The interactions between PML nuclear bodies and small and medium size DNA viruses
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
37127643
PubMed Central
PMC10152602
DOI
10.1186/s12985-023-02049-4
PII: 10.1186/s12985-023-02049-4
Knihovny.cz E-zdroje
- Klíčová slova
- DNA viruses, Daxx, PML, PML nuclear bodies, SUMOylation, Sp100, Sp110,
- MeSH
- Adenoviridae MeSH
- DNA viry * genetika MeSH
- jaderné proteiny * metabolismus MeSH
- promyelocytická leukemická tělíska MeSH
- protein promyelocytické leukemie metabolismus MeSH
- transkripční faktory metabolismus MeSH
- viry MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- jaderné proteiny * MeSH
- protein promyelocytické leukemie MeSH
- transkripční faktory MeSH
Promyelocytic leukemia nuclear bodies (PM NBs), often referred to as membraneless organelles, are dynamic macromolecular protein complexes composed of a PML protein core and other transient or permanent components. PML NBs have been shown to play a role in a wide variety of cellular processes. This review describes in detail the diverse and complex interactions between small and medium size DNA viruses and PML NBs that have been described to date. The PML NB components that interact with small and medium size DNA viruses include PML protein isoforms, ATRX/Daxx, Sp100, Sp110, HP1, and p53, among others. Interaction between viruses and components of these NBs can result in different outcomes, such as influencing viral genome expression and/or replication or impacting IFN-mediated or apoptotic cell responses to viral infection. We discuss how PML NB components abrogate the ability of adenoviruses or Hepatitis B virus to transcribe and/or replicate their genomes and how papillomaviruses use PML NBs and their components to promote their propagation. Interactions between polyomaviruses and PML NBs that are poorly understood but nevertheless suggest that the NBs can serve as scaffolds for viral replication or assembly are also presented. Furthermore, complex interactions between the HBx protein of hepadnaviruses and several PML NBs-associated proteins are also described. Finally, current but scarce information regarding the interactions of VP3/apoptin of the avian anellovirus with PML NBs is provided. Despite the considerable number of studies that have investigated the functions of the PML NBs in the context of viral infection, gaps in our understanding of the fine interactions between viruses and the very dynamic PML NBs remain. The complexity of the bodies is undoubtedly a great challenge that needs to be further addressed.
Zobrazit více v PubMed
Lamond AI, Earnshaw WC. Structure and function in the nucleus. Science. 1998;280:547–53. doi: 10.1126/science.280.5363.547. PubMed DOI
Mao YS, Zhang B, Spector DL. Biogenesis and function of nuclear bodies. Trends Genet. 2011;27:295–306. doi: 10.1016/j.tig.2011.05.006. PubMed DOI PMC
de Thé G, Riviere M, Bernhard W. Examen au microscope électronique de la tumeur VX2 du lapin domestique dérivée du papillome de Shope. Bull Cancer. 1960;47:570–84. PubMed
Ascoli CA, Maul GG. Identification of a novel nuclear domain. J Cell Biol. 1991;112:785–95. doi: 10.1083/jcb.112.5.785. PubMed DOI PMC
de Thé H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A. The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell. 1991;66:675–84. doi: 10.1016/0092-8674(91)90113-D. PubMed DOI
