Transcriptome Dynamics in Triticum aestivum Genotypes Associated with Resistance against the Wheat Dwarf Virus
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36992398
PubMed Central
PMC10054045
DOI
10.3390/v15030689
PII: v15030689
Knihovny.cz E-zdroje
- Klíčová slova
- RNA-seq, WDV, genotype, resistance, transcriptome, virus, wheat,
- MeSH
- Geminiviridae MeSH
- genotyp MeSH
- lidé MeSH
- nemoci rostlin genetika MeSH
- pšenice * genetika MeSH
- šlechtění rostlin MeSH
- transkriptom * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Wheat dwarf virus (WDV) is one of the most important pathogens of cereal crops worldwide. To understand the molecular mechanism of resistance, here we investigated the comparative transcriptome of wheat genotypes with different levels of resistance (Svitava and Fengyou 3) and susceptibility (Akteur) to WDV. We found a significantly higher number of differentially expressed transcripts (DETs) in the susceptible genotype than in the resistant one (e.g., Svitava). The number of downregulated transcripts was also higher in the susceptible genotype than in the resistant one (Svitava) and the opposite was true for the upregulated transcripts. Further functional analysis of gene ontology (GO) enrichment identified a total of 114 GO terms for the DETs. Of these, 64 biological processes, 28 cellular components and 22 molecular function GO terms were significantly enriched. A few of these genes appear to have a specific expression pattern related to resistance or susceptibility to WDV infection. Validation of the expression pattern by RT-qPCR showed that glycosyltransferase was significantly downregulated in the susceptible genotype compared to the resistant genotypes after WDV infection, while CYCLIN-T1-3, a regulator of CDK kinases (cyclin-dependent kinase), was upregulated. On the other hand, the expression pattern of the transcription factor (TF) MYB (TraesCS4B02G174600.2; myeloblastosis domain of transcription factor) was downregulated by WDV infection in the resistant genotypes compared to the susceptible genotype, while a large number of TFs belonging to 54 TF families were differentially expressed due to WDV infection. In addition, two transcripts (TraesCS7A02G341400.1 and TraesCS3B02G239900.1) were upregulated with uncharacterised proteins involved in transport and regulation of cell growth, respectively. Altogether, our findings showed a clear gene expression profile associated with resistance or susceptibility of wheat to WDV. In future studies, we will explore the regulatory network within the same experiment context. This knowledge will broaden not only the future for the development of virus-resistant wheat genotypes but also the future of genetic improvement of cereals for resilience and WDV-resistance breeding.
Zobrazit více v PubMed
Vacke J. Wheat dwarf virus disease. Biol. Plant. 1961;3:228–233. doi: 10.1007/BF02933566. DOI
Lindsten K., Vacke J. A possible barley adapted strain of wheat dwarf virus (WDV) Acta Phytopathol. Entomol. Hung. 1991;26:175–180.
Gutierrez C. Geminivirus DNA replication. Cell. Mol. Life Sci. 1999;56:313–329. doi: 10.1007/s000180050433. PubMed DOI PMC
Liu Y., Jin W., Wang L., Wang X. Replication-associated proteins encoded by wheat dwarf virus act as RNA silencing suppressors. Virus Res. 2014;190:34–39. doi: 10.1016/j.virusres.2014.06.014. PubMed DOI
Boulton M.I. Functions and interactions of mastrevirus gene products. Physiol Mol. Plant. Pathol. 2002;60:243–255. doi: 10.1006/pmpp.2002.0403. DOI
Fohrer F., Lebrun I., Lapierre H. Acquisitions recéntes sur le virus du nanisme du blé. Phytoma Défense Végétaux. 1992;443:18–20.
Lindsten K., Lindsten B. Wheat dwarf—An old disease with new outbreaks in Sweden / wheat dwarf. J. Plant Dis. Prot. 1999;106:325–332.
Vacke J., Cibulka R. Response of selected winter wheat varieties to wheat dwarf virus infection at an early growth stage. Czech. J. Genet. Plant. Breed. 2000;36:1–4.
