Advanced and Smart Textiles during and after the COVID-19 Pandemic: Issues, Challenges, and Innovations
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
CA17107
European Cooperation in Science and Technology
PubMed
37107948
PubMed Central
PMC10137734
DOI
10.3390/healthcare11081115
PII: healthcare11081115
Knihovny.cz E-resources
- Keywords
- COVID-19, medical textiles, smart textiles, telemedicine, textiles for diagnostic and prevention of diseases,
- Publication type
- Journal Article MeSH
- Review MeSH
The COVID-19 pandemic has hugely affected the textile and apparel industry. Besides the negative impact due to supply chain disruptions, drop in demand, liquidity problems, and overstocking, this pandemic was found to be a window of opportunity since it accelerated the ongoing digitalization trends and the use of functional materials in the textile industry. This review paper covers the development of smart and advanced textiles that emerged as a response to the outbreak of SARS-CoV-2. We extensively cover the advancements in developing smart textiles that enable monitoring and sensing through electrospun nanofibers and nanogenerators. Additionally, we focus on improving medical textiles mainly through enhanced antiviral capabilities, which play a crucial role in pandemic prevention, protection, and control. We summarize the challenges that arise from personal protective equipment (PPE) disposal and finally give an overview of new smart textile-based products that emerged in the markets related to the control and spread reduction of SARS-CoV-2.
5 Trion GmbH Textile Research Millennium Park 15 6890 Lustenau Austria
Department of Building and Urban Environment Innovative Textile Material JUNIA 59000 Lille France
Institute of Nanotechnology Gebze Technical University Gebze Kocaeli 41400 Turkey
Trabzon Vocational School Karadeniz Technical University Trabzon 61080 Turkey
See more in PubMed
Loeb M., Bartholomew A., Hashmi M., Tarhuni W., Hassany M., Youngster I., Somayaji R., Larios O., Kim J., Missaghi B., et al. Medical Masks versus N95 Respirators for Preventing COVID-19 among Health Care Workers. Ann. Intern. Med. 2022;175:1629–1638. doi: 10.7326/M22-1966. PubMed DOI PMC
COVID Live—Coronavirus Statistics—Worldometer. [(accessed on 21 July 2022)]. Available online: https://www.worldometers.info/coronavirus/
Timeline COVID-19 Coronavirus—Consilium. [(accessed on 21 July 2022)]. Available online: https://www.consilium.europa.eu/en/policies/coronavirus/timeline/
Ivanoska-Dacikj A., Stachewicz U. Smart Textiles and Wearable Technologies—Opportunities Offered in the Fight against Pandemics in Relation to Current COVID-19 State. Rev. Adv. Mater. Sci. 2020;59:487–505. doi: 10.1515/rams-2020-0048. DOI
European Commission, Executive Agency for Small and Medium-sized Enterprises. Izsak K., Shauchuk P. Advanced Technologies for Industry: Sectoral Watch: Technological Trends in the Textiles Industry. Publications Office; Brussels, Belgium: 2021. [(accessed on 21 July 2022)]. Available online: https://data.europa.eu/doi/10.2826/69367. DOI
Li Q., Guan X., Wu P., Wang X., Zhou L., Tong Y., Ren R., Leung K.S.M., Lau E.H.Y., Wong J.Y., et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. N. Engl. J. Med. 2020;382:1199–1207. doi: 10.1056/NEJMoa2001316. PubMed DOI PMC
Aquino E.M.L., Silveira I.H., Pescarini J.M., Aquino R., de Souza-Filho J.A., dos Santos Rocha A., Ferreira A., Victor A., Teixeira C., Machado D.B., et al. Medidas de Distanciamento Social No Controle Da Pandemia de COVID-19: Potenciais Impactos e Desafios No Brasil. Ciênc. Saúde Coletiva. 2020;25:2423–2446. doi: 10.1590/1413-81232020256.1.10502020. PubMed DOI
Kissler S., Tedijanto C., Lipsitch M., Grad Y.H. Social distancing strategies for curbing the COVID-19 epidemic. medRxiv. 2020. preprint . DOI
Kunstler B., Newton S., Hill H., Ferguson J., Hore P., Mitchell B.G., Dempsey K., Stewardson A.J., Friedman D., Cole K., et al. P2/N95 Respirators & Surgical Masks to Prevent SARS-CoV-2 Infection: Effectiveness & Adverse Effects. Infect. Dis. Health. 2022;27:81–95. doi: 10.1016/j.idh.2022.01.001. PubMed DOI PMC
World Health Organization Rational Use of Personal Protective Equipment for COVID-19 and Considerations during Severe Shortages: Interim Guidance, 23 December 2020. World Health Organization. [(accessed on 21 July 2022)]. Available online: https://apps.who.int/iris/handle/10665/338033.
Chua M.H., Cheng W., Goh S.S., Kong J., Li B., Lim J.Y.C., Mao L., Wang S., Xue K., Yang L., et al. Face Masks in the New COVID-19 Normal: Materials, Testing, and Perspectives. Research. 2020;2020:286735. doi: 10.34133/2020/7286735. PubMed DOI PMC
Das S., Sarkar S., Das A., Das S., Chakraborty P., Sarkar J. A Comprehensive Review of Various Categories of Face Masks Resistant to COVID-19. Clin. Epidemiol. Glob. Health. 2021;12:100835. doi: 10.1016/j.cegh.2021.100835. PubMed DOI PMC
Konda A., Prakash A., Moss G.A., Schmoldt M., Grant G.D., Guha S. Aerosol Filtration Efficiency of Common Fabrics Used in Respiratory Cloth Masks. ACS Nano. 2020;14:6339–6347. doi: 10.1021/acsnano.0c03252. PubMed DOI
Ogbuoji E.A., Zaky A.M., Escobar I.C. Advanced Research and Development of Face Masks and Respirators Pre and Post the Coronavirus Disease 2019 (COVID-19) Pandemic: A Critical Review. Polymers. 2021;13:1998. doi: 10.3390/polym13121998. PubMed DOI PMC
Batt T., Herwig G., Annaheim S., Clement P., Furrer L., Hirsch C., Varanges V., Caglar B., Michaud V., Wang J., et al. Community Masks—From an Emergency Solution to an Innovation Booster for the Textile Industry. CHIMIA. 2022;76:249. doi: 10.2533/chimia.2022.249. PubMed DOI
Shou D., Fan J., Ye L., Zhang H., Qian X., Zhang Z. Inverse Problem of Air Filtration of Nanoparticles: Optimal Quality Factors of Fibrous Filters. J. Nanomater. 2015;2015:168392. doi: 10.1155/2015/168392. DOI
Pandey L.K., Singh V.V., Sharma P.K., Meher D., Biswas U., Sathe M., Ganesan K., Thakare V.B., Agarwal K. Screening of Core Filter Layer for the Development of Respiratory Mask to Combat COVID-19. Sci. Rep. 2021;11:10187. doi: 10.1038/s41598-021-89503-x. PubMed DOI PMC
Liu H., Cao C., Huang J., Chen Z., Chen G., Lai Y. Progress on Particulate Matter Filtration Technology: Basic Concepts, Advanced Materials, and Performances. Nanoscale. 2020;12:437–453. doi: 10.1039/C9NR08851B. PubMed DOI
Kwong L.H., Wilson R., Kumar S., Crider Y.S., Reyes Sanchez Y., Rempel D., Pillarisetti A. Review of the Breathability and Filtration Efficiency of Common Household Materials for Face Masks. ACS Nano. 2021;15:5904–5924. doi: 10.1021/acsnano.0c10146. PubMed DOI PMC
Wibisono Y., Fadila C.R., Saiful S., Bilad M.R. Facile Approaches of Polymeric Face Masks Reuse and Reinforcements for Micro-Aerosol Droplets and Viruses Filtration: A Review. Polymers. 2020;12:2516. doi: 10.3390/polym12112516. PubMed DOI PMC
Bagheri H., Aghakhani A. Polyaniline-Nylon-6 Electrospun Nanofibers for Headspace Adsorptive Microextraction. Anal. Chim. Acta. 2012;713:63–69. doi: 10.1016/j.aca.2011.11.027. PubMed DOI
Bourrous S., Barrault M., Mocho V., Poirier S., Bardin-Monnier N., Charvet A., Thomas D., Bescond A., Fouqueau A., Mace T., et al. A Performance Evaluation and Inter-Laboratory Comparison of Community Face Coverings Media in the Context of COVID-19 Pandemic. Aerosol Air Qual. Res. 2021;21:200615. doi: 10.4209/aaqr.200615. DOI