Daniel MT, Koken M, Romagné O, Barbey S, Bazarbachi A, Stadler M, et al. PML protein expression in hematopoietic and acute promyelocytic leukemia cells. Blood. 1993;82:1858–67. doi: 10.1182/blood.V82.6.1858.1858. PubMed DOI
Dyck JA, Maul GG, Miller WH, Chen JD, Kakizuka A, Evans RM. A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein. Cell. 1994;76:333–43. doi: 10.1016/0092-8674(94)90340-9. PubMed DOI
Ishov AM, Maul GG. The periphery of nuclear domain 10 (ND10) as site of DNA virus deposition. J Cell Biol. 1996;134:815–26. doi: 10.1083/jcb.134.4.815. PubMed DOI PMC
Boisvert FM, Hendzel MJ, Bazett-Jones DP. Promyelocytic leukemia (PML) nuclear bodies are protein structures that do not accumulate RNA. J Cell Biol. 2000;148. PubMed PMC
Lang M, Jegou T, Chung I, Richter K, Münch S, Udvarhelyi A, et al. Three-dimensional organization of promyelocytic leukemia nuclear bodies. J Cell Sci. 2010;123:392–400. doi: 10.1242/jcs.053496. PubMed DOI
Hofmann TG, Will H. Body language: the function of PML nuclear bodies in apoptosis regulation. Cell Death Differ Nature Publishing Group. 2003;10:1290–9. doi: 10.1038/sj.cdd.4401313. PubMed DOI
Lallemand-Breitenbach V, de Thé H. PML Nuclear Bodies. Cold Spring Harb Perspect Biol. 2010;2:a000661. doi: 10.1101/cshperspect.a000661. PubMed DOI PMC
Dellaire G, Farrall R, Bickmore WA. The nuclear protein database (NPD): sub-nuclear localisation and functional annotation of the nuclear proteome. Nucleic Acids Res. 2003;31:328–30. doi: 10.1093/nar/gkg018. PubMed DOI PMC
Van Damme E, Laukens K, Dang TH, Van Ostade X. A manually curated network of the PML nuclear body interactome reveals an important role for PML-NBs in SUMOylation dynamics. Int J Biol Sci. 2010;6:51–67. doi: 10.7150/ijbs.6.51. PubMed DOI PMC
Barroso-Gomila O, Trulsson F, Muratore V, Canosa I, Merino-Cacho L, Cortazar AR, et al. Identification of proximal SUMO-dependent interactors using SUMO-ID. Nat Commun. 2021;12:6671. doi: 10.1038/s41467-021-26807-6. PubMed DOI PMC
Xu P, Roizman B. The SP100 component of ND10 enhances accumulation of PML and suppresses replication and the assembly of HSV replication compartments. Proceedings of the National Academy of Sciences. 2017;114:E3823–9. PubMed PMC
Corpet A, Kleijwegt C, Roubille S, Juillard F, Jacquet K, Texier P, et al. PML nuclear bodies and chromatin dynamics: catch me if you can! Nucleic Acids Res. 2020;48:11890–912. doi: 10.1093/nar/gkaa828. PubMed DOI PMC
Fraschilla I, Jeffrey KL. The Speckled protein (SP) family: immunity’s chromatin readers. Trends Immunol. 2020;41:572–85. doi: 10.1016/j.it.2020.04.007. PubMed DOI PMC
Collados RM. The Fate of Speckled Protein 100 (Sp100) During Herpesviruses Infection. Front Cell Infect Microbiol. 2021;10. PubMed PMC
Szostecki C, Krippner H, Penner E, Bautz FA. Autoimmune sera recognize a 100 kD nuclear protein antigen (sp-100) Clin Exp Immunol. 1987;68:108–16. PubMed PMC
Koken MH, Puvion-Dutilleul F, Guillemin MC, Viron A, Linares-Cruz G, Stuurman N, et al. The t(15;17) translocation alters a nuclear body in a retinoic acid-reversible fashion. EMBO J. 1994;13:1073–83. doi: 10.1002/j.1460-2075.1994.tb06356.x. PubMed DOI PMC
