Cyclometalated Benzimidazole Osmium(II) Complexes with Antiproliferative Activity in Cancer Cells Disrupt Calcium Homeostasis
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
37040203
PubMed Central
PMC10131226
DOI
10.1021/acs.inorgchem.3c00501
Knihovny.cz E-resources
- MeSH
- Benzimidazoles pharmacology MeSH
- Homeostasis MeSH
- Coordination Complexes * pharmacology MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- Neoplasms * MeSH
- Osmium pharmacology MeSH
- Antineoplastic Agents * pharmacology MeSH
- Calcium MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Benzimidazoles MeSH
- Coordination Complexes * MeSH
- Osmium MeSH
- Antineoplastic Agents * MeSH
- Calcium MeSH
We present the synthesis and characterization of six new heteroleptic osmium(II) complexes of the type [Os(C^N)(N^N)2]OTf (N^N = 2,2'-bipyridine and dipyrido[3,2-d:2',3'-f]quinoxaline; C^N = deprotonated methyl 1-butyl-2aryl-benzimidazolecarboxylate) with varying substituents in the R3 position of the phenyl ring of the cyclometalating C^N ligand. The new compounds are highly kinetically inert and absorb a full-wavelength range of visible light. An investigation of the antiproliferative activity of the new compounds has been performed using a panel of human cancer and noncancerous 2D cell monolayer cultures under dark conditions and green light irradiation. The results demonstrate that the new Os(II) complexes are markedly more potent than conventional cisplatin. The promising antiproliferative activity of selected Os(II) complexes was also confirmed using 3D multicellular tumor spheroids, which have the characteristics of solid tumors and can mimic the tumor tissue microenvironment. The mechanism of antiproliferative action of complexes has also been investigated and revealed that the investigated Os(II) complexes activate the endoplasmic reticulum stress pathway in cancer cells and disrupt calcium homeostasis.
See more in PubMed
Sung H.; Ferlay J.; Siegel R. L.; Laversanne M.; Soerjomataram I.; Jemal A.; Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca-Cancer J. Clin. 2021, 71, 209–249. 10.3322/caac.21660. PubMed DOI
Rosenberg B. Platinum complexes for the treatment of cancer. Interdiscip. Sci. Rev. 1978, 3, 134–147. 10.1179/030801878791926119. DOI
Ott I.; Gust R. Non platinum metal complexes as anti-cancer drugs. Arch. Pharm. 2007, 340, 117–126. 10.1002/ardp.200600151. PubMed DOI
Medici S.; Peana M.; Nurchi V. M.; Lachowicz J. I.; Crisponi G.; Zoroddu M. A. Noble metals in medicine: Latest advances. Coord. Chem. Rev. 2015, 284, 329–350. 10.1016/j.ccr.2014.08.002. DOI
Luttrell W. E.; Giles C. B. Toxic tips: Osmium tetroxide. J. Chem. Health Saf. 2007, 14, 40–41. 10.1016/j.jchas.2007.07.003. DOI
Kushwaha R.; Kumar A.; Saha S.; Bajpai S.; Yadav A. K.; Banerjee S. Os(II) complexes for catalytic anticancer therapy: recent update. Chem. Commun. 2022, 58, 4825–4836. 10.1039/d2cc00341d. PubMed DOI
Ortega E.; Ballester F. J.; Hernández-García A.; Hernández-García S.; Guerrero-Rubio M. A.; Bautista D.; Santana M. D.; Gandía-Herrero F.; Ruiz J. Novel organo-osmium(II) proteosynthesis inhibitors active against human ovarian cancer cells reduce gonad tumor growth in Caenorhabditis elegans. Inorg. Chem. Front. 2021, 8, 141–155. 10.1039/c9qi01704f. DOI
Peacock A. F. A.; Habtemariam A.; Moggach S. A.; Prescimone A.; Parsons S.; Sadler P. J. Chloro half-sandwich osmium(II) complexes: Influence of chelated N,N-ligands on hydrolysis, guanine binding and cytotoxicity. Inorg. Chem. 2007, 46, 4049–4059. 10.1021/ic062350d. PubMed DOI