Lindblad M., Waern P. Correlation of wheat dwarf incidence to winter wheat cultivation practices. Agric. Ecosyst. Environ. 2002;92:115–122. doi: 10.1016/S0167-8809(01)00302-4. DOI
Manurung B., Witsack W., Mehner S., Grüntzig M., Fuchs E. The epidemiology of wheat dwarf virus in relation to occurrence of the leafhopper Psammotettix alienus in Middle-Germany. Virus Res. 2004;100:109–113. doi: 10.1016/j.virusres.2003.12.019. PubMed DOI
Širlová L., Vacke J., Chaloupková M. Reaction of selected winter wheat varieties to autumnal infection with wheat dwarf virus. Plant Prot. Sci. 2005;41:1–7. doi: 10.17221/2732-PPS. DOI
Xie J., Wang X., Liu Y., Peng Y., Zhou G. First Report of the Occurrence of wheat dwarf virus in Wheat in China. Plant Dis. 2007;91:111. doi: 10.1094/PD-91-0111B. PubMed DOI
Abt I., Jacquot E. Wheat dwarf. In: Tennant P., Fermin R., editors. Virus Diseases of Tropical and Subtropical Crops. CAB International; Boston, MA, USA: 2015. pp. 27–41. (Plant Protection Series).
Lindblad M., Sigvald R. Temporal spread of wheat dwarf virus and mature plant resistance in winter wheat. Crop. Protect. 2004;23:229–234. doi: 10.1016/j.cropro.2003.08.011. DOI
Benkovics A.H., Vida G., Nelson D., Veisz O., Bedford I., Silhavy D., Boulton M.I. Partial resistance to wheat dwarf virus in winter wheat cultivars. Plant Pathol. 2010;59:1144–1151. doi: 10.1111/j.1365-3059.2010.02318.x. DOI
Ripl J., Dráb T., Gadiou S., Kundu J.K. Differences in responses to Wheat dwarf virus infection in contrasting wheat cultivars Ludwig and Svitava. Plant Protect. Sci. 2020;56:1–7. doi: 10.17221/57/2018-PPS. DOI
Pfrieme A.-K., Ruckwied B., Habekuß A., Will T., Stahl A., Pillen K., Ordon F. Identification and validation of quantitative trait loci for wheat dwarf virus resistance in wheat (Triticum spp.) Front. Plant Sci. 2022;13:828639. doi: 10.3389/fpls.2022.828639. PubMed DOI PMC
Fraile A., García-Arenal F. The coevolution of plants and viruses: Resistance and pathogenicity. Adv. Virus Res. 2010;76:1–32. PubMed
Soosaar L.M., Burchsmith T.M., Dineshkumar S.P. Mechanisms of plant resistance to viruses. Nat. Rev. Microbiol. 2005;3:789–798. doi: 10.1038/nrmicro1239. PubMed DOI
Whitham S.A., Yang C., Goodin M.M. Global impact: Elucidating plant responses to viral infection. Mol. Plant Microbe Interact. 2006;19:1207–1215. doi: 10.1094/MPMI-19-1207. PubMed DOI
Durrant W.E., Dong X. Systemic acquired resistance. Annu. Rev. Phytopathol. 2004;42:185–209. doi: 10.1146/annurev.phyto.42.040803.140421. PubMed DOI
Jones J.D., Dangl J.L. The plant immune system. Nature. 2006;444:323–329. doi: 10.1038/nature05286. PubMed DOI
Carr J.P., Lewsey M.G., Palukaitis P. Signaling in induced resistance. Adv. Virus Res. 2010;76:57–121. PubMed
Ahmed M.M.S., Ji W., Wang M., Bian S., Xu M., Wang W., Zhang J., Xu Z., Yu M., Liu Q., et al. Transcriptional changes of rice in response to rice black-streaked dwarf virus. Gene. 2017;628:38–47. doi: 10.1016/j.gene.2017.07.015. PubMed DOI
Konstantinov D.K., Zubairova U.S., Ermakov A.A., Doroshkov A.V. Comparative transcriptome profiling of a resistant vs susceptible bread wheat (Triticum aestivum L.) cultivar in response to water deficit and cold stress. Peer J. 2021;9:e11428. doi: 10.7717/peerj.11428. PubMed DOI PMC
Postnikova O.A., Nemchinov L.G. Comparative analysis of microarray data in Arabidopsis transcriptome during compatible interactions with plant viruses. Virol. J. 2012;9:101. doi: 10.1186/1743-422X-9-101. PubMed DOI PMC
