• This record comes from PubMed

Anti-viral drug discovery against monkeypox and smallpox infection by natural curcumin derivatives: A Computational drug design approach

. 2023 ; 13 () : 1157627. [epub] 20230322

Language English Country Switzerland Media electronic-ecollection

Document type Journal Article, Research Support, Non-U.S. Gov't

BACKGROUND: In the last couple of years, viral infections have been leading the globe, considered one of the most widespread and extremely damaging health problems and one of the leading causes of mortality in the modern period. Although several viral infections are discovered, such as SARS CoV-2, Langya Henipavirus, there have only been a limited number of discoveries of possible antiviral drug, and vaccine that have even received authorization for the protection of human health. Recently, another virial infection is infecting worldwide (Monkeypox, and Smallpox), which concerns pharmacists, biochemists, doctors, and healthcare providers about another epidemic. Also, currently no specific treatment is available against Monkeypox. This research gap encouraged us to develop a new molecule to fight against monkeypox and smallpox disease. So, firstly, fifty different curcumin derivatives were collected from natural sources, which are available in the PubChem database, to determine antiviral capabilities against Monkeypox and Smallpox. MATERIAL AND METHOD: Preliminarily, the molecular docking experiment of fifty different curcumin derivatives were conducted, and the majority of the substances produced the expected binding affinities. Then, twelve curcumin derivatives were picked up for further analysis based on the maximum docking score. After that, the density functional theory (DFT) was used to determine chemical characterizations such as the highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), softness, and hardness, etc. RESULTS: The mentioned derivatives demonstrated docking scores greater than 6.80 kcal/mol, and the most significant binding affinity was at -8.90 kcal/mol, even though 12 molecules had higher binding scores (-8.00 kcal/mol to -8.9 kcal/mol), and better than the standard medications. The molecular dynamic simulation is described by root mean square deviation (RMSD) and root-mean-square fluctuation (RMSF), demonstrating that all the compounds might be stable in the physiological system. CONCLUSION: In conclusion, each derivative of curcumin has outstanding absorption, distribution, metabolism, excretion, and toxicity (ADMET) characteristics. Hence, we recommended the aforementioned curcumin derivatives as potential antiviral agents for the treatment of Monkeypox and Smallpox virus, and more in vivo investigations are warranted to substantiate our findings.

Erratum In

PubMed

See more in PubMed

Adamczak A., Ożarowski M., Karpiński T. M. (2020). Curcumin, a natural antimicrobial agent with strain-specific activity. Pharmaceuticals 13, 153. doi: 10.3390/ph13070153 PubMed DOI PMC

Adams B. K., Ferstl E. M., Davis M. C., Herold M., Kurtkaya S., Camalier R. F., et al. . (2004). Synthesis and biological evaluation of novel curcumin analogs as anti-cancer and anti-angiogenesis agents. Bioorganic med. Chem. 12, 3871–3883. doi: 10.1016/j.bmc.2004.05.006 PubMed DOI

Akash S. (2002). Computational screening of novel therapeutic and potent molecules from bioactive trehalose and it’s eight derivatives by different insilico studies for the treatment of diabetes mellitus. Organic Communications 15, 1–10. doi: 10.25135/acg.oc.134.2204.2446 DOI

Akash S., Kumar A., Rahman M., Emran T. B., Sharma R., Singla R. K., et al. (2022. a). Development of new bioactive molecules to treat breast and lung cancer with natural myricetin and its derivatives: A computational and SAR approach. Front. Cell. Infect. Microbiol. 12, 1400. doi: 10.3389/fcimb.2022.952297 PubMed DOI PMC

Akash S., Rahman M. M., Islam M. R., Sharma R. (2022. b). Emerging global concern of langya henipavirus: Pathogenicity, virulence, genomic features, and future perspectives. J. Med. Virol, 1–3. PubMed