Cebrián-Losantos B.; Krokhin A. A.; Stepanenko I. N.; Eichinger R.; Jakupec M. A.; Arion V. B.; Keppler B. K. Osmium NAMI-A analogues: synthesis, structural and spectroscopic characterization, and antiproliferative properties. Inorg. Chem. 2007, 46, 5023–5033. 10.1021/ic700405y. PubMed DOI
Dorcier A.; Ang W. H.; Bolaño S.; Gonsalvi L.; Juillerat-Jeannerat L.; Laurenczy G.; Peruzzini M.; Phillips A. D.; Zanobini F.; Dyson P. J. In vitro evaluation of rhodium and osmium RAPTA analogues: The case for organometallic anticancer drugs not based on ruthenium. Organometallics 2006, 25, 4090–4096. 10.1021/om060394o. DOI
Romero-Canelón I.; Salassa L.; Sadler P. J. The contrasting activity of iodido versus chlorido ruthenium and osmium arene azo- and imino-pyridine anticancer complexes: Control of cell selectivity, cross-resistance, p53 dependence, and apoptosis pathway. J. Med. Chem. 2013, 56, 1291–1300. 10.1021/jm3017442. PubMed DOI
Zhang P.; Huang H. Future potential of osmium complexes as anticancer drug candidates, photosensitizers and organelle-targeted probes. Dalton Trans. 2018, 47, 14841–14854. 10.1039/c8dt03432j. PubMed DOI
King A. P.; Wilson J. J. Endoplasmic reticulum stress: an arising target for metal-based anticancer agents. Chem. Soc. Rev. 2020, 49, 8113–8136. 10.1039/d0cs00259c. PubMed DOI
Licona C.; Delhorme J.-B.; Riegel G.; Vidimar V.; Cerón-Camacho R.; Boff B.; Venkatasamy A.; Tomasetto C.; da Silva Figueiredo Celestino Gomes P.; Rognan D.; Freund J.-N.; Le Lagadec R.; Pfeffer M.; Gross I.; Mellitzer G.; Gaiddon C. Anticancer activity of ruthenium and osmium cyclometalated compounds: identification of ABCB1 and EGFR as resistance mechanisms. Inorg. Chem. Front. 2020, 7, 678–688. 10.1039/c9qi01148j. DOI
Yang Q.-Y.; Ma R.; Gu Y.-Q.; Xu X.-F.; Chen Z.-F.; Liang H. Arene-ruthenium(II)/osmium(II) complexes potentiate the anticancer efficacy of metformin via glucose metabolism reprogramming. Angew. Chem., Int. Ed. 2022, 61, e20220857010.1002/anie.202208570. PubMed DOI
Lazic S.; Kaspler P.; Shi G.; Monro S.; Sainuddin T.; Forward S.; Kasimova K.; Hennigar R.; Mandel A.; McFarland S.; Lilge L. Novel osmium-based coordination complexes as photosensitizers for panchromatic photodynamic therapy. Photochem. Photobiol. 2017, 93, 1248–1258. 10.1111/php.12767. PubMed DOI
Ballester F. J.; Ortega E.; Bautista D.; Santana M. D.; Ruiz J. Ru(II) photosensitizers competent for hypoxic cancers via green light activation. Chem. Commun. 2020, 56, 10301–10304. 10.1039/d0cc02417a. PubMed DOI
Karges J. Clinical development of metal complexes as photosensitizers for photodynamic therapy of cancer. Angew. Chem., Int. Ed. 2022, 61, e20211223610.1002/anie.202112236. PubMed DOI
Lumpkin R. S.; Kober E. M.; Worl L. A.; Murtaza Z.; Meyer T. J. Metal-to-ligand charge-transfer (MLCT) photochemistry: experimental evidence for the participation of a higher lying MLCT state in polypyridyl complexes of ruthenium(II) and osmium(II). J. Phys. Chem. 1990, 94, 239–243. 10.1021/j100364a039. DOI
Lu N.; Deng Z.; Gao J.; Liang C.; Xia H.; Zhang P. An osmium-peroxo complex for photoactive therapy of hypoxic tumors. Nat. Commun. 2022, 13, 2245.10.1038/s41467-022-29969-z. PubMed DOI PMC
Zhang P. Y.; Wang Y.; Qiu K. Q.; Zhao Z. Q.; Hu R. T.; He C. X.; Zhang Q. L.; Chao H. A NIR phosphorescent osmium(II) complex as a lysosome tracking reagent and photodynamic therapeutic agent. Chem. Commun. 2017, 53, 12341–12344. 10.1039/c7cc07776a. PubMed DOI
Bansal Y.; Silakari O. The therapeutic journey of benzimidazoles: A review. Bioorg. Med. Chem. 2012, 20, 6208–6236. 10.1016/j.bmc.2012.09.013. PubMed DOI
Singla P.; Luxami V.; Paul K. Benzimidazole-biologically attractive scaffold for protein kinase inhibitors. RSC Adv. 2014, 4, 12422–12440. 10.1039/c3ra46304d. DOI