Jia M.A., Li Y., Lei L., Di D., Miao H., Fan Z. Alteration of gene expression profile in maize infected with a double-stranded RNA Fijivirus associated with symptom development. Mol. Plant Pathol. 2012;13:251–262. doi: 10.1111/j.1364-3703.2011.00743.x. PubMed DOI PMC
Choi H., Jo Y., Lian S., Jo K.M., Chu H., Yoon J.Y., Choi S.K., Kim K.H., Cho W.K. Comparative analysis of chrysanthemum transcriptome in response to three RNA viruses: Cucumber mosaic virus, Tomato spotted wilt virus and Potato virus X. Plant Mol. Biol. 2015;88:233–248. doi: 10.1007/s11103-015-0317-y. PubMed DOI
Zhou Y., Xu Z., Duan C., Chen Y., Meng Q., Wu J., Hao Z., Wang Z., Li M., Yong H., et al. Dual transcriptome analysis reveals insights into the response to rice black-streaked dwarf virus in maize. J. Exp. Bot. 2016;67:4593–4609. doi: 10.1093/jxb/erw244. PubMed DOI PMC
Chen T., Lv Y., Zhao T., Li N., Yang Y., Yu W., He X., Liu T., Zhang B. Comparative transcriptome profiling of a resistant vs. susceptible tomato (Solanum lycopersicum) cultivar in response to infection by tomato yellow leaf curl virus. PLoS ONE. 2013;8:e80816. doi: 10.1371/journal.pone.0080816. PubMed DOI PMC
Allie F., Pierce E.J., Okoniewski M.J., Rey C. Transcriptional analysis of South African cassava mosaic virus-infected susceptible and tolerant landraces of cassava highlights differences in resistance, basal defense and cell wall associated genes during infection. BMC Genomics. 2014;15:1006. doi: 10.1186/1471-2164-15-1006. PubMed DOI PMC
Kundu A., Singh P.K., Dey A., Ganguli S., Pal A. Complex molecular mechanisms underlying MYMIV-resistance in Vigna mungo revealed by comparative transcriptome profiling. Sci Rep. 2019;9:8858. doi: 10.1038/s41598-019-45383-w. PubMed DOI PMC
Liu D., Cheng Y., Gong M., Zhao Q., Jiang C., Cheng L., Ren M., Wang Y., Yang A. Comparative transcriptome analysis reveals differential gene expression in resistant and susceptible tobacco cultivars in response to infection by cucumber mosaic virus. The Crop. J. 2019;7:307–321. doi: 10.1016/j.cj.2018.11.008. DOI
Kundu J.K., Gadiou S., Červená G. Discrimination and genetic diversity of wheat dwarf virus in the Czech Republic. Virus Genes. 2009;38:468–474. doi: 10.1007/s11262-009-0352-3. PubMed DOI
Gadiou S., Ripl J., Jaňourová B., Jarošová J., Kundu J.K. Real-Time PCR assay for the discrimination and quantification of wheat and barley strains of wheat dwarf virus. Virus Genes. 2011;44:349–355. doi: 10.1007/s11262-011-0699-0. PubMed DOI
Lee C., Kim J., Shin G.S., Hwang S. Absolute and relative QPCR quantification of plasmid copy number in Escherichia coli. J. Biotechnol. 2006;123:273–280. doi: 10.1016/j.jbiotec.2005.11.014. PubMed DOI
Levesque-Sergerie J.P., Duquette M., Thibault C., Delbecchi L., Bissonnette N. Detection limits of several commercial reverse transcriptase enzymes: Impact on the low- and high-abundance transcript levels assessed by quantitative RT-PCR. BMC Mol. Biol. 2007;8:93. doi: 10.1186/1471-2199-8-93. PubMed DOI PMC
Chomczynski P., Sacchi N. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: Twenty-something years on. Nat. Protoc. 2006;1:581–585. doi: 10.1038/nprot.2006.83. PubMed DOI
Langmead B., Salzberg S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;94:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC
