The effect of climate change on avian offspring production: A global meta-analysis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu metaanalýza, časopisecké články, práce podpořená grantem
PubMed
37126701
PubMed Central
PMC10175715
DOI
10.1073/pnas.2208389120
Knihovny.cz E-zdroje
- Klíčová slova
- birds, climate change, meta-analysis, offspring production,
- MeSH
- klimatické změny * MeSH
- kur domácí MeSH
- roční období MeSH
- rozmnožování MeSH
- zvířata MeSH
- zvláštnosti životní historie * MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
Climate change affects timing of reproduction in many bird species, but few studies have investigated its influence on annual reproductive output. Here, we assess changes in the annual production of young by female breeders in 201 populations of 104 bird species (N = 745,962 clutches) covering all continents between 1970 and 2019. Overall, average offspring production has declined in recent decades, but considerable differences were found among species and populations. A total of 56.7% of populations showed a declining trend in offspring production (significant in 17.4%), whereas 43.3% exhibited an increase (significant in 10.4%). The results show that climatic changes affect offspring production through compounded effects on ecological and life history traits of species. Migratory and larger-bodied species experienced reduced offspring production with increasing temperatures during the chick-rearing period, whereas smaller-bodied, sedentary species tended to produce more offspring. Likewise, multi-brooded species showed increased breeding success with increasing temperatures, whereas rising temperatures were unrelated to reproductive success in single-brooded species. Our study suggests that rapid declines in size of bird populations reported by many studies from different parts of the world are driven only to a small degree by changes in the production of young.
Arctic Centre University of Groningen Groningen 9718CW the Netherlands
Bioeconomy Research Team Novia University of Applied Sciences Raseborg FI 10600 Finland
Biology Department Bates College Lewiston ME 04240
Biology Department Grand Valley State University Allendale MI 49401 9403
British Antarctic Survey Natural Environment Research Council Cambridge CB3 0ET UK
Center for the Advanced Study of Collective Behaviour University of Konstanz Konstanz 78457 Germany
Centre for Conservation Science Royal Society for the Protection of Birds Aberdeen AB10 1YP UK
Conservation Services Division Ezemvelo KwaZulu Natal Wildlife Cascades 3202 South Africa
Cornell Lab of Ornithology Cornell University Ithaca NY 14850
Departament de Vertebrats Museu de Ciències Naturals de Barcelona Barcelona 08003 Spain
Departament of Museum Technologies Zoology Museum Tomsk State University Tomsk 634050 Russia
Departamento de Biodiversidad y Gestión Ambiental Universidad de León León 24071 Spain
Department of Anatomy Cellular Biology and Zoology University of Extremadura Badajoz E 506071 Spain
Department of Animal Ecology and Systematics Justus Liebig University Giessen 35392 Germany
Department of Animal Ecology Netherlands Institute of Ecology Wageningen 6708PB the Netherlands
Department of Biology and Geology Universidad Rey Juan Carlos Móstoles 28933 Spain
Department of Biology Bowdoin College Brunswick ME 04011
Department of Biology Norwegian University of Science and Technology Trondheim 7491 Norway
Department of Biology University of Kentucky Lexington KY 40506 0225
Department of Biology University of Konstanz Konstanz 78457 Germany
Department of Biology University of Saskatchewan Saskatoon S7N 5E2 Canada
Department of Biology University of Turku Turku 20014 Finland
Department of Biology University of Wisconsin Stevens Point Stevens Point WI 54481
Department of Biosciences University of Helsinki Helsinki FI 00014 Finland
Department of Biotechnology Daugavpils University Daugavpils 5401 Latvia
Department of Collective Behavior Max Planck Institute of Animal Behavior Konstanz 78457 Germany
Department of Ecology and Evolution University of Lausanne Lausanne CH 1015 Switzerland
Department of Ecology and Genetics University of Oulu Oulu 90014 Finland
Department of Ecology Evolution and Environmental Biology Columbia University New York NY 10027
Department of Ecology Swedish University of Agricultural Sciences Uppsala SE 750 07 Sweden
Department of Natural Sciences Tromsø University Museum Tromsø NO 9037 Norway