Hachey A. C.; Havrylyuk D.; Glazer E. C. Biological activities of polypyridyl-type ligands: implications for bioinorganic chemistry and light-activated metal complexes. Curr. Opin. Chem. Biol. 2021, 61, 191–202. 10.1016/j.cbpa.2021.01.016. PubMed DOI PMC
Yellol J.; Perez S. A.; Buceta A.; Yellol G.; Donaire A.; Szumlas P.; Bednarski P. J.; Makhloufi G.; Janiak C.; Espinosa A.; Ruiz J. Novel C,N-Cyclometalated Benzimidazole Ruthenium(II) and Iridium(III) Complexes as Antitumor and Antiangiogenic Agents: A Structure–Activity Relationship Study. J. Med. Chem. 2015, 58, 7310–7327. 10.1021/acs.jmedchem.5b01194. PubMed DOI
Wang C.; Lystrom L.; Yin H.; Hetu M.; Kilina S.; McFarland S. A.; Sun W. Increasing the triplet lifetime and extending the ground-state absorption of biscyclometalated Ir(iii) complexes for reverse saturable absorption and photodynamic therapy applications. Dalton Trans. 2016, 45, 16366–16378. 10.1039/c6dt02416e. PubMed DOI
Pracharova J.; Vigueras G.; Novohradsky V.; Cutillas N.; Janiak C.; Kostrhunova H.; Kasparkova J.; Ruiz J.; Brabec V. Exploring the effect of polypyridyl ligands on the anticancer activity of phosphorescent iridium(III) complexes: From proteosynthesis inhibitors to photodynamic therapy agents. Chem.—Eur. J. 2018, 24, 4607–4619. 10.1002/chem.201705362. PubMed DOI
Boff B.; Gaiddon C.; Pfeffer M. Cancer cell cytotoxicity of cyclometalated compounds obtained with osmium(II) complexes. Inorg. Chem. 2013, 52, 2705–2715. 10.1021/ic302779q. PubMed DOI
Li J.; Zeng L.; Wang Z.; Chen H.; Fang S.; Wang J.; Cai C.-Y.; Xing E.; Liao X.; Li Z.-W.; Ashby C. R. Jr; Chen Z.-S.; Chao H.; Pan Y. Cycloruthenated self-assembly with metabolic inhibition to efficiently overcome multidrug resistance in cancers. Adv. Mater. 2022, 34, 2100245.10.1002/adma.202100245. PubMed DOI PMC
Irikura M.; Tamaki Y.; Ishitani O. Development of a panchromatic photosensitizer and its application to photocatalytic CO2 reduction. Chem. Sci. 2021, 12, 13888–13896. 10.1039/d1sc04045f. PubMed DOI PMC
Broussard J. A.; Webb D. J.; Kaverina I. Asymmetric focal adhesion disassembly in motile cells. Curr. Opin. Cell Biol. 2008, 20, 85–90. 10.1016/j.ceb.2007.10.009. PubMed DOI
Valastyan S.; Weinberg R. A. Tumor metastasis: Molecular insights and evolving paradigms. Cell 2011, 147, 275–292. 10.1016/j.cell.2011.09.024. PubMed DOI PMC
Brandhagen B. N.; Tieszen C. R.; Ulmer T. M.; Tracy M. S.; Goyeneche A. A.; Telleria C. M. Cytostasis and morphological changes induced by mifepristone in human metastatic cancer cells involve cytoskeletal filamentous actin reorganization and impairment of cell adhesion dynamics. BMC Cancer 2013, 13, 35.10.1186/1471-2407-13-35. PubMed DOI PMC
Zanoni M.; Piccinini F.; Arienti C.; Zamagni A.; Santi S.; Polico R.; Bevilacqua A.; Tesei A. 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci. Rep. 2016, 6, 19103.10.1038/srep19103. PubMed DOI PMC
Thoma C. R.; Zimmermann M.; Agarkova I.; Kelm J. M.; Krek W. 3D cell culture systems modeling tumor growth determinants in cancer target discovery. Adv. Drug Delivery Rev. 2014, 69–70, 29–41. 10.1016/j.addr.2014.03.001. PubMed DOI
Baker B. M.; Chen C. S. Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues. J. Cell Sci. 2012, 125, 3015–3024. 10.1242/jcs.079509. PubMed DOI PMC
Kimlin L. C.; Casagrande G.; Virador V. M. In vitro three-dimensional (3D) models in cancer research: An update. Mol. Carcinog. 2013, 52, 167–182. 10.1002/mc.21844. PubMed DOI
Kacsir I.; Sipos A.; Bényei A.; Janka E.; Buglyó P.; Somsák L.; Bai P.; Bokor É. Reactive oxygen species production is responsible for antineoplastic activity of osmium, ruthenium, iridium and rhodium half-sandwich type complexes with bidentate glycosyl heterocyclic ligands in various cancer cell models. Int. J. Mol. Sci. 2022, 23, 813.10.3390/ijms23020813. PubMed DOI PMC