Trapnell C., Williams B.A., Pertea G., Mortazavi A., Kwan G., van Baren M.J., Salzberg S.L., Wold B.J., Pachter L. Transcript Assembly and Quantification by RNA-Seq Reveals Unannotated Transcripts and Isoform Switching during Cell Differentiation. [(accessed on 5 March 2021)];Nat. Biotechnol. 2010 28:511–515. doi: 10.1038/nbt.1621. Available online: http://cole-trapnell-lab.github.io/cufflinks/ PubMed DOI PMC
Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
McCarthy D.J., Chen Y., Smyth G.K. Differential Expression Analysis of Multifactor RNA-Seq Experiments with Respect to Biological Variation. [(accessed on 5 March 2021)];Nucleic Acids Res. 2012 40:4288–4297. doi: 10.1093/nar/gks042. Available online: http://www.pantherdb.org. PubMed DOI PMC
Mi H., Ebert D., Muruganujan A., Mills C., Albou L.P., Mushayamaha T., Thomas P.D. PANTHER Version 16: A revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Res. 2021;49:D394–D403. doi: 10.1093/nar/gkaa1106. PubMed DOI PMC
Kanehisa M., Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30. doi: 10.1093/nar/28.1.27. PubMed DOI PMC
Radonić A., Thulke S., Mackay I.M., Landt O., Siegert W., Nitsche A. Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res. Commun. 2004;313:856–862. doi: 10.1016/j.bbrc.2003.11.177. PubMed DOI
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Jarosová J., Kundu J.K. Validation of reference genes as internal control for studying viral infections in cereals by quantitative real-time RT-PCR. BMC Plant Biol. 2010;10:146. PubMed PMC
Supek F., Bošnjak M., Škunca N., Šmuc T. REVIGO Summarizes and visualizes long lists of gene ontology terms. PLoS ONE. 2011;6:e21800. doi: 10.1371/journal.pone.0021800. PubMed DOI PMC
Cooper J.I., Jones A.T. Responses of plants to viruses: Proposals for the use of terms. Phytopathology. 1983;73:127–128. doi: 10.1094/Phyto-73-127. DOI
Jarošová J., Beoni E., Kundu J.K. Barley yellow dwarf virus resistance in cereals: Approaches, strategies and prospects. Field Crops Res. 2016;198:200–214. doi: 10.1016/j.fcr.2016.08.030. DOI
Nygren J., Shad N., Kvarnheden A., Westerbergh A. Variation in susceptibility to wheat dwarf virus among wild and domesticated wheat. PLoS ONE. 2015;10:e0121580. doi: 10.1371/journal.pone.0121580. PubMed DOI PMC
Schoelz J.E., Harries P.A., Nelson R.S. Intracellular transport of plant viruses: Finding the door out of the cell. Mol. Plant. 2011;4:813–831. doi: 10.1093/mp/ssr070. PubMed DOI PMC
Garcia-Ruiz H. Host factors against plant viruses. Mol. Plant Pathol. 2019;20:1588–1601. doi: 10.1111/mpp.12851. PubMed DOI PMC
Chisholm S.T., Parra M.A., Anderberg R.J., Carrington J.C. Arabidopsis RTM1 and RTM2 genes function in phloem to restrict long-distance movement of tobacco etch virus. Plant Physiol. 2001;127:1667–1675. doi: 10.1104/pp.010479. PubMed DOI PMC
Decroocq V., Salvador B., Sicard O., Glasa M., Cosson P., Svanella-Dumas L., Revers F., García J.A., Candresse T. The determinant of potyvirus ability to overcome the RTM resistance of Arabidopsis thaliana maps to the N-terminal region of the coat protein. Mol. Plant-Microbe Interact. 2009;22:1302–1311. doi: 10.1094/MPMI-22-10-1302. PubMed DOI
Frederickson Matika D.E., Loake G.J. Redox regulation in plant immune function. Antioxid. Redox Signal. 2014;21:1373–1388. doi: 10.1089/ars.2013.5679. PubMed DOI PMC