Ardebili A., Pouriayevali M. H., Aleshikh S., Zahani M., Ajorloo M., Izanloo A., et al. . (2021). Antiviral therapeutic potential of curcumin: an update. Molecules 26, 6994. doi: 10.3390/molecules26226994 PubMed DOI PMC

Balasubramanian A., Pilankatta R., Teramoto T., Sajith A. M., Nwulia E., Kulkarni A., et al. . (2019). Inhibition of dengue virus by curcuminoids. Antiviral Res. 162, 71–78. doi: 10.1016/j.antiviral.2018.12.002 PubMed DOI PMC

Basnet P., Skalko-Basnet N. (2011). Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules 16, 4567–4598. doi: 10.3390/molecules16064567 PubMed DOI PMC

Basu P., Dutta S., Begum R., Mittal S., Dutta P. D., Bharti A. C., et al. . (2013). Clearance of cervical human papillomavirus infection by topical application of curcumin and curcumin containing polyherbal cream: a phase II randomized controlled study. Asian Pacific J. Cancer Prev. 14, 5753–5759. doi: 10.7314/APJCP.2013.14.10.5753 PubMed DOI

Biovia D. S. (2015). BIOVIA discovery studio visualizer, v16. 1.0. 15350 (San Diego: Dassault Systemes; ).

Breman J. G., Kalisa R., Steniowski M. V., Zanotto E., Gromyko A. I., Arita I. (1980). Human monkeypox, 1970-79. Bull. World Health Organ 58, 165–182. PubMed PMC

Butnariu M., Quispe C., Koirala N., Khadka S., Salgado-Castillo C. M., Akram M., et al. . (2022). Bioactive effects of curcumin in human immunodeficiency virus infection along with the most effective isolation techniques and type of nanoformulations. Int. J. Nanomed. 17, 3619. doi: 10.2147/IJN.S364501 PubMed DOI PMC

Calland N., Sahuc M.-E., Belouzard S., Pène V., Bonnafous P., Mesalam A. A., et al. . (2015). Polyphenols inhibit hepatitis c virus entry by a new mechanism of action. J. Virol. 89, 10053–10063. doi: 10.1128/JVI.01473-15 PubMed DOI PMC

Cerqueira N. M., Gesto D., Oliveira E. F., Santos-Martins D., Brás N. F., Sousa S. F., et al. . (2015). Receptor-based virtual screening protocol for drug discovery. Arch. Biochem. biophys. 582, 56–67. doi: 10.1016/j.abb.2015.05.011 PubMed DOI

Chen X., Li H., Tian L., Li Q., Luo J., Zhang Y. (2020). Analysis of the physicochemical properties of acaricides based on lipinski's rule of five. J. Comput. Biol. 27, 1397–1406. doi: 10.1089/cmb.2019.0323 PubMed DOI

Chen D.-Y., Shien J.-H., Tiley L., Chiou S.-S., Wang S.-Y., Chang T.-J., et al. . (2010). Curcumin inhibits influenza virus infection and haemagglutination activity. Food Chem. 119, 1346–1351. doi: 10.1016/j.foodchem.2009.09.011 DOI

Colpitts C. C., Schang L. M., Rachmawati H., Frentzen A., Pfaender S., Behrendt P., et al. . (2014). Turmeric curcumin inhibits entry of all hepatitis c virus genotypes into human liver cells. Gut 63, 1137–1149. doi: 10.1136/gutjnl-2012-304299 PubMed DOI

Dai J., Gu L., Su Y., Wang Q., Zhao Y., Chen X., et al. . (2018). Inhibition of curcumin on influenza a virus infection and influenzal pneumonia via oxidative stress, TLR2/4, p38/JNK MAPK and NF-κB pathways. Int. Immunopharmacol. 54, 177–187. doi: 10.1016/j.intimp.2017.11.009 PubMed DOI

Delley B. (1995). DMol, a standard tool for density functional calculations: review and advances. Theor. Comput. Chem. 2, 221–254. doi: 10.1016/S1380-7323(05)80037-8 DOI