Bloch DB, Nakajima A, Gulick T, Chiche JD, Orth D, de La Monte SM, et al. Sp110 localizes to the PML-Sp100 nuclear body and may function as a nuclear hormone receptor transcriptional coactivator. Mol Cell Biol. 2000;20:6138–46. doi: 10.1128/MCB.20.16.6138-6146.2000. PubMed DOI PMC
Salomoni P, The PML-Interacting, Protein DAXX. Histone Loading Gets into the Picture. Front Oncol. 2013;3. PubMed PMC
Mahmud I, Liao D. DAXX in cancer: phenomena, processes, mechanisms and regulation. Nucleic Acids Res. 2019;47:7734–52. doi: 10.1093/nar/gkz634. PubMed DOI PMC
Ishov AM, Sotnikov AG, Negorev D, Vladimirova OV, Neff N, Kamitani T, et al. PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. J Cell Biol. 1999;147:221–34. doi: 10.1083/jcb.147.2.221. PubMed DOI PMC
Li H, Leo C, Zhu J, Wu X, O’Neil J, Park EJ, et al. Sequestration and inhibition of daxx-mediated transcriptional repression by PML. Mol Cell Biol. 2000;20:1784–96. doi: 10.1128/MCB.20.5.1784-1796.2000. PubMed DOI PMC
De La Fuente R, Baumann C, Viveiros MM. Role of ATRX in chromatin structure and function: implications for chromosome instability and human disease. Reproduction. 2011;142:221–34. doi: 10.1530/REP-10-0380. PubMed DOI PMC
Ishov AM, Vladimirova OV, Maul GG, Heterochromatin ND10 are cell-cycle regulated and phosphorylation-dependent alternate nuclear sites of the transcription repressor daxx and SWI/SNF protein ATRX. J Cell Sci. 2004;117:3807–20. doi: 10.1242/jcs.01230. PubMed DOI
Corpet A, Olbrich T, Gwerder M, Fink D, Stucki M. Dynamics of histone H3.3 deposition in proliferating and senescent cells reveals a DAXX-dependent targeting to PML-NBs important for pericentromeric heterochromatin organization. Cell Cycle. 2014;13:249–67. doi: 10.4161/cc.26988. PubMed DOI PMC
Stracker TH, Petrini JHJ. The MRE11 complex: starting from the ends. Nat Rev Mol Cell Biol. 2011;12:90–103. doi: 10.1038/nrm3047. PubMed DOI PMC
Lombard DB, Guarente L. Nijmegen breakage syndrome disease protein and MRE11 at PML nuclear bodies and meiotic telomeres. Cancer Res. 2000;60:2331–4. PubMed
Mirzoeva OK, Petrini JH. DNA damage-dependent nuclear dynamics of the Mre11 complex. Mol Cell Biol. 2001;21:281–8. doi: 10.1128/MCB.21.1.281-288.2001. PubMed DOI PMC
Aubrey BJ, Kelly GL, Janic A, Herold MJ, Strasser A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell death Differ. Nat Publishing Group. 2018;25:104–13. PubMed PMC
Pearson M, Carbone R, Sebastiani C, Cioce M, Fagioli M, Saito S, et al. PML regulates p53 acetylation and premature senescence induced by oncogenic ras. Nature. 2000;406:207–10. doi: 10.1038/35018127. PubMed DOI
Ferbeyre G, de Stanchina E, Querido E, Baptiste N, Prives C, Lowe SW. PML is induced by oncogenic ras and promotes premature senescence. Genes Dev. 2000;14:2015–27. doi: 10.1101/gad.14.16.2015. PubMed DOI PMC
Guo A, Salomoni P, Luo J, Shih A, Zhong S, Gu W, et al. The function of PML in p53-dependent apoptosis. Nat Cell Biol. 2000;2:730–6. doi: 10.1038/35036365. PubMed DOI
Fogal V, Gostissa M, Sandy P, Zacchi P, Sternsdorf T, Jensen K et al. Regulation of p53 activity in nuclear bodies by a specific PML isoform. EMBO J. 2000;19. PubMed PMC
Zeng W, Ball AR, Yokomori K. HP1: heterochromatin binding proteins working the genome. Epigenetics. 2010;5:287–92. doi: 10.4161/epi.5.4.11683. PubMed DOI PMC
