence of the palaeopolyploid soybean. nature 463 (7278), 178–183. PubMed
Sears M. T., Zhang H., Rushton P. J., Wu M., Han S., Spano A. J., et al. (2014). NtERF32: a non-NIC2 locus AP2/ERF transcription factor required in jasmonate-inducible nicotine biosynthesis in tobacco. Plant Mol. Biol. 84 (1), 49–66. doi: 10.1007/s11103-013-0116-2 PubMed DOI
Seca A. M., Pinto D. C. (2019). Biological potential and medical use of secondary metabolites. Medicines 6 (2), 66. doi: 10.3390/medicines6020066 PubMed DOI PMC
Šečić E., Kogel K. H., Ladera-Carmona M. J. (2021). Biotic stress-associated microRNA families in plants. J. Plant Physiol. 263, 153451. doi: 10.1016/j.jplph.2021.153451 PubMed DOI
Seo Y. J., Park J. B., Cho Y. J., Jung C., Seo H. S., Park S. K., et al. (2010). Overexpression of the ethylene-responsive factor gene BrERF4 from brassica rapa increases tolerance to salt and drought in PubMed DOI
Shah A., Smith D. L. (2020). Flavonoids in agriculture: Chemistry and roles in, biotic and abiotic stress responses, and microbial associations. Agronomy 10 (8), p.1209. doi: 10.3390/agronomy10081209 DOI
Shakya A. K. (2016). Medicinal plants: Future source of new drugs. Int. J. Herbal Med. 4 (4), 59–64.
Shen Q., Huang H., Zhao Y., Xie L., He Q., Zhong Y., et al. (2019). The transcription factor Aabzip9 positively regulates the biosynthesis of artemisinin in artemisia annua. Front. Plant Sci. 10, 1294. doi: 10.3389/fpls.2019.01294 PubMed DOI PMC
Shen Y., Sun T., Pan Q., Anupol N., Chen H., Shi J., et al. (2019). Rr MYB 5-and rr MYB 10-regulated flavonoid biosynthesis plays a pivotal role in feedback loop responding to wounding and oxidation in PubMed DOI PMC
Shen X. J., Wang Y. Y., Zhang Y. X., Guo W., Jiao Y. Q., Zhou X. A. (2018). Overexpression of the wild soybean R2R3-MYB transcription factor GsMYB15 enhances resistance to salt stress and PubMed DOI PMC
Shoji T., Hashimoto T. (2011). Tobacco MYC2 regulates jasmonate-inducible nicotine biosynthesis genes directly and by way of the NIC2-locus ERF genes. Plant Cell Physiol. 52 (6), 1117–1130. doi: 10.1093/pcp/pcr063 PubMed DOI
Shoji T., Kajikawa M., Hashimoto T. (2010). Clustered transcription factor genes regulate nicotine biosynthesis in tobacco. Plant Cell 22 (10), 3390–3409. doi: 10.1105/tpc.110.078543 PubMed DOI PMC
Singh A. K., Kumar S. R., Dwivedi V., Rai A., Pal S., Shasany A. K., et al. (2017). A WRKY transcription factor from PubMed DOI
Sita K., Sehgal A., Hanumantha Rao B., Nair R. M., Vara Prasad P. V., Kumar S., et al. (2017). Food legumes and rising temperatures: effects, adaptive functional mechanisms specific to reproductive growth stage and strategies to improve heat tolerance. Front. Plant Sci. 8, 1658. doi: 10.3389/fpls.2017.01658 PubMed DOI PMC