Varanges V., Caglar B., Lebaupin Y., Batt T., He W., Wang J., Rossi R.M., Richner G., Delaloye J.-R., Michaud V. On the Durability of Surgical Masks after Simulated Handling and Wear. Sci. Rep. 2022;12:4938. doi: 10.1038/s41598-022-09068-1. PubMed DOI PMC
Shim E., Jang J.-P., Moon J.-J., Kim Y. Improvement of Polytetrafluoroethylene Membrane High-Efficiency Particulate Air Filter Performance with Melt-Blown Media. Polymers. 2021;13:4067. doi: 10.3390/polym13234067. PubMed DOI PMC
Mao X., Hosoi A.E. Estimating the Filtration Efficacy of Cloth Masks. Phys. Rev. Fluids. 2021;6:114201. doi: 10.1103/PhysRevFluids.6.114201. DOI
Drouillard K.G., Tomkins A., Lackie S., Laengert S., Baker A., Clase C.M., Lannoy C.F.D., Cavallo-Medved D., Porter L.A., Rudman R.S. Fitted Filtration Efficiency and Breathability of 2-Ply Cotton Masks: Identification of Cotton Consumer Categories Acceptable for Home-Made Cloth Mask Construction. PLoS ONE. 2022;17:e0264090. doi: 10.1371/journal.pone.0264090. PubMed DOI PMC
Kang L., Liu Y., Wang L., Gao X. Preparation of Electrospun Nanofiber Membrane for Air Filtration and Process Optimization Based on BP Neural Network. Mater. Res. Express. 2021;8:115010. doi: 10.1088/2053-1591/ac37d6. DOI
Yu J., Tian X., Xin B., Xu J. Preparation and Characterization of PMIA Nanofiber Filter Membrane for Air Filter. Fibers Polym. 2021;22:2413–2423. doi: 10.1007/s12221-021-1123-6. DOI
Yang Y., He R., Cheng Y., Wang N. Multilayer-Structured Fibrous Membrane with Directional Moisture Transportability and Thermal Radiation for High-Performance Air Filtration. e-Polymers. 2020;20:282–291. doi: 10.1515/epoly-2020-0034. DOI
Avossa J., Batt T., Pelet T., Sidjanski S.P., Schönenberger K., Rossi R.M. Polyamide Nanofiber-Based Air Filters for Transparent Face Masks. ACS Appl. Nano Mater. 2021;4:12401–12406. doi: 10.1021/acsanm.1c02843. DOI
Lu H., Yao D., Yip J., Kan C.-W., Guo H. Addressing COVID-19 Spread: Development of Reliable Testing System for Mask Reuse. Aerosol Air Qual. Res. 2020;20:2309–2317. doi: 10.4209/aaqr.2020.06.0275. DOI
Ullah S., Ullah A., Lee J., Jeong Y., Hashmi M., Zhu C., Joo K.I., Cha H.J., Kim I.S. Reusability Comparison of Melt-Blown vs Nanofiber Face Mask Filters for Use in the Coronavirus Pandemic. ACS Appl. Nano Mater. 2020;3:7231–7241. doi: 10.1021/acsanm.0c01562. PubMed DOI
Robert B., Nallathambi G. A Concise Review on Electrospun Nanofibres/Nanonets for Filtration of Gaseous and Solid Constituents (PM2.5) from Polluted Air. Colloid Interface Sci. Commun. 2020;37:100275. doi: 10.1016/j.colcom.2020.100275. DOI
Lyu C., Zhao P., Xie J., Dong S., Liu J., Rao C., Fu J. Electrospinning of Nanofibrous Membrane and Its Applications in Air Filtration: A Review. Nanomaterials. 2021;11:1501. doi: 10.3390/nano11061501. PubMed DOI PMC
Han S., Kim J., Ko S.H. Advances in Air Filtration Technologies: Structure-Based and Interaction-Based Approaches. Mater. Today Adv. 2021;9:100134. doi: 10.1016/j.mtadv.2021.100134. DOI
Furer L.A., Clement P., Herwig G., Rossi R.M., Bhoelan F., Amacker M., Stegmann T., Buerki-Thurnherr T., Wick P. A Novel Inactivated Virus System (InViS) for a Fast and Inexpensive Assessment of Viral Disintegration. Sci. Rep. 2022;12:11583. doi: 10.1038/s41598-022-15471-5. PubMed DOI PMC
Kupferschmidt K., Cohen J. Can China’s COVID-19 Strategy Work Elsewhere? Science. 2020;367:1061–1062. doi: 10.1126/science.367.6482.1061. PubMed DOI
Machida M., Nakamura I., Saito R., Nakaya T., Hanibuchi T., Takamiya T., Odagiri Y., Fukushima N., Kikuchi H., Amagasa S., et al. Incorrect Use of Face Masks during the Current COVID-19 Pandemic among the General Public in Japan. Int. J. Environ. Res. Public Health. 2020;17:6484. doi: 10.3390/ijerph17186484. PubMed DOI PMC
Maduray K., Parboosing R. Metal Nanoparticles: A Promising Treatment for Viral and Arboviral Infections. Biol. Trace Elem. Res. 2021;199:3159–3176. doi: 10.1007/s12011-020-02414-2. PubMed DOI PMC
Ahmed T., Ogulata R.T., Sezgin Bozok S. Silver Nanoparticles against SARS-CoV-2 and Its Potential Application in Medical Protective Clothing—A Review. J. Text. Inst. 2022;113:2825–2838. doi: 10.1080/00405000.2021.1996730. DOI
Lin N., Verma D., Saini N., Arbi R., Munir M., Jovic M., Turak A. Antiviral Nanoparticles for Sanitizing Surfaces: A Roadmap to Self-Sterilizing against COVID-19. Nano Today. 2021;40:101267. doi: 10.1016/j.nantod.2021.101267. PubMed DOI PMC
Pemmada R., Zhu X., Dash M., Zhou Y., Ramakrishna S., Peng X., Thomas V., Jain S., Nanda H.S. Science-Based Strategies of Antiviral Coatings with Viricidal Properties for the COVID-19 Like Pandemics. Materials. 2020;13:4041. doi: 10.3390/ma13184041. PubMed DOI PMC
Rai M., Bonde S., Yadav A., Bhowmik A., Rathod S., Ingle P., Gade A. Nanotechnology as a Shield against COVID-19: Current Advancement and Limitations. Viruses. 2021;13:1224. doi: 10.3390/v13071224. PubMed DOI PMC
Ramaiah G.B., Tegegne A., Melese B. Developments in Nano-Materials and Analysing Its Role in Fighting COVID-19. Mater. Today Proc. 2021;47:4357–4363. doi: 10.1016/j.matpr.2021.05.020. PubMed DOI PMC
Ruiz-Hitzky E., Darder M., Wicklein B., Ruiz-Garcia C., Martín-Sampedro R., del Real G., Aranda P. Nanotechnology Responses to COVID-19. Adv. Healthc. Mater. 2020;9:2000979. doi: 10.1002/adhm.202000979. PubMed DOI
Lekha D.C., Shanmugam R., Madhuri K., Dwarampudi L.P., Bhaskaran M., Kongara D., Tesfaye J.L., Nagaprasad N., Bhargavi V.L.N., Krishnaraj R. Review on Silver Nanoparticle Synthesis Method, Antibacterial Activity, Drug Delivery Vehicles, and Toxicity Pathways: Recent Advances and Future Aspects. J. Nanomater. 2021;2021:e4401829. doi: 10.1155/2021/4401829. DOI
Pilaquinga F., Morey J., Torres M., Seqqat R., de las Nieves Piña M. Silver Nanoparticles as a Potential Treatment against SARS-CoV-2: A Review. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2021;13:e1707. doi: 10.1002/wnan.1707. PubMed DOI PMC
Jeremiah S.S., Miyakawa K., Morita T., Yamaoka Y., Ryo A. Potent Antiviral Effect of Silver Nanoparticles on SARS-CoV-2. Biochem. Biophys. Res. Commun. 2020;533:195–200. doi: 10.1016/j.bbrc.2020.09.018. PubMed DOI PMC
Almanza-Reyes H., Moreno S., Plascencia-López I., Alvarado-Vera M., Patrón-Romero L., Borrego B., Reyes-Escamilla A., Valencia-Manzo D., Brun A., Pestryakov A., et al. Evaluation of Silver Nanoparticles for the Prevention of SARS-CoV-2 Infection in Health Workers: In Vitro and in vivo. PLoS ONE. 2021;16:e0256401. doi: 10.1371/journal.pone.0256401. PubMed DOI PMC
Blosi M., Costa A.L., Ortelli S., Belosi F., Ravegnani F., Varesano A., Tonetti C., Zanoni I., Vineis C. Polyvinyl Alcohol/Silver Electrospun Nanofibers: Biocidal Filter Media Capturing Virus-Size Particles. J. Appl. Polym. Sci. 2021;138:51380. doi: 10.1002/app.51380. PubMed DOI PMC
Selvam A.K., Nallathambi G. Polyacrylonitrile/Silver Nanoparticle Electrospun Nanocomposite Matrix for Bacterial Filtration. Fibers Polym. 2015;16:1327–1335. doi: 10.1007/s12221-015-1327-8. DOI
HeiQ Viroblock—HeiQ Materials, AG. [(accessed on 5 July 2022)]. Available online: https://www.heiq.com/products/functional-textile-technologies/heiq-viroblock/?gclid=Cj0KCQjw06OTBhC_ARIsAAU1yOW6Cvnc9VjbTVG1Ml_0NezyOZD7Qth6JKvINb6Zmy0kU6RE2u1ah6kaAspdEALw_wcB.