Seeler JS, Marchio A, Sitterlin D, Transy C, Dejean A. Interaction of SP100 with HP1 proteins: a link between the promyelocytic leukemia-associated nuclear bodies and the chromatin compartment. Proc Natl Acad Sci U S A. 1998;95:7316–21. doi: 10.1073/pnas.95.13.7316. PubMed DOI PMC
Aragón L. The Smc5/6 Complex: New and Old Functions of the enigmatic Long-Distance relative. Annu Rev Genet. 2018;52:89–107. doi: 10.1146/annurev-genet-120417-031353. PubMed DOI
Potts PR, Yu H. The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins. Nat Struct Mol Biol. 2007;14:581–90. doi: 10.1038/nsmb1259. PubMed DOI
Park S-Y, Kim J-S. A short guide to histone deacetylases including recent progress on class II enzymes. Exp Mol Med Nature Publishing Group. 2020;52:204–12. doi: 10.1038/s12276-020-0382-4. PubMed DOI PMC
Wu W-S, Vallian S, Seto E, Yang W-M, Edmondson D, Roth S, et al. The growth suppressor PML represses transcription by functionally and physically interacting with histone deacetylases. Mol Cell Biol. 2001;21:2259–68. doi: 10.1128/MCB.21.7.2259-2268.2001. PubMed DOI PMC
Rescher U, Gerke V. S100A10/p11: family, friends and functions. Pflugers Arch. 2008;455:575–82. doi: 10.1007/s00424-007-0313-4. PubMed DOI
Choi J, Chang J-S, Song M-S, Ahn B-Y, Park Y, Lim D-S, et al. Association of hepatitis B virus polymerase with promyelocytic leukemia nuclear bodies mediated by the S100 family protein p11. Biochem Biophys Res Commun. 2003;305:1049–56. doi: 10.1016/S0006-291X(03)00881-7. PubMed DOI
Andrisani OM. Deregulation of epigenetic mechanisms by the hepatitis B virus X protein in hepatocarcinogenesis. Viruses. 2013;5:858–72. doi: 10.3390/v5030858. PubMed DOI PMC
Kunapuli P, Kasyapa CS, Chin S-F, Caldas C, Cowell JK. ZNF198, a zinc finger protein rearranged in myeloproliferative disease, localizes to the PML nuclear bodies and interacts with SUMO-1 and PML. Exp Cell Res. 2006;312:3739–51. doi: 10.1016/j.yexcr.2006.06.037. PubMed DOI
Chammas P, Mocavini I, Di Croce L. Engaging chromatin: PRC2 structure meets function. Br J Cancer Nature Publishing Group. 2020;122:315–28. PubMed PMC
Villa R, Pasini D, Gutierrez A, Morey L, Occhionorelli M, Viré E, et al. Role of the polycomb repressive complex 2 in acute promyelocytic leukemia. Cancer Cell. 2007;11:513–25. doi: 10.1016/j.ccr.2007.04.009. PubMed DOI
Liu W, Li Y, Luo B. Current perspective on the regulation of FOXO4 and its role in disease progression. Cell Mol Life Sci. 2020;77:651–63. doi: 10.1007/s00018-019-03297-w. PubMed DOI PMC
Li Y, He M, Gong R, Wang Z, Lu L, Peng S et al. Forkhead O Transcription Factor 4 Restricts HBV Covalently Closed Circular DNA Transcription and HBV Replication through Genetic Downregulation of Hepatocyte Nuclear Factor 4 Alpha and Epigenetic Suppression of Covalently Closed Circular DNA via Interacting with Promyelocytic Leukemia Protein. J Virol 96:e00546–22. PubMed PMC
Jensen K, Shiels C, Freemont PS. PML protein isoforms and the RBCC/TRIM motif. Oncogene. 2001;20:7223–33. doi: 10.1038/sj.onc.1204765. PubMed DOI
de Thé H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A. The PML-RARα fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell. 1991;66:675–84. doi: 10.1016/0092-8674(91)90113-D. PubMed DOI
Goddard AD, Borrow J, Freemont PS, Solomon E. Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukemia. Science. 1991;254:1371–4. doi: 10.1126/science.1720570. PubMed DOI