Yuan W., Jiang T., Du K., Chen H., Cao Y., Xie J., Li M., Carr J.P., Wu B., Fan Z., et al. Maize phenylalanine ammonia-lyases contribute to resistance to sugarcane mosaic virus infection, most likely through positive regulation of salicylic acid accumulation. Mol. Plant Pathol. 2019;20:1365–1378. doi: 10.1111/mpp.12817. PubMed DOI PMC
Mayer M.P. Recruitment of Hsp70 chaperones: A crucial part of viral survival strategies. Rev. Physiol Biochem Pharmacol. 2005;153:1–46. PubMed
Nagy P.D., Pogany J. The dependence of viral RNA replication on co-opted host factors. Nat. Rev. Microbiol. 2012;10:137–149. doi: 10.1038/nrmicro2692. PubMed DOI PMC
Gorovits R., Czosnek H. The involvement of heat shock proteins in the establishment of tomato yellow leaf curl virus infection. Front. Plant Sci. 2017;8:355. doi: 10.3389/fpls.2017.00355. PubMed DOI PMC
Liu J.X., Howell S.H. Managing the protein folding demands in the endoplasmic reticulum of plants. New Phytol. 2016;211:418–428. doi: 10.1111/nph.13915. PubMed DOI
Huang C., Cun Y., Yu H., Tong Z., Xiao B., Song Z., Wang B., Li Y., Liu Y. Transcriptomic profile of tobacco in response to tomato zonate spot orthotospovirus infection. Virol. J. 2017;14:153. doi: 10.1186/s12985-017-0821-6. PubMed DOI PMC
Zhu F., Yuan S., Wang S.-D., Xi D.-H., Lin H.-H. The higher expression levels of dehydroascorbate reductase and glutathione reductase in salicylic acid-deficient plants may contribute to their alleviated symptom infected with RNA viruses. Plant Signal. Behav. 2011;6:1402–1404. doi: 10.4161/psb.6.9.16538. PubMed DOI PMC
Liu Y., Liu Y., Spetz C., Li L., Wang X. Comparative transcriptome analysis in Triticum aestivum infecting wheat dwarf virus reveals the effects of viral infection on phyto hormone and photosynthesis metabolism pathways. Phytopathol. Res. 2020;2:3. doi: 10.1186/s42483-019-0042-6. DOI
Chen J., Zhang H., Feng M., Zuo D., Hu Y., Jiang T. Transcriptome analysis of woodland strawberry (Fragaria vesca) response to the infection by Strawberry vein banding virus (SVBV) Virol. J. 2016;13:128. doi: 10.1186/s12985-016-0584-5. PubMed DOI PMC
Agudelo-Romero P., Carbonell P., de La Iglesia F., Carrera J., Rodrigo G., Jaramillo A., Pérez-Amador M.A., Elena S.F. Changes in the gene expression profile of Arabidopsis thaliana after infection with tobacco etch virus. Virol. J. 2008;5:92. doi: 10.1186/1743-422X-5-92. PubMed DOI PMC
Lu J., Du Z.X., Kong J., Chen L.N., Qiu Y.H., Li G.F., Meng X.H., Zhu S.F. Transcriptome Analysis of Nicotiana tabacum infected by cucumber mosaic virus during systemic symptom development. PLoS ONE. 2012;7:e43447. doi: 10.1371/journal.pone.0043447. PubMed DOI PMC
Liu Y., Liu W., Li L., Francls F., Wang X. Transcriptome analysis reveals different response of resistant and susceptible rice varieties to rice stripe virus infection. J. Integr. Agric. 2022. in press. DOI
Li Y., Cui H., Cui X., Wang A. The altered photosynthetic machinery during compatible virus infection. Curr. Opin. Virol. 2016;17:19–24. doi: 10.1016/j.coviro.2015.11.002. PubMed DOI
Bhattacharyya D., Chakraborty S. Chloroplast: The trojan horse in plant-virus interaction. Mol. Plant Pathol. 2018;19:504–518. doi: 10.1111/mpp.12533. PubMed DOI PMC
Zhao J., Liu Q., Zhang H., Jia Q., Hong Y., Liu Y. The rubisco small subunit is involved in Tobamovirus movement and Tm-22-mediated extreme resistance. Plant Physiol. 2013;161:374. doi: 10.1104/pp.112.209213. PubMed DOI PMC
Góngora-Castillo E., Ibarra-Laclette E., Trejo-Saavedra D.L., Rivera-Bustamante R.F. Transcriptome analysis of symptomatic and recovered leaves of geminivirus-infected pepper (Capsicum annuum) Virol. J. 2012;9:1–16. doi: 10.1186/1743-422X-9-295. PubMed DOI PMC