Delley B. (2010). Time dependent density functional theory with DMol3. J. Phys.: Condens. Matter 22, 384208. doi: 10.1088/0953-8984/22/38/384208 PubMed DOI

Di Gennaro F., Veronese N., Marotta C., Shin J. I., Koyanagi A., Silenzi A., et al. . (2022). Human monkeypox: A comprehensive narrative review and analysis of the public health implications. Microorganisms 10, 1633. doi: 10.3390/microorganisms10081633 PubMed DOI PMC

Di Giulio D. B., Eckburg P. B. (2004). Human monkeypox: an emerging zoonosis. Lancet Infect. Dis. 4, 15–25. doi: 10.1016/S1473-3099(03)00856-9 PubMed DOI PMC

Du T., Shi Y., Xiao S., Li N., Zhao Q., Zhang A., et al. . (2017). Curcumin is a promising inhibitor of genotype 2 porcine reproductive and respiratory syndrome virus infection. BMC vet. Res. 13, 1–9. doi: 10.1186/s12917-017-1218-x PubMed DOI PMC

Dunn J. J., Miller M. B. (2014). Emerging respiratory viruses other than influenza. Clin. Lab. Med. 34, 409–430. doi: 10.1016/j.cll.2014.02.011 PubMed DOI PMC

Erez N., Achdout H., Milrot E., Schwartz Y., Wiener-Well Y., Paran N., et al. . (2019). Diagnosis of imported monkeypox, Israel, 2018. Emerging Infect. Dis. 25, 980. doi: 10.3201/eid2505.190076 PubMed DOI PMC

Ferreira L. G., Dos Santos R. N., Oliva G., Andricopulo A. D. (2015). Molecular docking and structure-based drug design strategies. Molecules 20, 13384–13421. doi: 10.3390/molecules200713384 PubMed DOI PMC

Gao Y., Tai W., Wang N., Li X., Jiang S., Debnath A. K., et al. . (2019). Identification of novel natural products as effective and broad-spectrum anti-zika virus inhibitors. Viruses 11, 1019. doi: 10.3390/v11111019 PubMed DOI PMC

Greenwood D., Slack R. C., Barer M. R., Irving W. L. (2012). Medical microbiology e-book: A guide to microbial infections: Pathogenesis, immunity, laboratory diagnosis and control. with STUDENT CONSULT online access (Elsevier Health Sciences; ).

Guarner J., Del Rio C., Malani P. N. (2022). Monkeypox in 2022–what clinicians need to know. Jama 328, 139–140. doi: 10.1001/jama.2022.10802 PubMed DOI

Han S., Xu J., Guo X., Huang M. (2018). Curcumin ameliorates severe influenza pneumonia via attenuating lung injury and regulating macrophage cytokines production. Clin. Exp. Pharmacol. Physiol. 45, 84–93. doi: 10.1111/1440-1681.12848 PubMed DOI

Hassan A. S., Morsy N. M., Awad H. M., Ragab A. (2022). Synthesis, molecular docking, and in silico ADME prediction of some fused pyrazolo [1, 5-a] pyrimidine and pyrazole derivatives as potential antimicrobial agents. J. Iranian Chem. Soc. 19, 521–545. doi: 10.1007/s13738-021-02319-4 DOI

Hassan Baig M., Ahmad K., Roy S., Mohammad Ashraf J., Adil M., Haris Siddiqui M., et al. . (2016). Computer aided drug design: success and limitations. Curr. Pharm. design 22, 572–581. doi: 10.2174/1381612822666151125000550 PubMed DOI

Hatcher H., Planalp R., Cho J., Torti F., Torti S. (2008). Curcumin: from ancient medicine to current clinical trials. Cell. Mol. Life Sci. 65, 1631–1652. doi: 10.1007/s00018-008-7452-4 PubMed DOI PMC