Kastner P, Perez A, Lutz Y, Rochette-Egly C, Gaub MP, Durand B, et al. Structure, localization and transcriptional properties of two classes of retinoic acid receptor alpha fusion proteins in acute promyelocytic leukemia (APL): structural similarities with a new family of oncoproteins. EMBO J. 1992;11:629–42. doi: 10.1002/j.1460-2075.1992.tb05095.x. PubMed DOI PMC
Reddy BA, Etkin LD, Freemont PS. A novel zinc finger coiled-coil domain in a family of nuclear proteins. Trends Biochem Sci. 1992;17:344–5. doi: 10.1016/0968-0004(92)90308-V. PubMed DOI
Borden KL, Boddy MN, Lally J, O’Reilly NJ, Martin S, Howe K, et al. The solution structure of the RING finger domain from the acute promyelocytic leukaemia proto-oncoprotein PML. EMBO J. 1995;14:1532–41. doi: 10.1002/j.1460-2075.1995.tb07139.x. PubMed DOI PMC
Reymond A, Meroni G, Fantozzi A, Merla G, Cairo S, Luzi L, et al. The tripartite motif family identifies cell compartments. EMBO J. 2001;20:2140–51. doi: 10.1093/emboj/20.9.2140. PubMed DOI PMC
Boddy MN, Howe K, Etkin LD, Solomon E, Freemont PS. PIC 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia. Oncogene. 1996;13:971–82. PubMed
Müller S, Matunis MJ, Dejean A. Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J. 1998;17:61–70. doi: 10.1093/emboj/17.1.61. PubMed DOI PMC
Zhong S, Müller S, Ronchetti S, Freemont PS, Dejean A, Pandolfi PP. Role of SUMO-1-modified PML in nuclear body formation. Blood. 2000;95:2748–52. doi: 10.1182/blood.V95.9.2748.009k31a_2748_2752. PubMed DOI
Cheng X, Kao H-Y. Post-translational modifications of PML: consequences and implications. Front Oncol. 2012;2:210. PubMed PMC
Patra U, Müller S. A tale of usurpation and subversion: SUMO-Dependent Integrity of promyelocytic Leukemia Nuclear Bodies at the crossroad of infection and immunity. Front Cell Dev Biol. 2021;9:696234. doi: 10.3389/fcell.2021.696234. PubMed DOI PMC
Duprez E, Saurin AJ, Desterro JM, Lallemand-Breitenbach V, Howe K, Boddy MN, et al. SUMO-1 modification of the acute promyelocytic leukaemia protein PML: implications for nuclear localisation. J Cell Sci. 1999;112:381–93. doi: 10.1242/jcs.112.3.381. PubMed DOI
Shen TH, Lin H-K, Scaglioni PP, Yung TM, Pandolfi PP. The mechanisms of PML-nuclear body formation. Mol Cell. 2006;24:331–9. doi: 10.1016/j.molcel.2006.09.013. PubMed DOI PMC
Chu Y, Yang X. SUMO E3 ligase activity of TRIM proteins. Oncogene. 2011;30:1108–16. doi: 10.1038/onc.2010.462. PubMed DOI PMC
Reuter N, Schilling E-M, Scherer M, Müller R, Stamminger T. The ND10 component promyelocytic leukemia protein Acts as an E3 ligase for SUMOylation of the Major Immediate Early protein IE1 of human cytomegalovirus. J Virol. 2017;91:e02335–16. doi: 10.1128/JVI.02335-16. PubMed DOI PMC
Hsu K-S, Kao H-Y. Regulation and multifaceted function beyond tumor suppression. Cell Biosci. 2018;8:5. doi: 10.1186/s13578-018-0204-8. PubMed DOI PMC
Chang KS, Fan YH, Andreeff M, Liu J, Mu ZM. The PML gene encodes a phosphoprotein associated with the nuclear matrix. Blood. 1995;85:3646–53. doi: 10.1182/blood.V85.12.3646.bloodjournal85123646. PubMed DOI
Nisole S, Maroui MA, Mascle XH, Aubry M, Chelbi-Alix MK. Differential Roles of PML isoforms. Front Oncol. 2013;3:125. doi: 10.3389/fonc.2013.00125. PubMed DOI PMC