Román L.E., Gomez E.D., Solís J.L., Gómez M.M. Antibacterial Cotton Fabric Functionalized with Copper Oxide Nanoparticles. Molecules. 2020;25:5802. doi: 10.3390/molecules25245802. PubMed DOI PMC
Govind V., Bharadwaj S., Sai Ganesh M.R., Vishnu J., Shankar K.V., Shankar B., Rajesh R. Antiviral Properties of Copper and Its Alloys to Inactivate COVID-19 Virus: A Review. Biometals Int. J. Role Met. Ions Biol. Biochem. Med. 2021;34:1217–1235. doi: 10.1007/s10534-021-00339-4. PubMed DOI PMC
Fujimori Y., Sato T., Hayata T., Nagao T., Nakayama M., Nakayama T., Sugamata R., Suzuki K. Novel Antiviral Characteristics of Nanosized Copper(I) Iodide Particles Showing Inactivation Activity against 2009 Pandemic H1N1 Influenza Virus. Appl. Environ. Microbiol. 2012;78:951–955. doi: 10.1128/AEM.06284-11. PubMed DOI PMC
Archana K.M., Rajagopal R., Krishnaswamy V.G., Aishwarya S. Application of Green Synthesised Copper Iodide Particles on Cotton Fabric-Protective Face Mask Material against COVID-19 Pandemic. J. Mater. Res. Technol. 2021;15:2102–2116. doi: 10.1016/j.jmrt.2021.09.020. PubMed DOI PMC
Delumeau L.-V., Asgarimoghaddam H., Alkie T., Jones A.J.B., Lum S., Mistry K., Aucoin M.G., DeWitte-Orr S., Musselman K.P. Effectiveness of Antiviral Metal and Metal Oxide Thin-Film Coatings against Human Coronavirus 229E. APL Mater. 2021;9:111114. doi: 10.1063/5.0056138. PubMed DOI PMC
Kumar S., Karmacharya M., Joshi S.R., Gulenko O., Park J., Kim G.-H., Cho Y.-K. Photoactive Antiviral Face Mask with Self-Sterilization and Reusability. Nano Lett. 2021;21:337–343. doi: 10.1021/acs.nanolett.0c03725. PubMed DOI
Jung S., Yang J.-Y., Byeon E.-Y., Kim D.-G., Lee D.-G., Ryoo S., Lee S., Shin C.-W., Jang H.W., Kim H.J., et al. Copper-Coated Polypropylene Filter Face Mask with SARS-CoV-2 Antiviral Ability. Polymers. 2021;13:1367. doi: 10.3390/polym13091367. PubMed DOI PMC
Kumar A., Sharma A., Chen Y., Jones M.M., Vanyo S.T., Li C., Visser M.B., Mahajan S.D., Sharma R.K., Swihart M.T. Copper@ZIF-8 Core-Shell Nanowires for Reusable Antimicrobial Face Masks. Adv. Funct. Mater. 2021;31:2008054. doi: 10.1002/adfm.202008054. PubMed DOI PMC
Turnlund J.R. Human Whole-Body Copper Metabolism. Am. J. Clin. Nutr. 1998;67:960S–964S. doi: 10.1093/ajcn/67.5.960S. PubMed DOI
Naz S., Gul A., Zia M. Toxicity of Copper Oxide Nanoparticles: A Review Study. IET Nanobiotechnol. 2020;14:1–13. doi: 10.1049/iet-nbt.2019.0176. PubMed DOI PMC
Hejazy M., Koohi M.K., Bassiri Mohamad Pour A., Najafi D. Toxicity of Manufactured Copper Nanoparticles—A Review. Nanomed. Res. J. 2018;3:1–9. doi: 10.22034/nmrj.2018.01.001. DOI
Sportelli M.C., Izzi M., Loconsole D., Sallustio A., Picca R.A., Felici R., Chironna M., Cioffi N. On the Efficacy of ZnO Nanostructures against SARS-CoV-2. Int. J. Mol. Sci. 2022;23:3040. doi: 10.3390/ijms23063040. PubMed DOI PMC
Munir M.U., Mikucioniene D., Khanzada H., Khan M.Q. Development of Eco-Friendly Nanomembranes of Aloe Vera/PVA/ZnO for Potential Applications in Medical Devices. Polymers. 2022;14:1029. doi: 10.3390/polym14051029. PubMed DOI PMC
Khanzada H., Salam A., Qadir M.B., Phan D.-N., Hassan T., Munir M.U., Pasha K., Hassan N., Khan M.Q., Kim I.S. Fabrication of Promising Antimicrobial Aloe Vera/PVA Electrospun Nanofibers for Protective Clothing. Materials. 2020;13:3884. doi: 10.3390/ma13173884. PubMed DOI PMC
Karagoz S., Kiremitler N.B., Sarp G., Pekdemir S., Salem S., Goksu A.G., Onses M.S., Sozdutmaz I., Sahmetlioglu E., Ozkara E.S., et al. Antibacterial, Antiviral, and Self-Cleaning Mats with Sensing Capabilities Based on Electrospun Nanofibers Decorated with ZnO Nanorods and Ag Nanoparticles for Protective Clothing Applications. ACS Appl. Mater. Interfaces. 2021;13:5678–5690. doi: 10.1021/acsami.0c15606. PubMed DOI
Nageh H., Emam M.H., Ali F., Abdel Fattah N.F., Taha M., Amin R., Kamoun E.A., Loutfy S.A., Kasry A. Zinc Oxide Nanoparticle-Loaded Electrospun Polyvinylidene Fluoride Nanofibers as a Potential Face Protector against Respiratory Viral Infections. ACS Omega. 2022;7:14887–14896. doi: 10.1021/acsomega.2c00458. PubMed DOI PMC
Pardo-Figuerez M., Chiva-Flor A., Figueroa-Lopez K., Prieto C., Lagaron J.M. Antimicrobial Nanofiber Based Filters for High Filtration Efficiency Respirators. Nanomaterials. 2021;11:900. doi: 10.3390/nano11040900. PubMed DOI PMC
Shakeel M., Jabeen F., Shabbir S., Asghar M.S., Khan M.S., Chaudhry A.S. Toxicity of Nano-Titanium Dioxide (TiO2-NP) Through Various Routes of Exposure: A Review. Biol. Trace Elem. Res. 2016;172:1–36. doi: 10.1007/s12011-015-0550-x. PubMed DOI
Hartati S., Zulfi A., Maulida P.Y.D., Yudhowijoyo A., Dioktyanto M., Saputro K.E., Noviyanto A., Rochman N.T. Synthesis of Electrospun PAN/TiO2/Ag Nanofibers Membrane As Potential Air Filtration Media with Photocatalytic Activity. ACS Omega. 2022;7:10516–10525. doi: 10.1021/acsomega.2c00015. PubMed DOI PMC
Bobo D., Robinson K.J., Islam J., Thurecht K.J., Corrie S.R. Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date. Pharm. Res. 2016;33:2373–2387. doi: 10.1007/s11095-016-1958-5. PubMed DOI
Abo-Zeid Y., Ismail N.S.M., McLean G.R., Hamdy N.M. A Molecular Docking Study Repurposes FDA Approved Iron Oxide Nanoparticles to Treat and Control COVID-19 Infection. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2020;153:105465. doi: 10.1016/j.ejps.2020.105465. PubMed DOI PMC
De Maio F., Palmieri V., Babini G., Augello A., Palucci I., Perini G., Salustri A., Spilman P., De Spirito M., Sanguinetti M., et al. Graphene Nanoplatelet and Graphene Oxide Functionalization of Face Mask Materials Inhibits Infectivity of Trapped SARS-CoV-2. iScience. 2021;24:102788. doi: 10.1016/j.isci.2021.102788. PubMed DOI PMC
Toledo G.G., Toledo V.H., Lanfredi A.J.C., Escote M., Champi A., Silva M. Promising Nanostructured Materials against Enveloped Virus. An. Acad. Bras. Ciências. 2020;92:e20200718. doi: 10.1590/0001-3765202020200718. PubMed DOI
Dahanayake M.H., Athukorala S.S., Jayasundera A.C.A. Recent Breakthroughs in Nanostructured Antiviral Coating and Filtration Materials: A Brief Review. RSC Adv. 2022;12:16369–16385. doi: 10.1039/D2RA01567F. PubMed DOI PMC
Fadeel B., Bussy C., Merino S., Vázquez E., Flahaut E., Mouchet F., Evariste L., Gauthier L., Koivisto A.J., Vogel U., et al. Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS Nano. 2018;12:10582–10620. doi: 10.1021/acsnano.8b04758. PubMed DOI