Sivankalyani V., Feygenberg O., Diskin S., Wright B., Alkan N. (2016). Increased anthocyanin and flavonoids in mango fruit peel are associated with cold and pathogen resistance. Postharvest Biol. Technol. 111, 132–139. doi: 10.1016/j.postharvbio.2015.08.001 DOI
Skibbe M., Qu N., Galis I., Baldwin I. T. (2008). Induced plant defenses in the natural environment: PubMed DOI PMC
Spicher L., Almeida J., Gutbrod K., Pipitone R., Dörmann P., Glauser G., et al. (2017). Essential role for phytol kinase and tocopherol in tolerance to combined light and temperature stress in tomato. J. Exp. Bot. 68 (21-22), 5845–5856. doi: 10.1093/jxb/erx356 PubMed DOI PMC
Stella N. A., Brothers K. M., Callaghan J. D., Passerini A. M., Sigindere C., Hill P. J., et al. (2018). An IgaA/UmoB family protein from serratia marcescens regulates motility, capsular polysaccharide biosynthesis, and secondary metabolite production. Appl. Environ. Microbiol. 84 (6), e02575–e02517. doi: 10.1128/AEM.02575-17 PubMed DOI PMC
Steppuhn A., Gase K., Krock B., Halitschke R., Baldwin I. T., Levine M. (2004). Nicotine's defensive function in nature. PloS Biol. 2 (8), e217. doi: 10.1371/journal.pbio.0020217 PubMed DOI PMC
Sun X. C., Gao Y. F., Li H. R., Yang S. Z., Liu Y. S. (2015). Over-expression of SlWRKY39 leads to enhanced resistance to multiple stress factors in tomato. J. Plant Biol. 58 (1), 52–60. doi: 10.1007/s12374-014-0407-4 DOI
Sun X., Wang Y., Sui N. (2018). Transcriptional regulation of bHLH during plant response to stress. Biochem. Biophys. Res. Commun. 503 (2), 397–401. doi: 10.1016/j.bbrc.2018.07.123 PubMed DOI
Tajammal A., Siddiqa A., Irfan A., Azam M., Hafeez H., Munawar M. A., et al. (2022). Antioxidant, molecular docking and computational investigation of new flavonoids. J. Mol. Structure 1254, 132189. doi: 10.1016/j.molstruc.2021.132189 DOI
Takahashi R., Yamagishi N., Yoshikawa N. (2013). A MYB transcription factor controls flower color in soybean. J. Heredity 104 (1), 149–153. doi: 10.1093/jhered/ess081 PubMed DOI
Thagun C., Imanishi S., Kudo T., Nakabayashi R., Ohyama K., Mori T., et al. (2016). Jasmonate-responsive ERF transcription factors regulate steroidal glycoalkaloid biosynthesis in tomato. Plant Cell Physiol. 57 (5), 961–975. doi: 10.1093/pcp/pcw067 PubMed DOI
Thomma B. P., Cammue B. P., Thevissen K. (2002). Plant defensins. Planta 216 (2), 193–202. doi: 10.1007/s00425-002-0902-6 PubMed DOI
Tian Z., He Q., Wang H., Liu Y., Zhang Y., Shao F., et al. (2015). The potato ERF transcription factor StERF3 negatively regulates resistance to PubMed DOI
Tirumalai V., Swetha C., Nair A., Pandit A., Shivaprasad P. V. (2019). miR828 and miR858 regulate VvMYB114 to promote anthocyanin and flavonol accumulation in grapes. J. Exp. Bot. 70 (18), 4775–4792. doi: 10.1093/jxb/erz264 PubMed DOI PMC
Tiwari R., Rana C. S. (2015). Phytomedicine for the diabetes: A traditional approach. Ann. Phytomed 4 (1), 108–110.