Hoque M. M., Hussen M. S., Kumer A., Khan M. W. (2020). Synthesis of 5, 6-diaroylisoindoline-1, 3-dione and computational approaches for investigation on structural and mechanistic insights by DFT. Mol. Simulation 46, 1298–1307. doi: 10.1080/08927022.2020.1811866 DOI

Hsu C.-H., Cheng A.-L. (2007). “Clinical studies with curcumin”, In The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease (SpringerLink: ) 471-480. doi: 10.1007/978-0-387-46401-5_21 DOI

Hung C. L., Chen C. C. (2014). Computational approaches for drug discovery. Drug Dev. Res. 75, 412–418. doi: 10.1002/ddr.21222 PubMed DOI

Hussain Y., Alam W., Ullah H., Dacrema M., Daglia M., Khan H., et al. . (2022). Antimicrobial potential of curcumin: Therapeutic potential and challenges to clinical applications. Antibiotics 11, 322. doi: 10.3390/antibiotics11030322 PubMed DOI PMC

Islam M., Rahman M., Ahasan M., Sarkar N., Akash S., Islam M., et al. . (2022). The impact of mucormycosis (black fungus) on SARS-CoV-2-infected patients: at a glance. Environ. Sci. pollut. Res., 1–26. doi: 10.1007/s11356-022-22204-8 PubMed DOI PMC

Jennings M. R., Parks R. J. (2020). Curcumin as an antiviral agent. Viruses 12, 1242. doi: 10.3390/v12111242 PubMed DOI PMC

Kawsar S., Kumer A., Munia N. S., Hosen M. A., Chakma U., Akash S. (2022). Chemical descriptors, PASS, molecular docking, molecular dynamics and ADMET predictions of glucopyranoside derivatives as inhibitors to bacteria and fungi growth. Organic Commun. 15. doi: 10.25135/acg.oc.122.2203.2397 DOI

Khattak S., Qaisar M., Zaman S., Khan T. A., Ali Y., Wu D.-D., et al. . (2022). Monkeypox virus preparation in Pakistan-next viral zoonotic disease outbreak after COVID-19? Biomed. Lett. 8, 196–201.

Kim S.-A., Kim S.-W., Choi H.-K., Han H.-K. (2013). Enhanced systemic exposure of saquinavir via the concomitant use of curcumin-loaded solid dispersion in rats. Eur. J. Pharm. Sci. 49, 800–804. doi: 10.1016/j.ejps.2013.05.029 PubMed DOI

Kmiec D., Kirchhoff F. (2022). Monkeypox: a new threat? Int. J. Mol. Sci. 23, 7866. doi: 10.3390/ijms23147866 PubMed DOI PMC

Kobir M. E., Ahmed A., Roni M. A. H., Chakma U., Amin M. R., Chandro A., et al. . (2022). Anti-lung cancer drug discovery approaches by polysaccharides: an in silico study, quantum calculation and molecular dynamics study. J. Biomolecular Structure Dynamics, 1–17. doi: 10.1080/07391102.2022.2110156 PubMed DOI

Kotha R. R., Luthria D. L. (2019). Curcumin: biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules 24, 2930. doi: 10.3390/molecules24162930 PubMed DOI PMC

Krieger E., Koraimann G., Vriend G. (2002). Increasing the precision of comparative models with YASARA NOVA–a self-parameterizing force field. Proteins: Structure Function Bioinf. 47, 393–402. doi: 10.1002/prot.10104 PubMed DOI

Krieger E., Nielsen J. E., Spronk C. A., Vriend G. (2006). Fast empirical pKa prediction by ewald summation. J. Mol. Graphics Model. 25, 481–486. doi: 10.1016/j.jmgm.2006.02.009 PubMed DOI

Kumar S., Subramaniam G., Karuppanan K. (2022). Human monkeypox outbreak in 2022. J. Med. Virol, 5623–5635. doi: 10.1002/jmv.27894 PubMed DOI