Estevan C., Vilanova E., Sogorb M.A. Case Study: Risk Associated to Wearing Silver or Graphene Nanoparticle-Coated Facemasks for Protection against COVID-19. Arch. Toxicol. 2022;96:105–119. doi: 10.1007/s00204-021-03187-w. PubMed DOI PMC
McGillicuddy E., Murray I., Kavanagh S., Morrison L., Fogarty A., Cormican M., Dockery P., Prendergast M., Rowan N., Morris D. Silver Nanoparticles in the Environment: Sources, Detection and Ecotoxicology. Sci. Total Environ. 2017;575:231–246. doi: 10.1016/j.scitotenv.2016.10.041. PubMed DOI
Gonzalez A., Aboubakr H.A., Brockgreitens J., Hao W., Wang Y., Goyal S.M., Abbas A. Durable Nanocomposite Face Masks with High Particulate Filtration and Rapid Inactivation of Coronaviruses. Sci. Rep. 2021;11:24318. doi: 10.1038/s41598-021-03771-1. PubMed DOI PMC
Reina G., Peng S., Jacquemin L., Andrade A.F., Bianco A. Hard Nanomaterials in Time of Viral Pandemics. ACS Nano. 2020;14:9364–9388. doi: 10.1021/acsnano.0c04117. PubMed DOI
Borkow G., Zhou S.S., Page T., Gabbay J. A Novel Anti-Influenza Copper Oxide Containing Respiratory Face Mask. PLoS ONE. 2010;5:e11295. doi: 10.1371/journal.pone.0011295. PubMed DOI PMC
Elizondo-Gonzalez R., Cruz-Suarez L.E., Ricque-Marie D., Mendoza-Gamboa E., Rodriguez-Padilla C., Trejo-Avila L.M. In Vitro Characterization of the Antiviral Activity of Fucoidan from Cladosiphon okamuranus against Newcastle Disease Virus. Virol. J. 2012;9:307. doi: 10.1186/1743-422X-9-307. PubMed DOI PMC
de Godoi A.M., Faccin-Galhardi L.C., Rechenchoski D.Z., Arruda T.B.M.G., Cunha A.P., de Almeida R.R., Rodrigues F.E.A., Ricardo N.M.P.S., Nozawa C., Linhares R.E.C. Structural Characterization and Antiviral Activity of Pectin Isolated from Inga Spp. Int. J. Biol. Macromol. 2019;139:925–931. doi: 10.1016/j.ijbiomac.2019.07.212. PubMed DOI
Ng C.S., Kasumba D.M., Fujita T., Luo H. Spatio-Temporal Characterization of the Antiviral Activity of the XRN1-DCP1/2 Aggregation against Cytoplasmic RNA Viruses to Prevent Cell Death. Cell Death Differ. 2020;27:2363–2382. doi: 10.1038/s41418-020-0509-0. PubMed DOI PMC
Park J.-G., Ávila-Pérez G., Nogales A., Blanco-Lobo P., de la Torre J.C., Martínez-Sobrido L. Identification and Characterization of Novel Compounds with Broad-Spectrum Antiviral Activity against Influenza A and B Viruses. J. Virol. 2020;94:e02149-19. doi: 10.1128/JVI.02149-19. PubMed DOI PMC
Dong C.-X., Hayashi K., Lee J.-B., Hayashi T. Characterization of Structures and Antiviral Effects of Polysaccharides from Portulaca oleracea L. Chem. Pharm. Bull. 2010;58:507–510. doi: 10.1248/cpb.58.507. PubMed DOI
Sun Q.-L., Li Y., Ni L.-Q., Li Y.-X., Cui Y.-S., Jiang S.-L., Xie E.-Y., Du J., Deng F., Dong C.-X. Structural Characterization and Antiviral Activity of Two Fucoidans from the Brown Algae Sargassum henslowianum. Carbohydr. Polym. 2020;229:115487. doi: 10.1016/j.carbpol.2019.115487. PubMed DOI
Ibrahim N., Moussa A.Y. A Comparative Volatilomic Characterization of Florence Fennel from Different Locations: Antiviral Prospects. Food Funct. 2021;12:1498–1515. doi: 10.1039/D0FO02897E. PubMed DOI
Chen R., Zhang W., Gong M., Wang F., Wu H., Liu W., Gao Y., Liu B., Chen S., Lu W., et al. Characterization of an Antiviral Component in Human Seminal Plasma. Front. Immunol. 2021;12:580454. doi: 10.3389/fimmu.2021.580454. PubMed DOI PMC
Demchenko V., Rybalchenko N., Zahorodnia S., Naumenko K., Riabov S., Kobylinskyi S., Vashchuk A., Mamunya Y., Iurzhenko M., Demchenko O., et al. Preparation, Characterization, and Antimicrobial and Antiviral Properties of Silver-Containing Nanocomposites Based on Polylactic Acid–Chitosan. ACS Appl. Bio Mater. 2022;5:2576–2585. doi: 10.1021/acsabm.2c00034. PubMed DOI
Uraki R., Kiso M., Iida S., Imai M., Takashita E., Kuroda M., Halfmann P.J., Loeber S., Maemura T., Yamayoshi S., et al. Characterization and Antiviral Susceptibility of SARS-CoV-2 Omicron BA.2. Nature. 2022;607:119–127. doi: 10.1038/s41586-022-04856-1. PubMed DOI PMC
Hwang H.-J., Han J.-W., Jeon H., Cho K., Kim J., Lee D.-S., Han J.W. Characterization of a Novel Mannose-Binding Lectin with Antiviral Activities from Red Alga, Grateloupia chiangii. Biomolecules. 2020;10:333. doi: 10.3390/biom10020333. PubMed DOI PMC
Liu W., Caglar M.U., Mao Z., Woodman A., Arnold J.J., Wilke C.O., Cameron C.E. More than Efficacy Revealed by Single-Cell Analysis of Antiviral Therapeutics. Sci. Adv. 2019;5:eaax4761. doi: 10.1126/sciadv.aax4761. PubMed DOI PMC
Serrano-Aroca Á. Antiviral Characterization of Advanced Materials: Use of Bacteriophage Phi 6 as Surrogate of Enveloped Viruses Such as SARS-CoV-2. Int. J. Mol. Sci. 2022;23:5335. doi: 10.3390/ijms23105335. PubMed DOI PMC
Li B., Huang Y., Guo D., Liu Y., Liu Z., Han J.C., Zhao J., Zhu X., Huang Y., Wang Z., et al. Environmental Risks of Disposable Face Masks during the Pandemic of COVID-19: Challenges and Management. Sci. Total Environ. 2022;825:153880. doi: 10.1016/j.scitotenv.2022.153880. PubMed DOI PMC
Ray S.S., Lee H.K., Huyen D.T.T., Chen S.S., Kwon Y.N. Microplastics Waste in Environment: A Perspective on Recycling Issues from PPE Kits and Face Masks during the COVID-19 Pandemic. Environ. Technol. Innov. 2022;26:102290. doi: 10.1016/j.eti.2022.102290. PubMed DOI PMC
Abedin M.J., Khandaker M.U., Uddin M.R., Karim M.R., Ahamad M.S.U., Islam M.A., Arif A.M., Sulieman A., Idris A.M. PPE Pollution in the Terrestrial and Aquatic Environment of the Chittagong City Area Associated with the COVID-19 Pandemic and Concomitant Health Implications. Environ. Sci. Pollut. Res. 2022;29:27521–27533. doi: 10.1007/s11356-021-17859-8. PubMed DOI PMC
Chen Z., Zhang W., Yang H., Min K., Jiang J., Lu D., Huang X., Qu G., Liu Q., Jiang G. A Pandemic-Induced Environmental Dilemma of Disposable Masks: Solutions from the Perspective of the Life Cycle. Environ. Sci. Process. Impacts. 2022;24:649–674. doi: 10.1039/D1EM00509J. PubMed DOI
Hatami T., Rakib M.R.J., Madadi R., De-la-Torre G.E., Idris A.M. Personal Protective Equipment (PPE) Pollution in the Caspian Sea, the Largest Enclosed Inland Water Body in the World. Sci. Total Environ. 2022;824:153771. doi: 10.1016/j.scitotenv.2022.153771. PubMed DOI PMC
Pizarro-Ortega C.I., Dioses-Salinas D.C., Fernández Severini M.D., Forero López A.D., Rimondino G.N., Benson N.U., Dobaradaran S., De-la-Torre G.E. Degradation of Plastics Associated with the COVID-19 Pandemic. Mar. Pollut. Bull. 2022;176:113474. doi: 10.1016/j.marpolbul.2022.113474. PubMed DOI PMC