Geoffroy M-C, Chelbi-Alix MK. Role of promyelocytic leukemia protein in host antiviral defense. J Interferon Cytokine Res. 2011;31:145–58. doi: 10.1089/jir.2010.0111. PubMed DOI
Scherer M, Stamminger T. Emerging role of PML Nuclear Bodies in Innate Immune Signaling. J Virol. 2016;90:5850–4. doi: 10.1128/JVI.01979-15. PubMed DOI PMC
Strano S, Monti O, Pediconi N, Baccarini A, Fontemaggi G, Lapi E, et al. The transcriptional coactivator yes-associated protein drives p73 gene-target specificity in response to DNA damage. Mol Cell. 2005;18:447–59. doi: 10.1016/j.molcel.2005.04.008. PubMed DOI
Lapi E, Di Agostino S, Donzelli S, Gal H, Domany E, Rechavi G, et al. PML, YAP, and p73 are components of a proapoptotic autoregulatory feedback loop. Mol Cell. 2008;32:803–14. doi: 10.1016/j.molcel.2008.11.019. PubMed DOI
Jeanne M, Lallemand-Breitenbach V, Ferhi O, Koken M, Le Bras M, Duffort S, et al. PML/RARA oxidation and arsenic binding initiate the antileukemia response of As2O3. Cancer Cell. 2010;18:88–98. doi: 10.1016/j.ccr.2010.06.003. PubMed DOI
Sahin U, Ferhi O, Jeanne M, Benhenda S, Berthier C, Jollivet F, et al. Oxidative stress-induced assembly of PML nuclear bodies controls sumoylation of partner proteins. J Cell Biol. 2014;204:931–45. doi: 10.1083/jcb.201305148. PubMed DOI PMC
Wang P, Benhenda S, Wu H, Lallemand-Breitenbach V, Zhen T, Jollivet F, et al. RING tetramerization is required for nuclear body biogenesis and PML sumoylation. Nat Commun Nature Publishing Group. 2018;9:1277. doi: 10.1038/s41467-018-03498-0. PubMed DOI PMC
Li Y, Ma X, Chen Z, Wu H, Wang P, Wu W, et al. B1 oligomerization regulates PML nuclear body biogenesis and leukemogenesis. Nat Commun Nature Publishing Group. 2019;10:3789. doi: 10.1038/s41467-019-11746-0. PubMed DOI PMC
Wiesmeijer K, Molenaar C, Bekeer IMLA, Tanke HJ, Dirks RW. Mobile foci of Sp100 do not contain PML: PML bodies are immobile but PML and Sp100 proteins are not. J Struct Biol. 2002;140:180–8. doi: 10.1016/S1047-8477(02)00529-4. PubMed DOI
Eskiw CH, Dellaire G, Bazett-Jones DP. Chromatin contributes to Structural Integrity of promyelocytic leukemia bodies through a SUMO-1-independent Mechanism*. J Biol Chem. 2004;279:9577–85. doi: 10.1074/jbc.M312580200. PubMed DOI
Dellaire G, Ching RW, Dehghani H, Ren Y, Bazett-Jones DP. The number of PML nuclear bodies increases in early S phase by a fission mechanism. J Cell Sci. 2006;119:1026–33. doi: 10.1242/jcs.02816. PubMed DOI
Banani SF, Rice AM, Peeples WB, Lin Y, Jain S, Parker R, et al. Compositional control of phase-separated Cellular Bodies. Cell. 2016;166:651–63. doi: 10.1016/j.cell.2016.06.010. PubMed DOI PMC
Ching RW, Dellaire G, Eskiw CH, Bazett-Jones DP. PML bodies: a meeting place for genomic loci? J Cell Sci. 2005;118:847–54. doi: 10.1242/jcs.01700. PubMed DOI
El Bougrini J, Dianoux L, Chelbi-Alix MK. PML positively regulates interferon gamma signaling. Biochimie. 2011;93:389–98. doi: 10.1016/j.biochi.2010.11.005. PubMed DOI
Ulbricht T, Alzrigat M, Horch A, Reuter N, von Mikecz A, Steimle V, et al. PML promotes MHC class II gene expression by stabilizing the class II transactivator. J Cell Biol. 2012;199:49–63. doi: 10.1083/jcb.201112015. PubMed DOI PMC