Kumer A., Chakma U., Chandro A., Howlader D., Akash S., Kobir M. E., et al. . (2022. a). MODIFIED d-GLUCOFURANOSE COMPUTATIONALLY SCREENING FOR INHIBITOR OF BREAST CANCER AND TRIPLE BREAST CANCER: CHEMICAL DESCRIPTOR, MOLECULAR DOCKING, MOLECULAR DYNAMICS AND QSAR. J. Chilean Chem. Soc. 67, 5623–5635. doi: 10.4067/S0717-97072022000305623 DOI

Kumer A., Chakma U., Matin M. M. (2022. b). Bilastine based drugs as SARS-CoV-2 protease inhibitors: Molecular docking, dynamics, and ADMET related studies. Orbital: Electronic J. Chem., 15–23. doi: 10.17807/orbital.v14i1.1642 DOI

Kumer A., Chakma U., Matin M. M., Akash S., Chando A., Howlader D. (2021) The computational screening of inhibitor for black fungus and white fungus by d-glucofuranose derivatives using in silico and SAR study. Organic Commun. 14. doi: 10.25135/acg.oc.116.2108.2188 DOI

Kumer A., Chakma U., Rana M. M., Chandro A., Akash S., Elseehy M. M., et al. . (2022. c). Investigation of the new inhibitors by sulfadiazine and modified derivatives of α-d-glucopyranoside for white spot syndrome virus disease of shrimp by in silico: quantum calculations, molecular docking, ADMET and molecular dynamics study. Molecules 27, 3694. doi: 10.3390/molecules27123694 PubMed DOI PMC

Kumer A., Sarker M. N., Sunanda P. (2019). The simulating study of HOMO, LUMO, thermo physical and quantitative structure of activity relationship (QSAR) of some anticancer active ionic liquids. Eurasian J. Environ. Res. 3, 1–10.

Lestari M. L., Indrayanto G. J. (2014). Curcumin. Profiles Drug Subst. Excip. Relat. Methodol. 39, 113–204. doi: 10.1016/B978-0-12-800173-8.00003-9 PubMed DOI

Liu Z., Ying Y. (2020). The inhibitory effect of curcumin on virus-induced cytokine storm and its potential use in the associated severe pneumonia. Front. Cell Dev. Biol. 479. doi: 10.3389/fcell.2020.00479 PubMed DOI PMC

Lucas W., Knipe D. M. (2010). Viral capsids and envelopes: structure and function (Wiley Online Library: ), Vol. 10. a0001091.

Mahase E. (2022). Seven monkeypox cases are confirmed in England (England: British Medical Journal Publishing Group; ). PubMed

Mahmud S., Paul G. K., Afroze M., Islam S., Gupt S. B. R., Razu M. H., et al. . (2021). Efficacy of phytochemicals derived from avicennia officinalis for the management of COVID-19: a combined in silico and biochemical study. Molecules 26, 2210. doi: 10.3390/molecules26082210 PubMed DOI PMC

Malvy D., McElroy A. K., de Clerck H., Günther S., van Griensven J. (2019). Ebola Virus disease. Lancet 393, 936–948. doi: 10.1016/S0140-6736(18)33132-5 PubMed DOI

Marhöfer R. J., Oellien F., Selzer P. M. (2011). Drug discovery and the use of computational approaches for infectious diseases. Future Medicinal Chemistry 3, 1011–1025. doi: 10.4155/fmc.11.60 PubMed DOI

McCollum A. M., Damon I. K. (2014). Human monkeypox. Clin. Infect. Dis. 58, 260–267. doi: 10.1093/cid/cit703 PubMed DOI

Miller K. (2013). What are BQ.1 and BQ.1.1, the ‘Troublesome’ omicron subvariants? Available at: https://www.prevention.com/health/a41711182/bq1-bq11-omicron-subvariants/.