Asim N., Badiei M., Sopian K. Review of the Valorization Options for the Proper Disposal of Face Masks during the COVID-19 Pandemic. Environ. Technol. Innov. 2021;23:101797. doi: 10.1016/j.eti.2021.101797. PubMed DOI PMC
Anastopoulos I., Pashalidis I. Single-Use Surgical Face Masks, as a Potential Source of Microplastics: Do They Act as Pollutant Carriers? J. Mol. Liq. 2021;326:115247. doi: 10.1016/j.molliq.2020.115247. PubMed DOI PMC
Wang D., Sun B.C., Wang J.X., Zhou Y.Y., Chen Z.W., Fang Y., Yue W.H., Liu S.M., Liu K.Y., Zeng X.F., et al. Can Masks Be Reused after Hot Water Decontamination during the COVID-19 Pandemic? Engineering. 2020;6:1115–1121. doi: 10.1016/j.eng.2020.05.016. PubMed DOI PMC
Zhong H., Zhu Z., Lin J., Cheung C.F., Lu V.L., Yan F., Chan C.-Y., Li G. Reusable and Recyclable Graphene Masks with Outstanding Superhydrophobic and Photothermal Performances. ACS Nano. 2020;14:6221. doi: 10.1021/acsnano.0c02250. PubMed DOI
Mask Use in the Context of COVID-19. World Helath Organization (WHO), December 2020. [(accessed on 25 May 2022)]. Available online: https://apps.who.int/iris/handle/10665/337199.
Layman J.M., Gunnerson M., Schonemann H., Williams K. Method for Purifying Contaminated Polypropylene. US 9834621 B2. 2017 December 5;
Jain S., Yadav Lamba B., Kumar S., Singh D. Strategy for Repurposing of Disposed PPE Kits by Production of Biofuel: Pressing Priority amidst COVID-19 Pandemic. Biofuels. 2022;13:545–549. doi: 10.1080/17597269.2020.1797350. DOI
Water, Sanitation, Hygiene, and Waste Management for SARS-CoV-2, the Virus That Causes COVID-19. [(accessed on 25 May 2022)]. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-IPC-WASH-2020.4.
Andrady A.L., Neal M.A. Applications and Societal Benefits of Plastics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009;364:1977–1984. doi: 10.1098/rstb.2008.0304. PubMed DOI PMC
Everaert K., Baeyens J. The Formation and Emission of Dioxins in Large Scale Thermal Processes. Chemosphere. 2002;46:439–448. doi: 10.1016/S0045-6535(01)00143-6. PubMed DOI
Hadi A.J., Najmuldeen G.F., Ahmed I. Polyolefins Waste Materials Reconditioning Using Dissolution/Reprecipitation Method. APCBEE Procedia. 2012;3:281–286. doi: 10.1016/j.apcbee.2012.06.083. DOI
Assefa Aragaw T., Mekonnen B.A. Current Plastics Pollution Threats due to COVID-19 and Its Possible Mitigation Techniques: A Waste-to-Energy Conversion via Pyrolysis. Environ. Syst. Res. 2021;10:8. doi: 10.1186/s40068-020-00217-x. PubMed DOI PMC
Lee S.B., Lee J., Tsang Y.F., Kim Y.M., Jae J., Jung S.C., Park Y.K. Production of Value-Added Aromatics from Wasted COVID-19 Mask via Catalytic Pyrolysis. Environ. Pollut. 2021;283:117060. doi: 10.1016/j.envpol.2021.117060. PubMed DOI
Jung S.-H., Cho M.-H., Kang B.-S., Kim J.-S. Pyrolysis of a Fraction of Waste Polypropylene and Polyethylene for the Recovery of BTX Aromatics Using a Fluidized Bed Reactor. Fuel Process. Technol. 2010;91:277–284. doi: 10.1016/j.fuproc.2009.10.009. DOI
Mondal S. Environmental Catastrophe amidst COVID-19 Pandemic: Disposal and Management of PPE Kits for the Production of Biofuel with the Sustainable Approach in Solar Thermal Energy. Mater. Today Proc. 2022;64:1266–1271. doi: 10.1016/j.matpr.2022.03.721. PubMed DOI PMC
Vollmer I., Jenks M.J.F., Roelands M.C.P., White R.J., van Harmelen T., de Wild P., van der Laan G.P., Meirer F., Keurentjes J.T.F., Weckhuysen B.M. Beyond Mechanical Recycling: Giving New Life to Plastic Waste. Angew. Chem. Int. Ed. 2020;59:15402–15423. doi: 10.1002/anie.201915651. PubMed DOI PMC
Zhuo C., Levendis Y.A. Upcycling Waste Plastics into Carbon Nanomaterials: A Review. J. Appl. Polym. Sci. 2014;131:39131. doi: 10.1002/app.39931. DOI
Yuwen C., Liu B., Rong Q., Zhang L., Guo S. Porous Carbon Materials Derived from Discarded COVID-19 Masks via Microwave Solvothermal Method for Lithium-sulfur Batteries. Sci. Total Environ. 2022;817:152995. doi: 10.1016/j.scitotenv.2022.152995. PubMed DOI
Hu X., Lin Z. Transforming Waste Polypropylene Face Masks into S-Doped Porous Carbon as the Cathode Electrode for Supercapacitors. Ionics. 2021;27:2169–2179. doi: 10.1007/s11581-021-03949-7. PubMed DOI PMC
Yang W., Cao L., Li W., Du X., Lin Z., Zhang P. Carbon Nanotube Prepared by Catalytic Pyrolysis as the Electrode for Supercapacitors from Polypropylene Wasted Face Masks. Ionics. 2022;28:3489–3500. doi: 10.1007/s11581-022-04567-7. PubMed DOI PMC
Martínez-Lera S., Pallarés Ranz J. On the Development of a Polyolefin Gasification Modelling Approach. Fuel. 2017;197:518–527. doi: 10.1016/j.fuel.2017.02.032. DOI
Saebea D., Ruengrit P., Arpornwichanop A., Patcharavorachot Y. Gasification of Plastic Waste for Synthesis Gas Production. Energy Rep. 2020;6:202–207. doi: 10.1016/j.egyr.2019.08.043. DOI
Farooq A., Lee J., Song H., Ko C.H., Lee I.H., Kim Y.M., Rhee G.H., Pyo S., Park Y.K. Valorization of Hazardous COVID-19 Mask Waste While Minimizing Hazardous Byproducts Using Catalytic Gasification. J. Hazard. Mater. 2022;423:127222. doi: 10.1016/j.jhazmat.2021.127222. PubMed DOI
Battegazzore D., Cravero F., Frache A. Is It Possible to Mechanical Recycle the Materials of the Disposable Filtering Masks? Polymers. 2020;12:2726. doi: 10.3390/polym12112726. PubMed DOI PMC
Achilias D.S., Giannoulis A., Papageorgiou G.Z. Recycling of Polymers from Plastic Packaging Materials Using the Dissolution–Reprecipitation Technique. Polym. Bull. 2009;63:449–465. doi: 10.1007/s00289-009-0104-5. DOI
Arkan J.H., Ghazi Faisal N., Kamal Bin Y. Dissolution/Reprecipitation Technique for Waste Polyolefin Recycling Using New Pure and Blend Organic Solvents. J. Polym. Eng. 2013;33:471–481. doi: 10.1515/polyeng-2013-0027. DOI
Kampouris E.M., Papaspyrides C.D., Lekakou C.N. A Model Recovery Process for Scrap Polystyrene Foam by Means of Solvent Systems. Conserv. Recycl. 1987;10:315–319. doi: 10.1016/0361-3658(87)90062-2. DOI
ISOPREP Project: Ionic Solvent-Based Recycling of Polypropylene Products (Grant number 820787, EU HORIZON 2020) [(accessed on 25 May 2022)]. Available online: https://www.isoprep.co.uk/
Goodship V., Okoth Ogur E. In: Polymer Processing with Supercritical Fluids. Humphreys S., editor. Volume 15 Rapra Technology Publisher; Shrewsbury, UK: 2004.