Chen Y, Wright J, Meng X, Leppard KN. Promyelocytic leukemia protein isoform II promotes transcription factor recruitment to activate Interferon Beta and Interferon-Responsive Gene expression. Mol Cell Biol. 2015;35:1660–72. doi: 10.1128/MCB.01478-14. PubMed DOI PMC
Dellaire G, Bazett-Jones DP. PML nuclear bodies: dynamic sensors of DNA damage and cellular stress. BioEssays. 2004;26:963–77. doi: 10.1002/bies.20089. PubMed DOI
Bernardi R, Pandolfi PP. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol Nature Publishing Group. 2007;8:1006–16. doi: 10.1038/nrm2277. PubMed DOI
Chang HR, Munkhjargal A, Kim M-J, Park SY, Jung E, Ryu J-H, et al. The functional roles of PML nuclear bodies in genome maintenance. Mutat Res. 2018;809:99–107. doi: 10.1016/j.mrfmmm.2017.05.002. PubMed DOI
Chung I, Osterwald S, Deeg KI, Rippe K. PML body meets telomere. Nucleus. 2012;3:263–75. doi: 10.4161/nucl.20326. PubMed DOI PMC
Chelbi-Alix MK, de Thé H. Herpes virus induced proteasome-dependent degradation of the nuclear bodies-associated PML and Sp100 proteins. Oncogene. 1999;18:935–41. doi: 10.1038/sj.onc.1202366. PubMed DOI
Müller S, Dejean A. Viral immediate-early proteins abrogate the modification by SUMO-1 of PML and Sp100 proteins, correlating with nuclear body disruption. J Virol. 1999;73:5137–43. doi: 10.1128/JVI.73.6.5137-5143.1999. PubMed DOI PMC
Boutell C, Cuchet-Lourenço D, Vanni E, Orr A, Glass M, McFarlane S, et al. A viral ubiquitin ligase has substrate preferential SUMO targeted Ubiquitin Ligase activity that counteracts intrinsic Antiviral Defence. PLoS Pathog. 2011;7:e1002245. doi: 10.1371/journal.ppat.1002245. PubMed DOI PMC
Tavalai N, Stamminger T. Intrinsic cellular defense mechanisms targeting human cytomegalovirus. Virus Res. 2011;157:128–33. doi: 10.1016/j.virusres.2010.10.002. PubMed DOI
Tsai K, Messick TE, Lieberman PM. Disruption of host antiviral resistances by Gammaherpesvirus Tegument Proteins with homology to the FGARAT purine biosynthesis enzyme. Curr Opin Virol. 2015;14:30–40. doi: 10.1016/j.coviro.2015.07.008. PubMed DOI PMC
Full F, Hahn AS, Großkopf AK, Ensser A. Gammaherpesviral Tegument Proteins, PML-Nuclear Bodies and the Ubiquitin-Proteasome System. Viruses. 2017;9. PubMed PMC
Scherer M, Schilling E-M, Stamminger T. The human CMV IE1 protein: an offender of PML nuclear bodies. Adv Anat Embryol Cell Biol. 2017;223:77–94. doi: 10.1007/978-3-319-53168-7_4. PubMed DOI
Jan Fada B, Reward E, Gu H. The role of ND10 Nuclear Bodies in Herpesvirus infection: a frenemy for the Virus? Viruses. 2021;13:239. doi: 10.3390/v13020239. PubMed DOI PMC
Mathavarajah S, Vergunst KL, Habib EB, Williams SK, He R, Maliougina M et al. PML and PML-like exonucleases restrict retrotransposons in jawed vertebrates. Nucleic Acids Res. 2023;gkad152. PubMed PMC
Gamdzyk M, Doycheva DM, Araujo C, Ocak U, Luo Y, Tang J, et al. cGAS/STING pathway activation contributes to delayed neurodegeneration in neonatal hypoxia-ischemia rat model: possible involvement of LINE-1. Molecular neurobiology. NIH Public Access. 2020;57:2600. PubMed PMC
Gallardo J, Pérez-Illana M, Martín-González N. San Martín C. Adenovirus structure: what is New? Int J Mol Sci. 2021;22:5240. doi: 10.3390/ijms22105240. PubMed DOI PMC
Carvalho T, Seeler JS, Ohman K, Jordan P, Pettersson U, Akusjärvi G, et al. Targeting of adenovirus E1A and E4-ORF3 proteins to nuclear matrix-associated PML bodies. J Cell Biol. 1995;131:45–56. doi: 10.1083/jcb.131.1.45. PubMed DOI PMC