Miller J., Hachmann N. P., Collier A.-r. Y., Lasrado N., Mazurek C. R., Patio R. C., et al. . (2023). Substantial neutralization escape by SARS-CoV-2 omicron variants BQ. 1.1 and XBB. 1. New Engl. J. Med, 1–3. doi: 10.1056/NEJMc2214314 PubMed DOI PMC

Minasov G., Shuvalova L., Dubrovska I., Flores K., Grimshaw S., Kwon K., et al. (2022). “1.52 angstrom crystal structure of A42R profilin-like protein from monkeypox virus Zaire-96-I-16,” in Center for structural genomics of infectious diseases (CSGID). Available at: https://scripts.iucr.org/cgi-bin/paper?nw5117.

Mounce B. C., Cesaro T., Carrau L., Vallet T., Vignuzzi M. (2017). Curcumin inhibits zika and chikungunya virus infection by inhibiting cell binding. Antiviral Res. 142, 148–157. doi: 10.1016/j.antiviral.2017.03.014 PubMed DOI

Mvondo J. G. M., Matondo A., Mawete D. T., Bambi S.-M. N., Mbala B. M., Lohohola P. O. (2021). In silico ADME/T properties of quinine derivatives using SwissADME and pkCSM webservers. Int. J. Trop. Dis. Health 42, 1–12. doi: 10.9734/ijtdh/2021/v42i1130492 DOI

Nabavi S. F., Daglia M., Moghaddam A. H., Habtemariam S., Nabavi S. M. (2014). Curcumin and liver disease: from chemistry to medicine. Compr. Rev. Food Sci. Food Saf. 13, 62–77. doi: 10.1111/1541-4337.12047 PubMed DOI

Nimmerjahn F., Dudziak D., Dirmeier U., Hobom G., Riedel A., Schlee M., et al. . (2004). Active NF-κB signalling is a prerequisite for influenza virus infection. J. Gen. Virol. 85, 2347–2356. doi: 10.1099/vir.0.79958-0 PubMed DOI

Pacho M. N., Pugni E. N., Díaz Sierra J. B., Morell M. L., Sepúlveda C. S., Damonte E. B., et al. . (2021). Antiviral activity against zika virus of a new formulation of curcumin in poly lactic-co-glycolic acid nanoparticles. J. Pharm. Pharmacol. 73, 357–365. doi: 10.1093/jpp/rgaa045 PubMed DOI

Pal M., Mengstie F., Kandi V. (2017). Epidemiology, diagnosis, and control of monkeypox disease: A comprehensive review. Am. J. Infect. Dis. Microbiol. 5, 94–99.

Parvez M. K. (2020). Geometric architecture of viruses. World J. Virol. 9, 5. doi: 10.5501/wjv.v9.i2.5 PubMed DOI PMC

Pawitan J. (2011). Dengue virus infection: predictors for severe dengue. Acta Med Indones 43, 129–135. PubMed

Perry K., Hwang Y., Bushman F. D., Van Duyne G. D. (2010). Insights from the structure of a smallpox virus topoisomerase-DNA transition state mimic. Structure 18, 127–137. doi: 10.1016/j.str.2009.10.020 PubMed DOI PMC

Prasad S., Tyagi A. K. (2015). Curcumin and its analogues: a potential natural compound against HIV infection and AIDS. Food Funct. 6, 3412–3419. doi: 10.1039/C5FO00485C PubMed DOI

Prasasty V. D., Istyastono E. P. (2020). Structure-based design and molecular dynamics simulations of pentapeptide AEYTR as a potential acetylcholinesterase inhibitor. Indonesian J. Chem. 20, 953–959. doi: 10.22146/ijc.46329 DOI

Pullakhandam R., Srinivas P., Nair M. K., Reddy G. B. (2009). Binding and stabilization of transthyretin by curcumin. Arch. Biochem. biophys. 485, 115–119. doi: 10.1016/j.abb.2009.02.013 PubMed DOI

Qin Y., Lin L., Chen Y., Wu S., Si X., Wu H., et al. . (2014). Curcumin inhibits the replication of enterovirus 71 in vitro. Acta Pharm. Sin. B 4, 284–294. doi: 10.1016/j.apsb.2014.06.006 PubMed DOI PMC

Rahman M. M., Karim M. R., Ahsan M. Q., Khalipha A. B. R., Chowdhury M. R., Saifuzzaman M. (2012). Use of computer in drug design and drug discovery: A review. Int. J. Pharm. Life Sci. 1, 1–21. doi: 10.3329/ijpls.v1i2.12955 DOI

Ramos J. (2020). Introducción a materials studio en la investigación química y ciencias de los materiales, (Frontiers; ).