Todd A. T., Liu E., Polvi S. L., Pammett R. T., Page J. E. (2010). A functional genomics screen identifies diverse transcription factors that regulate alkaloid biosynthesis in PubMed DOI
Toledo-Ortiz G., Huq E., Quail P. H. (2003). The arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15 (8), 1749–1770. doi: 10.1105/tpc.013839 PubMed DOI PMC
Tripathi P., Rabara R. C., Rushton P. J. (2014). A systems biology perspective on the role of WRKY transcription factors in drought responses in plants. Planta 239 (2), 255–266. doi: 10.1007/s00425-013-1985-y PubMed DOI
Turck F., Zhou A., Somssich I. E. (2004). Stimulus-dependent, promoter-specific binding of transcription factor WRKY1 to its native promoter and the defense-related gene PcPR1-1 in parsley. Plant Cell 16 (10), 2573–2585. doi: 10.1105/tpc.104.024810 PubMed DOI PMC
Tweneboah S., Oh S. K. (2017). Biological roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in solanaceous crops. J. Plant Biotechnol. 44 (1), 1–11. doi: 10.5010/JPB.2017.44.1.001 DOI
Ülker B., Somssich I. E. (2004). WRKY transcription factors: from DNA binding towards biological function. Curr. Opin. Plant Biol. 7 (5), 491–498. doi: 10.1016/j.pbi.2004.07.012 PubMed DOI
Van den Broeck L., Dubois M., Vermeersch M., Storme V., Matsui M., Inzé D. (2017). From network to phenotype: the dynamic wiring of an PubMed DOI PMC
van der Fits L., Memelink J. (2000). ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289 (5477), 295–297. doi: 10.1126/science.289.5477.295 PubMed DOI
van Verk M. C., Pappaioannou D., Neeleman L., Bol J. F., Linthorst H. J. (2008). A novel WRKY transcription factor is required for induction of PR-1a gene expression by salicylic acid and bacterial elicitors. Plant Physiol. 146 (4), 1983–1995. doi: 10.1104/pp.107.112789 PubMed DOI PMC
Venditti A., Bianco A. (2020). Sulfur-containing secondary metabolites as neuroprotective agents. Curr. medicinal Chem. 27 (26), 4421–4436. doi: 10.2174/0929867325666180912105036 PubMed DOI
Verdier J., Zhao J., Torres-Jerez I., Ge S., Liu C., He X., et al. (2012). MtPAR MYB transcription factor acts as an on-switch for proanthocyanidin biosynthesis in PubMed DOI PMC
Verma V., Ravindran P., Kumar P. P. (2016). Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 16 (1), 1–10. doi: 10.1186/s12870-016-0771-y PubMed DOI PMC
Verpoorte R. (1998). Exploration of nature's chemodiversity: the role of secondary metabolites as leads in drug development. Drug Discovery Today 3 (5), 232–238. doi: 10.1016/S1359-6446(97)01167-7 DOI
Vogt T. (2010). Phenylpropanoid biosynthesis. Mol. Plant 3 (1), 2–20. doi: 10.1093/mp/ssp106 PubMed DOI
Wang H., Avci U., Nakashima J., Hahn M. G., Chen F., Dixon R. A. (2010). Mutation of WRKY transcription factors initiates pith secondary wall formation and increases stem biomass in dicotyledonous plants. Proc. Natl. Acad. Sci. 107 (51), 22338–22343. doi: 10.1073/pnas.1016436107 PubMed DOI PMC
Wang L., Ran L., Hou Y., Tian Q., Li C., Liu R., et al. (2017). The transcription factor MYB115 contributes to the regulation of proanthocyanidin biosynthesis and enhances fungal resistance in poplar. New Phytol. 215 (1), 351–367. doi: 10.1111/nph.14569 PubMed DOI
Wang Y., Shu Z., Wang W., Jiang X., Li D., Pan J., et al. (2016). CsWRKY2, a novel WRKY gene from camellia sinensis, is involved in cold and drought stress responses. Biol. plantarum 60 (3), 443–451. doi: 10.1007/s10535-016-0618-2 DOI
Wang Z., Yu Q., Shen W., El Mohtar C. A., Zhao X., Gmitter F. G. (2018). Functional study of CHS gene family members in citrus revealed a novel CHS gene affecting the production of flavonoids. BMC Plant Biol. 18 (1), 1–13. PubMed PMC
Wang J., Wang X. (2019). Structural equation modeling: Applications using mplus (John Wiley & Sons; ).