Goyer A., Hamlin L., Crosslin J.M., Buchanan A., Chang J.H. RNA-Seq analysis of resistant and susceptible potato varieties during the early stages of potato virus Y infection. BMC Genom. 2015;16:295. doi: 10.1186/s12864-015-1666-2. PubMed DOI PMC
Kong L., Wu J., Lu L., Xu Y., Zhou X. Interaction between Rice stripe virus disease-specific protein and host PsbP enhances virus symptoms. Mol. Plant. 2014;7:691–708. doi: 10.1093/mp/sst158. PubMed DOI
Balasubramaniam M., Kim B.S., Hutchens-Williams H.M., Loesch-Fries L.S. The photosystem II oxygen-evolving complex protein PsbP interacts with the coat protein of alfalfa mosaic virus and inhibits virus replication. Mol. Plant-Microbe Interact. 2014;27:1107–1118. doi: 10.1094/MPMI-02-14-0035-R. PubMed DOI
Caplan J.L., Mamillapalli P., Burch-Smith T.M., Czymmek K., Dinesh-Kumar S.P. Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell. 2008;132:449. doi: 10.1016/j.cell.2007.12.031. PubMed DOI PMC
Jin Y., Ma D., Dong J., Li D., Deng C., Jin G., Wang T. The HC-Pro protein of potato virus Y interacts with NtMinD of tobacco. Mol. Plant Microbe Interact. 2007;20:1505–1511. doi: 10.1094/MPMI-20-12-1505. PubMed DOI
Selway J.W. Antiviral activity of flavones and flavans. Prog. Clin. Biol. Res. 1986;213:521–536. PubMed
Hrmova M., Hussain S.S. Plant Transcription Factors Involved in Drought and Associated Stresses. Inter. J. Mol. Sci. 2021;22:5662. doi: 10.3390/ijms22115662. PubMed DOI PMC
Pandey A., Khan Mohd K., Hamurcu M., Brestic M., Topal A., Gezgin S. Insight into the Root Transcriptome of a Boron-Tolerant Triticum zhukovskyi Genotype Grown under Boron Toxicity. Agronomy. 2022;12:2421. doi: 10.3390/agronomy12102421. DOI
Sun X., Wang Y., Sui N. Transcriptional regulation of bHLH during plant response to stress. Bioch. Bioph. Res. Commun. 2018;503:397–401. doi: 10.1016/j.bbrc.2018.07.123. PubMed DOI
Chen Z., Wu Z., Dong W., Liu S., Tian L., Li J., Du H. MYB Transcription Factors Becoming Mainstream in Plant Roots. Inter. J. Mol. Sci. 2022;23:9262. doi: 10.3390/ijms23169262. PubMed DOI PMC
Cheng Z., Luan Y., Meng J., Sun J., Tao J., Zhao D. WRKY Transcription Factor Response to High-Temperature Stress. Plants. 2021;10:2211. doi: 10.3390/plants10102211. PubMed DOI PMC
Olsen A.N., Ernst H.A., Leggio L.L., Skriver K. NAC transcription factors: Structurally distinct, functionally diverse. Trends Plant Sci. 2005;10:79–87. doi: 10.1016/j.tplants.2004.12.010. PubMed DOI
Li S., Wu P., Yu X., Cao J., Chen X., Gao L., Chen K., Grierson D. Contrasting Roles of Ethylene Response Factors in Pathogen Response and Ripening in Fleshy Fruit. Cells. 2022;11:2484. doi: 10.3390/cells11162484. PubMed DOI PMC
Arena G.D., Ramos-González P.L., Falk B.W., Casteel C.L., Freitas-Astúa J., Machado M.A. Plant Immune System Activation Upon Citrus Leprosis Virus C Infection Is Mimicked by the Ectopic Expression of the P61 Viral Protein. Front. Plant Sci. 2020;11:1188. doi: 10.3389/fpls.2020.01188. PubMed DOI PMC
Huang Y., Zhang B.L., Sun S., Xing G.M., Wang F., Li M.Y., Tian Y.-S., Xiong A.S. AP2/ERF Transcription Factors Involved in Response to Tomato Yellow Leaf Curly Virus in Tomato. Plant Genome. 2016;9:plantgenome2015.09.0082. doi: 10.3835/plantgenome2015.09.0082. PubMed DOI
Evaluation of Resistance of Oilseed Rape Genotypes to Turnip Yellows Virus