Goto M. Chemical Recycling of Plastics Using Sub- and Supercritical Fluids. J. Supercrit. Fluids. 2009;47:500–507. doi: 10.1016/j.supflu.2008.10.011. DOI
Chin A.W.H., Chu J.T.S., Perera M.R.A., Hui K.P.Y., Yen H.L., Chan M.C.W., Peiris M., Poon L.L.M. Stability of SARS-CoV-2 in Different Environmental Conditions. Lancet Microbe. 2020;1:e10. doi: 10.1016/S2666-5247(20)30003-3. PubMed DOI PMC
Idrees M., Akbar A., Mohamed A.M., Fathi D., Saeed F. Recycling of Waste Facial Masks as a Construction Material, a Step towards Sustainability. Materials. 2022;15:1810. doi: 10.3390/ma15051810. PubMed DOI PMC
Wang G., Li J., Saberian M., Rahat M.H.H., Massarra C., Buckhalter C., Farrington J., Collins T., Johnson J. Use of COVID-19 Single-Use Face Masks to Improve the Rutting Resistance of Asphalt Pavement. Sci. Total Environ. 2022;826:154118. doi: 10.1016/j.scitotenv.2022.154118. PubMed DOI PMC
Saberian M., Li J., Kilmartin-Lynch S., Boroujeni M. Repurposing of COVID-19 Single-Use Face Masks for Pavements Base/Subbase. Sci. Total Environ. 2021;769:145527. doi: 10.1016/j.scitotenv.2021.145527. PubMed DOI PMC
López Seguí F., Franch Parella J., Gironès García X., Mendioroz Peña J., García Cuyàs F., Adroher Mas C., García-Altés A., Vidal-Alaball J. A Cost-Minimization Analysis of a Medical Record-Based, Store and Forward and Provider-to-Provider Telemedicine Compared to Usual Care in Catalonia: More Agile and Efficient, Especially for Users. Int. J. Environ. Res. Public Health. 2020;17:2008. doi: 10.3390/ijerph17062008. PubMed DOI PMC
Vidal-Alaball J., Acosta-Roja R., Pastor Hernández N., Sanchez Luque U., Morrison D., Narejos Pérez S., Perez-Llano J., Salvador Vèrges A., López Seguí F. Telemedicine in the Face of the COVID-19 Pandemic. Aten. Primaria. 2020;52:418–422. doi: 10.1016/j.aprim.2020.04.003. PubMed DOI PMC
Alberghini M., Hong S., Lozano L.M., Korolovych V., Huang Y., Signorato F., Zandavi S.H., Fucetola C., Uluturk I., Tolstorukov M.Y., et al. Sustainable Polyethylene Fabrics with Engineered Moisture Transport for Passive Cooling. Nat. Sustain. 2021;4:715–724. doi: 10.1038/s41893-021-00688-5. DOI
Carpi F., De Rossi D. Electroactive Polymer-Based Devices for e-Textiles in Biomedicine. IEEE Trans. Inf. Technol. Biomed. 2005;9:295–318. doi: 10.1109/TITB.2005.854514. PubMed DOI
Catrysse M., Puers R., Hertleer C., Van Langenhove L., van Egmond H., Matthys D. Towards the Integration of Textile Sensors in a Wireless Monitoring Suit. Sens. Actuators Phys. 2004;114:302–311. doi: 10.1016/j.sna.2003.10.071. DOI
Chen G., Li Y., Bick M., Chen J. Smart Textiles for Electricity Generation. Chem. Rev. 2020;120:3668–3720. doi: 10.1021/acs.chemrev.9b00821. PubMed DOI
Chen G., Zhao X., Andalib S., Xu J., Zhou Y., Tat T., Lin K., Chen J. Discovering Giant Magnetoelasticity in Soft Matter for Electronic Textiles. Matter. 2021;4:3725–3740. doi: 10.1016/j.matt.2021.09.012. PubMed DOI PMC
Libanori A., Chen G., Zhao X., Zhou Y., Chen J. Smart Textiles for Personalized Healthcare. Nat. Electron. 2022;5:142–156. doi: 10.1038/s41928-022-00723-z. DOI
Post E.R., Orth M., Russo P.R., Gershenfeld N. E-Broidery: Design and Fabrication of Textile-Based Computing. IBM Syst. J. 2000;39:840–860. doi: 10.1147/sj.393.0840. DOI
Sundaram S., Kellnhofer P., Li Y., Zhu J.-Y., Torralba A., Matusik W. Learning the Signatures of the Human Grasp Using a Scalable Tactile Glove. Nature. 2019;569:698–702. doi: 10.1038/s41586-019-1234-z. PubMed DOI
Meng K., Zhao S., Zhou Y., Wu Y., Zhang S., He Q., Wang X., Zhou Z., Fan W., Tan X., et al. A Wireless Textile-Based Sensor System for Self-Powered Personalized Health Care. Matter. 2020;2:896–907. doi: 10.1016/j.matt.2019.12.025. DOI
Cho S., Chang T., Yu T., Lee C.H. Smart Electronic Textiles for Wearable Sensing and Display. Biosensors. 2022;12:222. doi: 10.3390/bios12040222. PubMed DOI PMC
Singha K., Kumar J., Pandit P. Recent Advancements in Wearable & Smart Textiles: An Overview. Mater. Today Proc. 2019;16:1518–1523. doi: 10.1016/j.matpr.2019.05.334. DOI
Gao J., Fan Y., Zhang Q., Luo L., Hu X., Li Y., Song J., Jiang H., Gao X., Zheng L., et al. Ultra-Robust and Extensible Fibrous Mechanical Sensors for Wearable Smart Healthcare. Adv. Mater. 2022;34:2107511. doi: 10.1002/adma.202107511. PubMed DOI
Shilo S., Rossman H., Segal E. Axes of a Revolution: Challenges and Promises of Big Data in Healthcare. Nat. Med. 2020;26:29–38. doi: 10.1038/s41591-019-0727-5. PubMed DOI
Qiu J., Yu T., Zhang W., Zhao Z., Zhang Y., Ye G., Zhao Y., Du X., Liu X., Yang L., et al. A Bioinspired, Durable, and Nondisposable Transparent Graphene Skin Electrode for Electrophysiological Signal Detection. ACS Mater. Lett. 2020;2:999–1007. doi: 10.1021/acsmaterialslett.0c00203. DOI
Kim J.-H., Marcus C., Ono R., Sadat D., Mirzazadeh A., Jens M., Fernandez S., Zheng S., Durak T., Dagdeviren C. A Conformable Sensory Face Mask for Decoding Biological and Environmental Signals. Nat. Electron. 2022;5:794–807. doi: 10.1038/s41928-022-00851-6. DOI
Castano L.M., Flatau A.B. Smart Fabric Sensors and E-Textile Technologies: A Review. Smart Mater. Struct. 2014;23:053001. doi: 10.1088/0964-1726/23/5/053001. DOI
Üner İ., Gürcüm B.H. Conductive Ink Applications on Electronic Textiles. Pamukkale Univ. J. Eng. Sci. 2019;25:794–804. doi: 10.5505/pajes.2019.55890. DOI
Kim H., Kim Y., Kim B., Yoo H.-J. A Wearable Fabric Computer by Planar-Fashionable Circuit Board Technique; Proceedings of the 2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks; Berkeley, CA, USA. 3–5 June 2009; pp. 282–285.