Rangisetty P. T., Kilaparthi A., Akula S., Bhardwaj M., Singh S. (2023). RSAD2: An exclusive target protein for zika virus comparative modeling, characterization, energy minimization and stabilization. Int. J. Health Sci. 17, 12–17. PubMed PMC

Rathore S., Mukim M., Sharma P., Devi S., Nagar J. C., Khalid M. (2020). Curcumin: A review for health benefits. Int. J. Res. Rev. 7, 273–290.

Rattis B. A., Ramos S. G., Celes M. (2021). Curcumin as a potential treatment for COVID-19. Front. Pharmacol., 1068. doi: 10.3389/fphar.2021.675287 PubMed DOI PMC

Rizk J. G., Lippi G., Henry B. M., Forthal D. N., Rizk Y. J. D. (2022). Prevention and treatment of monkeypox. Drugs 1–7. doi: 10.1007/s40265-022-01742-y PubMed DOI PMC

Rizvi S. M. D., Shakil S., Haneef M. (2013). A simple click by click protocol to perform docking: AutoDock 4.2 made easy for non-bioinformaticians. EXCLI J. 12, 831. PubMed PMC

Rout J., Swain B. C., Tripathy U. (2022). In silico investigation of spice molecules as potent inhibitor of SARS-CoV-2. J. Biomol. Struct. Dyn. 40, 860–874. doi: 10.1080/07391102.2020.1819879 PubMed DOI PMC

Sale T. A., Melski J. W., Stratman E. J. (2006). Monkeypox: an epidemiologic and clinical comparison of African and US disease. J. Am. Acad. Dermatol. 55, 478–481. doi: 10.1016/j.jaad.2006.05.061 PubMed DOI PMC

Seet B. T., Johnston J., Brunetti C. R., Barrett J. W., Everett H., Cameron C., et al. . (2003). Poxviruses and immune evasion. Annu. Rev. Immunol. 21, 377–423. doi: 10.1146/annurev.immunol.21.120601.141049 PubMed DOI

Shchelkunov S. N., Totmenin A. V., Babkin I. V., Safronov P. F., Ryazankina O. I., Petrov N. A., et al. . (2001). Human monkeypox and smallpox viruses: genomic comparison. FEBS Lett. 509, 66–70. doi: 10.1016/S0014-5793(01)03144-1 PubMed DOI PMC

Singh D. B. (2014). Success, limitation and future of computer aided drug designing. Transl. Med. (Sunnyvale) 4, e127. doi: 10.4172/2161-1025.1000e127 DOI

Smith G. L., McFadden G. (2002). Smallpox: anything to declare? Nat. Rev. Immunol. 2, 521–527. doi: 10.1038/nri845 PubMed DOI

Stanzione F., Giangreco I., Cole J. C. (2021). Use of molecular docking computational tools in drug discovery. Prog. Med. Chem. 60, 273–343. doi: 10.1016/bs.pmch.2021.01.004 PubMed DOI

Tønnesen H. H., Karlsen J. (1985). Studies on curcumin and curcuminoids. Z Lebensm Unters Forch (Springer: ) 180, 402–404. doi: 10.1007/BF01027775 PubMed DOI

Tahmasebi S., El-Esawi M. A., Mahmoud Z. H., Timoshin A., Valizadeh H., Roshangar L., et al. . (2021). Immunomodulatory effects of nanocurcumin on Th17 cell responses in mild and severe COVID-19 patients. J. Cell. Physiol. 236, 5325–5338. doi: 10.1002/jcp.30233 PubMed DOI