Department of Vertebrate Zoology and Anthropology Szczecin University Szczecin 71 415 Poland
Department of Vertebrate Zoology and Ecology Tomsk State University Tomsk 634050 Russia
Department of Zoology and Animal Ecology Faculty of Biology University of Latvia Riga 1004 Latvia
Department of Zoology and Parasitology Voronezh State University Voronezh 394006 Russia
Department of Zoology Faculty of Science Palacky University Olomouc 771 46 Czech Republic
Division of Organisms and Environment School of Biosciences Cardiff University Cardiff CF10 3AX UK
Environmental and Marine Biology Åbo Akademi University Turku 20500 Finland
Evolutionary Ecology Unit Department of Biology Lund University Lund SE 223 62 Sweden
FitzPatrick Institute of African Ornithology University of Cape Town Rondebosch 7701 South Africa
Groupe d'Etudes et de Protection des Busards Beurville 52110 France
Hastings Reservation University of California Berkeley Carmel Valley CA 93924
Hradec Králové 500 02 Czech Republic
Institute for Game and Wildlife Research IREC Ciudad Real E 13005 Spain
Institute of Biochemistry and Biophysics Polish Academy of Sciences Warsaw 02 106 Poland
Institute of Marine Sciences OKEANOS University of the Azores Horta 9901 862 Portugal
Institute of Nature Conservation Polish Academy of Sciences Kraków 31 120 Poland
Institute of Zoology Poznań University of Life Sciences Poznań 60 625 Poland
Konrad Lorenz Institute of Ethology University of Veterinary Medicine Vienna 1160 Austria
Laboratory of Molecular Zoology National Academy of Sciences Minsk 220072 Belarus
Luontotutkimus Solonen Oy Helsinki FI 00960 Finland
Museum of Natural History Olomouc 771 73 Czech Republic
Novia University of Applied Sciences Raseborg FI 10600 Finland
Ornithological Station Faculty of Biological Sciences University of Wrocław Wrocław 50 335 Poland
Panurus Monitoringi Inwentaryzacje Opinie Przyrodnicze Osieczna 64 113 Poland
Private address 64200 Biarritz France
Private address 9870 Sindal Denmark
Private address CH 1446 Baulmes Switzerland
Private address Cormost 10800 France
Private address FI 14870 Tuulos Finland
Pyrenean Institute of Ecology Consejo Superior de Investigaciones Científicas Jaca 22700 Spain
School of Biological Sciences Lighthouse Field Station University of Aberdeen Cromarty IV11 8YL UK
School of Biological Sciences University of Aberdeen Aberdeen AB24 2TZ UK
Swiss Ornithological Institute Sempach CH 6204 Switzerland
Zobrazit více v PubMed
IPCC, Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, Masson-Delmotte V., et al., Eds. (Cambridge University Press, Cambridge, UK and New York, NY, 2021), in press. 10.1017/9781009157896. DOI
Jylhä K., et al. , Observed and projected future shifts of climatic zones in Europe and their use to visualize climate change information. Weather Clim. Society 2, 148–167 (2010).
Parmesan C., Yohe G., A globally coherent fingerprint of climate change impacts across natural ecosystems. Nature 421, 37–42 (2003). PubMed
Dunn P. O., Møller A. P., Effects of climate change on birds (Oxford University Press, Oxford, New York, ed. 2, 2019).
Usui T., Butchart S. H. M., Phillimore A. B., Temporal shifts and temperature sensitivity of avian spring migratory phenology: a phylogenetic meta-analysis. J. Anim. Ecol. 86, 250–261 (2017). PubMed PMC
McLean N. M., et al. , Warming temperatures drive at least half of the magnitude of long-term trait changes in European birds. Proc. Natl. Acad. Sci. U.S.A. 119, e2105416119 (2022). PubMed PMC
Wesołowski T., Cholewa M., Hebda G., Maziarz M., Rowiński P., Immense plasticity of timing of breeding in a sedentary forest passerine. Poecile palustris. J. Avian Biol. 47, 129–133 (2016).
Dyrcz A., Czyż B., Advanced breeding time in line with climate did not affect productivity of great reed warblers Acrocephalus arundinaceus despite the shortening of the nestling period. Acta Ornithol. 53, 13–22 (2018).
Stevenson I. R., Bryant D. M., Avian phenology: Climate change and constraints on breeding. Nature 406, 366–367 (2000). PubMed
Shipley J. R., et al. , Birds advancing lay dates with warming springs face greater risk of chick mortality. Proc. Nat. Acad. Sci. U.S.A. 117, 25590–25594 (2020). PubMed PMC
Clark R. G., Pöysä H., Runko P., Paasivaara A., Spring phenology and timing of breeding in short-distance migrant birds: phenotypic responses and offspring recruitment patterns in common goldeneyes. J. Avian Biol. 45, 457–465 (2014).