Stoppa M., Chiolerio A. Wearable Electronics and Smart Textiles: A Critical Review. Sensors. 2014;14:11957–11992. doi: 10.3390/s140711957. PubMed DOI PMC
Beedasy V., Smith P.J. Printed Electronics as Prepared by Inkjet Printing. Materials. 2020;13:704. doi: 10.3390/ma13030704. PubMed DOI PMC
InnovationLab: Textiles Feel the Pressure. [(accessed on 5 July 2022)]. Available online: https://www.innovationlab.de/de/leistungen/textiles-feel-the-pressure-1/
Chen J., Zhang J., Hu J., Luo N., Sun F., Venkatesan H., Zhao N., Zhang Y. Ultrafast-Response/Recovery Flexible Piezoresistive Sensors with DNA-Like Double Helix Yarns for Epidermal Pulse Monitoring. Adv. Mater. 2022;34:2104313. doi: 10.1002/adma.202104313. PubMed DOI
Rajan G., Morgan J.J., Murphy C., Torres Alonso E., Wade J., Ott A.K., Russo S., Alves H., Craciun M.F., Neves A.I.S. Low Operating Voltage Carbon–Graphene Hybrid E-Textile for Temperature Sensing. ACS Appl. Mater. Interfaces. 2020;12:29861–29867. doi: 10.1021/acsami.0c08397. PubMed DOI
Chen M., He Y., Liang H., Zhou H., Wang X., Heng X., Zhang Z., Gan J., Yang Z. Stretchable and Strain-Decoupled Fluorescent Optical Fiber Sensor for Body Temperature and Movement Monitoring. ACS Photonics. 2022;9:1415–1424. doi: 10.1021/acsphotonics.2c00249. DOI
Macagnano A., Zampetti E., Pantalei S., De Cesare F., Bearzotti A., Persaud K.C. Nanofibrous PANI-Based Conductive Polymers for Trace Gas Analysis. Thin Solid Films. 2011;520:978–985. doi: 10.1016/j.tsf.2011.04.175. DOI
Lin Q., Li Y., Yang M. Polyaniline Nanofiber Humidity Sensor Prepared by Electrospinning. Sens. Actuators B Chem. 2012;161:967–972. doi: 10.1016/j.snb.2011.11.074. DOI
Bishop-Haynes A., Gouma P. Electrospun Polyaniline Composites for NO2 Detection. Mater. Manuf. Process. 2007;22:764–767. doi: 10.1080/10426910701385408. DOI
Ji S., Li Y., Yang M. Gas Sensing Properties of a Composite Composed of Electrospun Poly(Methyl Methacrylate) Nanofibers and in situ Polymerized Polyaniline. Sens. Actuators B Chem. 2008;133:644–649. doi: 10.1016/j.snb.2008.03.040. DOI
Hohnholz D., MacDiarmid A.G., Sarno D.M., Wayne E., Jones J. Uniform Thin Films of Poly-3,4-Ethylenedioxythiophene (PEDOT) Prepared by in-Situ Deposition. Chem. Commun. 2001;23:2444–2445. doi: 10.1039/b107130k. PubMed DOI
Salimi K., Usta D.D., Koçer İ., Çelik E., Tuncel A. Highly Selective Magnetic Affinity Purification of Histidine-Tagged Proteins by Ni2+ Carrying Monodisperse Composite Microspheres. RSC Adv. 2017;7:8718–8726. doi: 10.1039/C6RA27736E. DOI
Guler Z., Silva J.C., Sezai Sarac A. RGD Functionalized Poly(ε-Caprolactone)/Poly(m-Anthranilic Acid) Electrospun Nanofibers as High-Performing Scaffolds for Bone Tissue Engineering RGD Functionalized PCL/P3ANA Nanofibers. Int. J. Polym. Mater. Polym. Biomater. 2017;66:139–148. doi: 10.1080/00914037.2016.1190929. DOI
Selcan Gungor-Ozkerim P., Balkan T., Kose G.T., Sezai Sarac A., Kok F.N. Incorporation of Growth Factor Loaded Microspheres into Polymeric Electrospun Nanofibers for Tissue Engineering Applications. J. Biomed. Mater. Res. A. 2014;102:1897–1908. doi: 10.1002/jbm.a.34857. PubMed DOI
Gencturk A., Kahraman E., Güngör S., Özhan G., Özsoy Y., Sarac A.S. Polyurethane/Hydroxypropyl Cellulose Electrospun Nanofiber Mats as Potential Transdermal Drug Delivery System: Characterization Studies and in Vitro Assays. Artif. Cells Nanomed. Biotechnol. 2017;45:655–664. doi: 10.3109/21691401.2016.1173047. PubMed DOI
Golshaei R., Guler Gokce Z., Ghoreishi S.M., Sezai Sarac A. Au/PANA/PVAc and Au/P(ANA-Co-CNTA)/PVAc Electrospun Nanofibers as Tyrosinase Immobilization Supports. Int. J. Polym. Mater. Polym. Biomater. 2017;66:658–668. doi: 10.1080/00914037.2016.1252360. DOI
Pamuk O.N., Tsokos G.C. Spleen Tyrosine Kinase Inhibition in the Treatment of Autoimmune, Allergic and Autoinflammatory Diseases. Arthritis Res. Ther. 2010;12:222. doi: 10.1186/ar3198. PubMed DOI PMC
Gu B.K., Ismail Y.A., Spinks G.M., Kim S.I., So I., Kim S.J. A Linear Actuation of Polymeric Nanofibrous Bundle for Artificial Muscles. Chem. Mater. 2009;21:511–515. doi: 10.1021/cm802377d. DOI
Giray D., Balkan T., Dietzel B., Sezai Sarac A. Electrochemical Impedance Study on Nanofibers of Poly(m-Anthranilic Acid)/Polyacrylonitrile Blends. Eur. Polym. J. 2013;49:2645–2653. doi: 10.1016/j.eurpolymj.2013.06.012. DOI
Idumah C.I. Influence of Nanotechnology in Polymeric Textiles, Applications, and Fight against COVID-19. J. Text. Inst. 2021;112:2056–2076. doi: 10.1080/00405000.2020.1858600. DOI
Ünsal Ö.F., Altın Y., Çelik Bedeloğlu A. Poly(Vinylidene Fluoride) Nanofiber-Based Piezoelectric Nanogenerators Using Reduced Graphene Oxide/Polyaniline. J. Appl. Polym. Sci. 2020;137:48517. doi: 10.1002/app.48517. DOI
Khan A.A., Mahmud A., Ban D. Evolution from Single to Hybrid Nanogenerator: A Contemporary Review on Multimode Energy Harvesting for Self-Powered Electronics. IEEE Trans. Nanotechnol. 2019;18:21–36. doi: 10.1109/TNANO.2018.2876824. DOI
Zhao Z., Dai Y., Dou S.X., Liang J. Flexible Nanogenerators for Wearable Electronic Applications Based on Piezoelectric Materials. Mater. Today Energy. 2021;20:100690. doi: 10.1016/j.mtener.2021.100690. DOI
Zhang D., Wang D., Xu Z., Zhang X., Yang Y., Guo J., Zhang B., Zhao W. Diversiform Sensors and Sensing Systems Driven by Triboelectric and Piezoelectric Nanogenerators. Coord. Chem. Rev. 2021;427:213597. doi: 10.1016/j.ccr.2020.213597. DOI
Yu J., Hou X., Cui M., Zhang S., He J., Geng W., Mu J., Chou X. Highly Skin-Conformal Wearable Tactile Sensor Based on Piezoelectric-Enhanced Triboelectric Nanogenerator. Nano Energy. 2019;64:103923. doi: 10.1016/j.nanoen.2019.103923. DOI
Awotunde J.B., Jimoh R.G., AbdulRaheem M., Oladipo I.D., Folorunso S.O., Ajamu G.J. IoT-Based Wearable Body Sensor Network for COVID-19 Pandemic. Stud. Syst. Decis. Control. 2022;378:253–275. doi: 10.1007/978-3-030-77302-1_14. DOI
Ali S., Singh R.P., Javaid M., Haleem A., Pasricha H., Suman R., Karloopia J. A Review of the Role of Smart Wireless Medical Sensor Network in COVID-19. J. Ind. Integr. Manag. 2020;5:413–425. doi: 10.1142/S2424862220300069. DOI
Su Y., Chen G., Chen C., Gong Q., Xie G., Yao M., Tai H., Jiang Y., Chen J. Self-Powered Respiration Monitoring Enabled By a Triboelectric Nanogenerator. Adv. Mater. 2021;33:2101262. doi: 10.1002/adma.202101262. PubMed DOI
Kong L., Li T., Hng H., Boey F., Zhang T., Li S. Waste Energy Harvesting: Mechanical and Thermal Energies. Springer; Berlin/Heidelberg, Germany: 2014.