Wang L., Zhu W., Fang L., Sun X., Su L., Liang Z., et al. (2014). Genome-wide identification of WRKY family genes and their response to cold stress in PubMed DOI PMC
Wani S. H., Tripathi P., Zaid A., Challa G. S., Kumar A., Kumar V., et al. (2018). Transcriptional regulation of osmotic stress tolerance in wheat ( PubMed DOI
Winkel B. S. (2004). Metabolic channeling in plants. Annu. Rev. Plant Biol. 55, 85. doi: 10.1146/annurev.arplant.55.031903.141714 PubMed DOI
Xia R., Zhu H., An Y. Q., Beers E. P., Liu Z. (2012). Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biol. 13 (6), 1–18. doi: 10.1186/gb-2012-13-6-r47 PubMed DOI PMC
Xiao R., Zhang C., Guo X., Li H., Lu H. (2021). MYB transcription factors and its regulation in secondary cell wall formation and lignin biosynthesis during xylem development. Int. J. Mol. Sci. 22 (7), p.3560. doi: 10.3390/ijms22073560 PubMed DOI PMC
Xie Z., Nolan T., Jiang H., Tang B., Zhang M., Li Z., et al. (2019). The AP2/ERF transcription factor TINY modulates brassinosteroid-regulated plant growth and drought responses in arabidopsis. Plant Cell 31 (8), 1788–1806. doi: 10.1105/tpc.18.00918 PubMed DOI PMC
Xing D. H., Lai Z. B., Zheng Z. Y., Vinod K. M., Fan B. F., Chen Z. X. (2008). Stress-and pathogen-induced arabidopsis WRKY48 is a transcriptional activator that represses plant basal defense. Mol. Plant 1 (3), 459–470. doi: 10.1093/mp/ssn020 PubMed DOI
Xu Y. H., Wang J. W., Wang S., Wang J. Y., Chen X. Y. (2004). Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-δ-cadinene synthase-a. Plant Physiol. 135 (1), 507–515. doi: 10.1104/pp.104.038612 PubMed DOI PMC
Xu S., Yao S., Huang R., Tan Y., Huang D. (2020). Transcriptome-wide analysis of the AP2/ERF transcription factor gene family involved in the regulation of gypenoside biosynthesis in gynostemma pentaphyllum. Plant Physiol. Biochem. 154, 238–247. doi: 10.1016/j.plaphy.2020.05.040 PubMed DOI
Yadav M., Singh IK, Singh A. (2022). Dhurrin: A naturally occurring phytochemical as a weapon against insect herbivores. Phytochemistry (2022). 205, 113483. doi: 10.1016/j.phytochem.2022.113483 PubMed DOI
Yamagishi M., Shimoyamada Y., Nakatsuka T., Masuda K. (2010). Two R2R3-MYB genes, homologs of petunia AN2, regulate anthocyanin biosyntheses in flower tepals, tepal spots and leaves of Asiatic hybrid lily. Plant Cell Physiol. 51 (3), 463–474. doi: 10.1093/pcp/pcq011 PubMed DOI
Yamamura C., Mizutani E., Okada K., Nakagawa H., Fukushima S., Tanaka A., et al. (2015). Diterpenoid phytoalexin factor, a bHLH transcription factor, plays a central role in the biosynthesis of diterpenoid phytoalexins in rice. Plant J. 84 (6), 1100–1113. doi: 10.1111/tpj.13065 PubMed DOI
Yamamura Y., Taguchi Y., Ichitani K., Umebara I., Ohshita A., Kurosaki F., et al. (2018). Characterization of ent-kaurene synthase and kaurene oxidase involved in gibberellin biosynthesis from PubMed DOI
Yamasaki K., Kigawa T., Inoue M., Tateno M., Yamasaki T., Yabuki T., et al. (2005). Solution structure of an arabidopsis WRKY DNA binding domain. Plant Cell 17 (3), 944–956. doi: 10.1105/tpc.104.026435 PubMed DOI PMC
Yan Y., Jia H., Wang F., Wang C., Liu S., Guo X. (2015). Overexpression of GhWRKY27a reduces tolerance to drought stress and resistance to PubMed DOI PMC