Husby A., Kruuk L. E. B., Visser M. E., Decline in the frequency and benefits of multiple brooding in great tits as a consequence of a changing environment. Proc. Biol. Soc. 276, 1845–1854 (2009). PubMed PMC
Thomas R. J., Vafidis J. O., Medeiros R. J., “Climatic impacts on invertebrates as food for vertebrates” in Global Climate Change and Terrestrial Invertebrates, Jonson S. N., Jones T. H., Eds. (John Wiley & Sons, 2017), pp. 295–307.
Visser M. E., Gienapp P., Evolutionary and demographic consequences of phenological mismatches. Nat. Ecol. Evol. 3, 879–885 (2019). PubMed PMC
Tobolka M., Zolnierowicz K. M., Reeve N. F., The effect of extreme weather events on breeding parameters of the white stork Ciconia ciconia. Bird Study 62, 377–385 (2015).
Sergio F., Blas J., Hiraldo F., Animal responses to natural disturbance and climate extremes: A review. Glob. Planet. Change 161, 28–40 (2018).
Prop J., et al. , Climate change and the increasing impact of polar bears on bird populations. Front. Ecol. Evol. 3, 33 (2015).
Bulla M., et al. , Global patterns of nest predation is disrupted by climate change in shorebirds. Science 364, eaaw8529 (2019). PubMed
Wagner D. L., Grames E. M., Forister M. L., Berenbaum M. R., Stopak D., Insect decline in the anthropocene: Death by a thousand cuts. Proc. Natl. Acad. Sci. U.S.A. 118, e2023989118 (2021). PubMed PMC
Wegge P., Rolstad J., Climate change and bird reproduction: Warmer springs benefit breeding success in boreal forest grouse. Proc. Biol. Soc. 284, 20171528 (2017). PubMed PMC
Hoover J. P., Schelsky W. M., Warmer april temperatures on breeding grounds promote earlier nesting in a long-distance migratory bird, the prothonotary warbler. Front. Ecol. Evol. 8, 580725 (2020).
Halupka L., Borowiec M., Neubauer G., Halupka K., Fitness consequences of longer breeding seasons of a migratory passerine under changing climatic conditions. J. Anim. Ecol. 90, 1655–1665 (2021). PubMed PMC
Lehikoinen A., Kilpi M., Öst M., Winter climate affects subsequent breeding success of common eiders. Glob. Change Biol. 12, 1355–1365 (2006).
Davis C. C., Willis C. G., Primack R. B., Miller-Rushing A. J., The importance of phylogeny to the study of phenological response to global climate change. Phil. Trans. R. Soc. B 365, 3201–3213 (2010). PubMed PMC
Both C., Visser M. E., Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411, 296–298 (2001). PubMed
Dunn P. O., Møller A. P., Changes in breeding phenology and population size in birds. J. Anim. Ecol. 82, 729–739 (2014). PubMed
Venter O., et al. , Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016). PubMed PMC
Dunn P., Winkler D. W., “Effects of climate change on timing of breeding and reproductive success in birds” in Effects of Climate Change on Birds, Moller A. P., Fiedler W., Berthold P., Eds. (Oxford University Press, Oxford, 2010), pp. 113–128.
McLean N. M., van der Jeugd H. P., van Turnhout C. A. M., Lefcheck J. S., van de Pol M., Reduced avian body condition due to global warming has little reproductive or population consequences. Oikos 129, 714–730 (2020).
Halupka L., Halupka K., The effect of climate change on the duration of avian breeding seasons: A meta-analysis. Proc. R. Soc. B. 284, 20171710 (2017). PubMed PMC
Gaston K. J., Blackburn T. M., Birds, body mass and the threat of extinction. Phil. Trans. R. Soc. B 347, 205–212 (1995).
Jones T., Cresswell W., The phenology mismatch hypothesis: Are declines of migrant birds linked to uneven global climate change? J. Anim. Ecol. 79, 98–108 (2010). PubMed
Samplonius J. M., et al. , Phenological sensitivity to climate change is higher in resident than in migrant bird populations among European cavity breeders. Glob. Change Biol. 24, 3780–3790 (2018). PubMed
Matthews L. J., Arnold C., Machanda Z., Nunn C. L., Primate extinction risk and historical patterns of speciation and extinction in relation to body mass. Proc. R. Soc. B. 278, 1256–1263 (2011). PubMed PMC
Bennett P. M., Owens I. P. F., Variation in extinction risk among birds: Chance or evolutionary predisposition? Proc. R. Soc. Lond. B. 264, 401–408 (1997).