Xue H., Yang Q., Wang D., Luo W., Wang W., Lin M., Liang D., Luo Q. A Wearable Pyroelectric Nanogenerator and Self-Powered Breathing Sensor. Nano Energy. 2017;38:147–154. doi: 10.1016/j.nanoen.2017.05.056. DOI
Lin S., Wang S., Yang W., Chen S., Xu Z., Mo X., Zhou H., Duan J., Hu B., Huang L. Trap-Induced Dense Monocharged Perfluorinated Electret Nanofibers for Recyclable Multifunctional Healthcare Mask. ACS Nano. 2021;15:5486–5494. doi: 10.1021/acsnano.1c00238. PubMed DOI
Lu Q., Chen H., Zeng Y., Xue J., Cao X., Wang N., Wang Z. Intelligent Facemask Based on Triboelectric Nanogenerator for Respiratory Monitoring. Nano Energy. 2022;91:106612. doi: 10.1016/j.nanoen.2021.106612. PubMed DOI PMC
Heo J.S., Eom J., Kim Y.-H., Park S.K. Recent Progress of Textile-Based Wearable Electronics: A Comprehensive Review of Materials, Devices, and Applications. Small. 2018;14:1703034. doi: 10.1002/smll.201703034. PubMed DOI
Bashshur R., Doarn C.R., Frenk J.M., Kvedar J.C., Woolliscroft J.O. Telemedicine and the COVID-19 Pandemic, Lessons for the Future. Telemed. E-Health. 2020;26:571–573. doi: 10.1089/tmj.2020.29040.rb. PubMed DOI
Veske P., Ilén E. Review of the End-of-Life Solutions in Electronics-Based Smart Textiles. J. Text. Inst. 2021;112:1500–1513. doi: 10.1080/00405000.2020.1825176. DOI
Smart Textiles Market with COVID-19 Impact Analysis—Global Forecast to 2026. [(accessed on 8 July 2022)]. Available online: https://www.asdreports.com/market-research-report-592044/smart-textiles-market-with-covid-impact-analysis-global-forecast.
COVID-19 Boosts Use of Wearable Tech Devices and Physicians Are Sceptical. [(accessed on 8 July 2022)]. Available online: https://www.medicaldevice-network.com/comment/covid-19-wearable-devices/
Panicker R.M., Chandrasekaran B. “Wearables on Vogue”: A Scoping Review on Wearables on Physical Activity and Sedentary Behavior during COVID-19 Pandemic. Sport Sci. Health. 2022;18:641–657. doi: 10.1007/s11332-021-00885-x. PubMed DOI PMC
Myant Unveils SKIIN Smart Clothing Platform at CES. [(accessed on 8 July 2022)]. Available online: http://www.fibre2fashion.com/news/apparel-news/myant-unveils-skiin-smart-clothing-platform-at-ces-240023-newsdetails.htm.
COVID-19: Redefining Our Present and Future Attitudes towards Hygiene. Myant Health. [(accessed on 17 March 2023)]. Available online: https://myanthealth.com/blogs/latest-developments-myant/covid-19-redefining-our-present-and-future-attitudes-towards-hygiene.
Einzigartig: FFP2-Masken aus Lustenau. vorarlberg.ORF.at. [(accessed on 17 March 2023)]. Available online: https://vorarlberg.orf.at/stories/3138578/
Osmotex Steriliser—Osmotex. [(accessed on 8 July 2022)]. Available online: https://osmotex.ch/osmotex-steriliser/
Hexoskin Hexoskin Supports Medical Research and COVID-19 Response. [(accessed on 17 March 2023)]. Available online: https://www.hexoskin.com/pages/hexoskin-to-support-medical-research-and-covid-19-response.
Maturolife. [(accessed on 17 March 2023)]. Available online: https://maturolife.eu/
Ready to Wear—Wearable Medical Devices Are Becoming Fixtures in Everyday Life. [(accessed on 8 July 2022)]. Available online: https://www.mddionline.com/digital-health/ready-wear-wearable-medical-devices-are-becoming-fixtures-everyday-life.
COVID-19 Has Accelerated the Need for Non-Contact Monitoring. [(accessed on 8 July 2022)]. Available online: https://www.textilemedia.com/about-us/latest-news/covid-19-has-accelerated-the-need-for-non-contact-monitoring/
SimpleSense, by Nanowear. [(accessed on 8 July 2022)]. Available online: https://www.nanowearinc.com/simplesense.
Home. [(accessed on 5 July 2022)]. Available online: https://www.masken-test.at/
Grabher Group GmbH. [(accessed on 5 July 2022)]. Available online: https://www.grabher-group.company/
V-Tron Cable Electronic Services and Assembly—V-Tron Electronics. [(accessed on 8 July 2022)]. Available online: https://www.v-tron.com/
Vorarlberger FFP2 Atemschutzmasken—VORARLBERGER ATEMSCHUTZMASKEN. [(accessed on 5 July 2022)]. Available online: https://www.vprotect.at/en.
Khan A., Winder M., Hossain G. Modified Graphene-Based Nanocomposite Material for Smart Textile Biosensor to Detect Lactate from Human Sweat. Biosens. Bioelectron. X. 2022;10:100103. doi: 10.1016/j.biosx.2021.100103. DOI
Stanborough T., Given F.M., Koch B., Sheen C.R., Stowers-Hull A.B., Waterland M.R., Crittenden D.L. Optical Detection of CoV-SARS-2 Viral Proteins to Sub-Picomolar Concentrations. ACS Omega. 2021;6:6404–6413. doi: 10.1021/acsomega.1c00008. PubMed DOI PMC
Karakuş E., Erdemir E., Demirbilek N., Liv L. Colorimetric and Electrochemical Detection of SARS-CoV-2 Spike Antigen with a Gold Nanoparticle-Based Biosensor. Anal. Chim. Acta. 2021;1182:338939. doi: 10.1016/j.aca.2021.338939. PubMed DOI PMC
Kumar N., Shetti N.P., Jagannath S., Aminabhavi T.M. Electrochemical Sensors for the Detection of SARS-CoV-2 Virus. Chem. Eng. J. 2022;430:132966. doi: 10.1016/j.cej.2021.132966. PubMed DOI PMC
Nanowear. [(accessed on 8 July 2022)]. Available online: https://www.nanowearinc.com/%20a.