Yang T., Xue L., An L. (2007). Functional diversity of miRNA in plants. Plant Sci. 172 (3), 423–432. doi: 10.1016/j.plantsci.2006.10.009 DOI
Yang Y., Yu T. F., Ma J., Chen J., Zhou Y. B., Chen M., et al. (2020). The soybean bZIP transcription factor gene GmbZIP2 confers drought and salt resistances in transgenic plants. Int. J. Mol. Sci. 21 (2), 670. doi: 10.3390/ijms21020670 PubMed DOI PMC
Yang Y., Zhou Y., Chi Y., Fan B., Chen Z. (2017). Characterization of soybean WRKY gene family and identification of soybean WRKY genes that promote resistance to soybean cyst nematode. Sci. Rep. 7 (1), 1–13. doi: 10.1038/s41598-017-18235-8 PubMed DOI PMC
Ye Y., Ding Y., Jiang Q., Wang F., Sun J., Zhu C. (2017). The role of receptor-like protein kinases (RLKs) in abiotic stress response in plants. Plant Cell Rep. 36 (2), 235–242. doi: 10.1007/s00299-016-2084-x PubMed DOI
Yi S. Y., Kim J. H., Joung Y. H., Lee S., Kim W. T., Yu S. H., et al. (2004). The pepper transcription factor CaPF1 confers pathogen and freezing tolerance in arabidopsis. Plant Physiol. 136 (1), 2862–2874. doi: 10.1104/pp.104.042903 PubMed DOI PMC
Yogendra K. N., Kumar A., Sarkar K., Li Y., Pushpa D., Mosa K. A., et al. (2015). Transcription factor StWRKY1 regulates phenylpropanoid metabolites conferring late blight resistance in potato. J. Exp. Bot. 66 (22), 7377–7389. doi: 10.1093/jxb/erv434 PubMed DOI PMC
Yogendra K. N., Sarkar K., Kage U., Kushalappa A. C. (2017). Potato NAC43 and MYB8 mediated transcriptional regulation of secondary cell wall biosynthesis to contain phytophthora infestans infection. Plant Mol. Biol. Rep. 35 (5), 519–533. doi: 10.1007/s11105-017-1043-1 DOI
Yokota A., Kawasaki S., Iwano M., Nakamura C., Miyake C., Akashi K. (2002). Citrulline and DRIP-1 protein (ArgE homologue) in drought tolerance of wild watermelon. Ann. Bot. 89 (7), 825–832. doi: 10.1093/aob/mcf074 PubMed DOI PMC
Young D. H., Michelotti E. L., Swindell C. S., Krauss N. E. (1992). Antifungal properties of taxol and various analogues. Experientia 48 (9), 882–885. doi: 10.1007/BF02118425 PubMed DOI
Yu Y., Guo D., Li G., Yang Y., Zhang G., Li S., et al. (2019). The grapevine R2R3-type MYB transcription factor VdMYB1 positively regulates defense responses by activating the stilbene synthase gene 2 (VdSTS2). BMC Plant Biol. 19 (1), 1–15. doi: 10.1186/s12870-019-1993-6 PubMed DOI PMC
Yu Y., Wang N., Hu R., Xiang F. (2016). Genome-wide identification of soybean WRKY transcription factors in response to salt stress. Springerplus 5 (1), 1–15. doi: 10.1186/s40064-016-2647-x PubMed DOI PMC
Zarei A., Körbes A. P., Younessi P., Montiel G., Champion A., Memelink J. (2011). Two GCC boxes and AP2/ERF-domain transcription factor ORA59 in jasmonate/ethylene-mediated activation of the PDF1. 2 promoters in. Arabidopsis. Plant Mol. Biol. 75 (4), 321–331. doi: 10.1007/s11103-010-9728-y PubMed DOI PMC
Zhang Y. (2014). Identification and characterization of the grape WRKY family. BioMed. Res. Int. 2014. PubMed PMC
Zhang G., Chen M., Li L., Xu Z., Chen X., Guo J., et al. (2009). Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J. Exp. Bot. 60 (13), 3781–3796. PubMed PMC