Maillet A.; Yadav S.; Loo Y. L.; Sachaphibulkij K.; Pervaiz S. A novel Osmium-based compound targets the mitochondria and triggers ROS-dependent apoptosis in colon carcinoma. Cell Death Dis. 2013, 4, e65310.1038/cddis.2013.185. PubMed DOI PMC
Kandioller W.; Balsano E.; Meier S. M.; Jungwirth U.; Göschl S.; Roller A.; Jakupec M. A.; Berger W.; Keppler B. K.; Hartinger C. G. Organometallic anticancer complexes of lapachol: metal centre-dependent formation of reactive oxygen species and correlation with cytotoxicity. Chem. Commun. 2013, 49, 3348–3350. 10.1039/c3cc40432c. PubMed DOI
Romero-Canelón I.; Mos M.; Sadler P. J. Enhancement of selectivity of an organometallic anticancer agent by redox modulation. J. Med. Chem. 2015, 58, 7874–7880. 10.1021/acs.jmedchem.5b00655. PubMed DOI PMC
Scalcon V.; Top S.; Lee H. Z. S.; Citta A.; Folda A.; Bindoli A.; Leong W. K.; Salmain M.; Vessières A.; Jaouen G.; Rigobello M. P. Osmocenyl-tamoxifen derivatives target the thioredoxin system leading to a redox imbalance in Jurkat cells. J. Inorg. Biochem. 2016, 160, 296–304. 10.1016/j.jinorgbio.2016.04.005. PubMed DOI
Gaiddon C.; Gross I.; Meng X.; Sidhoum M.; Mellitzer G.; Romain B.; Delhorme J. B.; Venkatasamy A.; Jung A. C.; Pfeffer M. Bypassing the resistance mechanisms of the tumor ecosystem by targeting the endoplasmic reticulum stress pathway using ruthenium- and osmium-based organometallic compounds: An exciting long-term collaboration with Dr. Michel Pfeffer. Molecules 2021, 26, 5386.10.3390/molecules26175386. PubMed DOI PMC
Suntharalingam K.; Johnstone T. C.; Bruno P. M.; Lin W.; Hemann M. T.; Lippard S. J. Bidentate Ligands on Osmium(VI) Nitrido Complexes Control Intracellular Targeting and Cell Death Pathways. J. Am. Chem. Soc. 2013, 135, 14060–14063. 10.1021/ja4075375. PubMed DOI PMC
Chow M. J.; Babak M. V.; Tan K. W.; Cheong M. C.; Pastorin G.; Gaiddon C.; Ang W. H. Induction of the endoplasmic reticulum stress pathway by highly cytotoxic organoruthenium Schiff-base complexes. Mol. Pharmaceutics 2018, 15, 3020–3031. 10.1021/acs.molpharmaceut.8b00003. PubMed DOI
Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 2012, 13, 89–102. 10.1038/nrm3270. PubMed DOI
Deniaud A.; Sharaf el dein O.; Maillier E.; Poncet D.; Kroemer G.; Lemaire C.; Brenner C. Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis. Oncogene 2008, 27, 285–299. 10.1038/sj.onc.1210638. PubMed DOI
Lebeau P. F.; Platko K.; Byun J. H.; Austin R. C. Calcium as a reliable marker for the quantitative assessment of endoplasmic reticulum stress in live cells. J. Biol. Chem. 2021, 296, 100779.10.1016/j.jbc.2021.100779. PubMed DOI PMC
Bruker . Bruker; AXS Inc.: Madison, Wisconsin, USA, 2001.
Sheldrick G. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3–8. 10.1107/s2053229614024218. PubMed DOI PMC
Spek A. L. PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 9–18. 10.1107/s2053229614024929. PubMed DOI
Karges J.; Heinemann F.; Jakubaszek M.; Maschietto F.; Subecz C.; Dotou M.; Vinck R.; Blacque O.; Tharaud M.; Goud B.; Viñuelas Zahínos E.; Spingler B.; Ciofini I.; Gasser G. Rationally designed long-wavelength absorbing Ru(II) polypyridyl complexes as photosensitizers for photodynamic therapy. J. Am. Chem. Soc. 2020, 142, 6578–6587. 10.1021/jacs.9b13620. PubMed DOI
Ghosh G.; Yin H.; Monro S. M. A.; Sainuddin T.; Lapoot L.; Greer A.; McFarland S. A. Synthesis and characterization of Ru(II) complexes with π-expansive imidazophen ligands for the photokilling of human melanoma cells. Photochem. Photobiol. 2020, 96, 349–357. 10.1111/php.13177. PubMed DOI PMC