Thornhill J. P., Barkati S., Walmsley S., Rockstroh J., Antinori A., Harrison L. B., et al. . (2022). Monkeypox virus infection in humans across 16 countries—April–June 2022. N. Engl. J. Med. doi: 10.1056/NEJMoa2207323 PubMed DOI

Tropsha A., Bajorath J. (2016). Computational methods for drug discovery and design. 59, 1–1. doi: 10.1021/acs.jmedchem.5b01945 PubMed DOI

Vaheri A., Strandin T., Hepojoki J., Sironen T., Henttonen H., Mäkelä S., et al. . (2013). Uncovering the mysteries of hantavirus infections. Nat. Rev. Microbiol. 11, 539–550. doi: 10.1038/nrmicro3066 PubMed DOI

Valizadeh H., Abdolmohammadi-Vahid S., Danshina S., Gencer M. Z., Ammari A., Sadeghi A., et al. . (2020). Nano-curcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. Int. Immunopharmacol. 89, 107088. doi: 10.1016/j.intimp.2020.107088 PubMed DOI PMC

van de Sand L., Bormann M., Schmitz Y., Heilingloh C. S., Witzke O., Krawczyk A. (2021). Antiviral active compounds derived from natural sources against herpes simplex viruses. Viruses 13, 1386. doi: 10.3390/v13071386 PubMed DOI PMC

Villarreal L. P. J. S. A. (2004). Are viruses alive?, 291, 100–105. Available at: https://digital.csic.es/bitstream/10261/207598/1/01-MarerialsStudio_01.pdf PubMed

Vlachakis D., Karozou A., Kossida S. (2013). An update on virology and emerging viral epidemics. Int. J. Biol. Sci. 2, 59–66. doi: 10.4018/ijsbbt.2013070104 DOI

von Rhein C., Weidner T., Henß L., Martin J., Weber C., Sliva K., et al. . (2016). Curcumin and boswellia serrata gum resin extract inhibit chikungunya and vesicular stomatitis virus infections in vitro. Antiviral Res. 125, 51–57. doi: 10.1016/j.antiviral.2015.11.007 PubMed DOI

Wahyuni T. S., Permatasari A. A., Widiandani T., Fuad A., Widyawaruyanti A., Aoki-Utsubo C., et al. . (2018). Antiviral activities of curcuma genus against hepatitis c virus. Natural Product Commun. 13, 1–4. doi: 10.1177/1934578X1801301204 DOI

Wang L., Shang J., Weng S., Aliyari S. R., Ji C., Cheng G., et al. . (2022). Genomic annotation and molecular evolution of monkeypox virus outbreak in 2022. J. Med. Virol 1, 1–7. PubMed PMC

Wang Y., Wang Y., Chen Y., Qin Q. (2020). Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J. Med. Virol. 92, 568–576. doi: 10.1002/jmv.25748 PubMed DOI PMC

Yang X. X., Li C. M., Li Y. F., Wang J., Huang C. Z. (2017). Synergistic antiviral effect of curcumin functionalized graphene oxide against respiratory syncytial virus infection. Nanoscale 9, 16086–16092. doi: 10.1039/C7NR06520E PubMed DOI

Zeghbib W., Boudjouan F., Vasconcelos V., Lopes G. (2022). Phenolic compounds’ occurrence in opuntia species and their role in the inflammatory process: A review. Molecules 27, 4763. PubMed PMC

Zhang L., Wang P., Yang Z., Du F., Li Z., Wu C., et al. . (2020). Molecular dynamics simulation exploration of the interaction between curcumin and myosin combined with the results of spectroscopy techniques. Food Hydrocolloids 101, 105455. doi: 10.1016/j.foodhyd.2019.105455 DOI

Zhou L., Saksena N. K. (2013). HIV Associated neurocognitive disorders. Infect. Dis. Rep. 5, 38–50. doi: 10.4081/idr.2013.s1.e8 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...