Weeks B. C., et al. , Temperature, size and developmental plasticity in birds. Biol. Lett. 18, 20220357 (2022). PubMed PMC
Cresswell W., McCleery R., How great tits maintain synchronisation of their hatch date with food supply in response to long-term variability in temperature. J. Anim. Ecol. 72, 356–366 (2003).
Saunders D. A., Wintle B. A., Mawson P. R., Dawson R., Egg-laying and rainfall synchrony in an endangered bird species; implications for conservation in a changing climate. Biol. Conserv. 161, 1–9 (2013).
Verhulst S. J. H., Balen V., Tinbergen J. M., Seasonal decline in reproductive success of the great tit: Variation in time or quality. Ecology 76, 2392–2403 (1995).
Götmark F., Blomqvist D., Johansson O. C., Bergkvist J., Nest site selection: A trade-off between concealment and view of the surroundings? J. Avian Biol. 26, 305–312 (1995).
Seltmann M. W., Jaatinen K., Steele B. B., Öst M., Boldness and stress responsiveness as drivers of nest-site selection in a ground-nesting bird. Ethology 120, 77–89 (2014).
Miller V., Abraham K. F., Nol E., Factors affecting the responses of female canada geese to disturbance during incubation. J. Field Ornithol. 84, 171–180 (2013).
Vickery J. A., et al. , The decline of afro-palaearctic migrants and an assessment of potential causes. Ibis 156, 1–22 (2014).
Rosenberg K. V., et al. , Decline of the north american avifauna. Science 366, 120–124 (2019). PubMed
Pollock H. S., et al. , Long-term monitoring reveals widespread and severe declines of understory birds in a protected neotropical forest. PNAS 119, e2108731119 (2022). PubMed PMC
Szostek K. L., Becker P. H., Survival and local recruitment are driven by environmental carry-over effects from the wintering area in a migratory seabird. Oecologia 178, 643–657 (2015). PubMed
Cramp S., Simmons K. E. L., Eds., Handbook of the birds of Eeurope, the Middle East and North Africa: The Birds of the Western Palearctic, Vol. II Hawks to Bustards (Oxford University Press, Oxford, 1980).
Cramp S., Simmons K. E. L., Eds., Handbook of the birds of Europe, the Middle East and North Africa: The Birds of the Western Palearctic, Vol III. Waders to Gulls (Oxford University Press, Oxford, 1983).
Dunning J. B., Ed. “Handbook of Avian Body Masses” (Boca Raton CRC Press, CRC Handbook of Avian Body Masses, 1992).
BirdLife International, The IUCN red list of threatened species 2018 (2018). https://www.iucnredlist.org/. Accessed 14 December 2018.
Venter O., et al. , Last of the Wild Project, Version 3 (LWP-3): 2009 Human Footprint, 2018 Release (NASA Socioeconomic Data and Applications Center SEDAC, Palisades, New York, 2018), vol. 18, p. 10. 10.7927/H46T0JQ4. Accessed 2022. DOI
R Core Team, R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2022).
Lajeunesse M. J., phyloMeta: A program for phylogenetic comparative analyses with meta-analysis. Bioinformatics 27, 2603–2604 (2011). PubMed
Viechtbauer W., Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).
Jetz W., Thomas G. H., Joy J. B., Hartmann K., Mooers A. O., The global diversity of birds in space and time. Nature 491, 444–448 (2012). PubMed
Rubolini D., Liker A., Garamszegi L. Z., Møller A. P., Saino N., Using the BirdTree.org website to obtain robust phylogenies for avian comparative studies: A primer. Curr. Zool. 61, 959–965 (2015). PubMed PMC
Paradis E., Schliep K., Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019). PubMed
Burnham K. P., Anderson D. R., Model Selection and Multimodel Inference (A Practical Information-theoretic Approach Springer-Verlag, New York, 2002).
Sobol I. M., Sensitivity analysis for nonlinear mathematical models. Math. Model. Comput. Exp. 1, 407–414 (1993).
Puy A., Lo Piano A. S., Saltelli A., Levin S. A., Sensobol: An R package to compute variance-based sensitivity indices. J. Stat. Softw. 102, 1–37 (2022).
Halupka L., Data for “The effect of climate change on avian offspring production: A global meta-analysis”. Figshare. 10.6084/m9.figshare.21901536. Deposited 14 January 2023. PubMed DOI PMC
The effect of climate change on avian offspring production: A global meta-analysis