Zhang H., Hedhili S., Montiel G., Zhang Y., Chatel G., Pré M., et al. (2011). The basic helix-loop-helix transcription factor CrMYC2 controls the jasmonate-responsive expression of the ORCA genes that regulate alkaloid biosynthesis in PubMed DOI
Zhang H., Huang Y., Zhang H., Huang Y. (2013). Genome-wide survey and characterization of greenbug induced nac transcription factors in sorghum [ DOI
Zhang M., Li S., Nie L., Chen Q., Xu X., Yu L., et al. (2015). Two jasmonate-responsive factors, TcERF12 and TcERF15, respectively act as repressor and activator of tasy gene of taxol biosynthesis in PubMed DOI
Zhang Q., Li Y., Zhang Y., Wu C., Wang S., Hao L., et al. (2017). Md-miR156ab and md-miR395 target WRKY transcription factors to influence apple resistance to leaf spot disease. Front. Plant Sci. 8, 526. doi: 10.3389/fpls.2017.00526 PubMed DOI PMC
Zhang H., Ma Z. F. (2018). Phytochemical and pharmacological properties of capparis spinosa as a medicinal plant. Nutrients 10 (2), 116. doi: 10.3390/nu10020116 PubMed DOI PMC
Zhang W., Shu C., Chen Q., Cao J., Jiang W. (2019). The multi-layer film system improved the release and retention properties of cinnamon essential oil and its application as coating in inhibition to penicillium expansion of apple fruit. Food Chem. 299, 125109. doi: 10.1016/j.foodchem.2019.125109 PubMed DOI
Zhang Y., Wang L. (2005). The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC evolutionary Biol. 5 (1), 1–12. doi: 10.1186/1471-2148-5-1 PubMed DOI PMC
Zhang H., Wei C., Yang X., Chen H., Yang Y., Mo Y., et al. (2017). Genome-wide identification and expression analysis of calcium-dependent protein kinase and its related kinase gene families in melon ( PubMed DOI PMC
Zhao Y., Zhang G., Tang Q., Song W., Gao Q., Xiang G., et al. (2022). EbMYBP1, a R2R3-MYB transcription factor, promotes flavonoid biosynthesis in erigeron breviscapus. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.946827 PubMed DOI PMC
Zheng Q., Bao C., Guo W., Li S., Chen J., Chen B., et al. (2016). Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat. Commun. 7 (1), 1–13. doi: 10.1038/ncomms11215 PubMed DOI PMC
Zhou W., Qian C., Li R., Zhou S., Zhang R., Xiao J., et al. (2018). TaNAC6s are involved in the basal and broad-spectrum resistance to powdery mildew in wheat. Plant Sci. 277, 218–228. doi: 10.1016/j.plantsci.2018.09.014 PubMed DOI
Zhou Y., Sun W., Chen J., Tan H., Xiao Y., Li Q., et al. (2016). SmMYC2a and SmMYC2b played similar but irreplaceable roles in regulating the biosynthesis of tanshinones and phenolic acids in PubMed DOI PMC
Zhu L., Guan Y., Zhang Z., Song A., Chen S., Jiang J., et al. (2020). CmMYB8 encodes an R2R3 MYB transcription factor which represses lignin and flavonoid synthesis in chrysanthemum. Plant Physiol. Biochem. 149, 217–224. doi: 10.1016/j.plaphy.2020.02.010 PubMed DOI
Ziegler J., Facchini P. J. (2008). Alkaloid biosynthesis: metabolism and trafficking. Annu. Rev. Plant Biol. 59, 735. doi: 10.1146/annurev.arplant.59.032607.092730 PubMed DOI
Zou C., Jiang W., Yu D. (2010). Male Gametophyte-specific WRKY34 transcription factor mediates cold sensitivity of mature pollen in. Arabidopsis. J. Exp. Bot. 61 (14), 3901–3914. doi: 10.1093/jxb/erq204 PubMed DOI PMC