Doucas V, Ishov AM, Romo A, Juguilon H, Weitzman MD, Evans RM, et al. Adenovirus replication is coupled with the dynamic properties of the PML nuclear structure. Genes Dev. 1996;10:196–207. doi: 10.1101/gad.10.2.196. PubMed DOI
Hoppe A, Beech SJ, Dimmock J, Leppard KN. Interaction of the adenovirus type 5 E4 Orf3 protein with promyelocytic leukemia protein isoform II is required for ND10 disruption. J Virol. 2006;80:3042–9. doi: 10.1128/JVI.80.6.3042-3049.2006. PubMed DOI PMC
Ou HD, Kwiatkowski W, Deerinck TJ, Noske A, Blain KY, Land HS, et al. A structural basis for the Assembly and Functions of a viral polymer that inactivates multiple tumor suppressors. Cell Elsevier. 2012;151:304–19. doi: 10.1016/j.cell.2012.08.035. PubMed DOI PMC
Stracker TH, Carson CT, Weitzman MD. Adenovirus oncoproteins inactivate the Mre11-Rad50-NBS1 DNA repair complex. Nature. 2002;418:348–52. doi: 10.1038/nature00863. PubMed DOI
Weiden MD, Ginsberg HS. Deletion of the E4 region of the genome produces adenovirus DNA concatemers. Proc Natl Acad Sci U S A. 1994;91:153–7. doi: 10.1073/pnas.91.1.153. PubMed DOI PMC
Querido E, Morrison MR, Chu-Pham-Dang H, Thirlwell SW, Boivin D, Branton PE. Identification of three functions of the adenovirus e4orf6 protein that mediate p53 degradation by the E4orf6-E1B55K complex. J Virol. 2001;75:699–709. doi: 10.1128/JVI.75.2.699-709.2001. PubMed DOI PMC
Querido E, Blanchette P, Yan Q, Kamura T, Morrison M, Boivin D, et al. Degradation of p53 by adenovirus E4orf6 and E1B55K proteins occurs via a novel mechanism involving a Cullin-containing complex. Genes Dev. 2001;15:3104–17. doi: 10.1101/gad.926401. PubMed DOI PMC
Liu Y, Shevchenko A, Shevchenko A, Berk AJ. Adenovirus exploits the cellular aggresome response to accelerate inactivation of the MRN complex. J Virol. 2005;79:14004–16. doi: 10.1128/JVI.79.22.14004-14016.2005. PubMed DOI PMC
Sohn S-Y, Hearing P. Adenovirus regulates sumoylation of Mre11-Rad50-Nbs1 components through a paralog-specific mechanism. J Virol. 2012;86:9656–65. doi: 10.1128/JVI.01273-12. PubMed DOI PMC
Sohn S-Y, Hearing P. The adenovirus E4-ORF3 protein functions as a SUMO E3 ligase for TIF-1γ sumoylation and poly-SUMO chain elongation. Proc Natl Acad Sci U S A. 2016;113:6725–30. doi: 10.1073/pnas.1603872113. PubMed DOI PMC
Higginbotham JM, O’Shea CC. Adenovirus E4-ORF3 targets PIAS3 and together with E1B-55K remodels SUMO interactions in the Nucleus and at Virus Genome Replication Domains. J Virol. 2015;89:10260–72. doi: 10.1128/JVI.01091-15. PubMed DOI PMC
Ullman AJ, Hearing P. Cellular proteins PML and daxx mediate an innate antiviral defense antagonized by the adenovirus E4 ORF3 protein. J Virol. 2008;82:7325–35. doi: 10.1128/JVI.00723-08. PubMed DOI PMC
Ullman AJ, Reich NC, Hearing P. Adenovirus E4 ORF3 protein inhibits the interferon-mediated antiviral response. J Virol. 2007;81:4744–52. doi: 10.1128/JVI.02385-06. PubMed DOI PMC
Schreiner S, Wimmer P, Sirma H, Everett RD, Blanchette P, Groitl P, et al. Proteasome-dependent degradation of daxx by the viral E1B-55K protein in human adenovirus-infected cells. J Virol. 2010;84:7029–38. doi: 10.1128/JVI.00074-10. PubMed DOI PMC
Müncheberg S, Hay RT, Ip WH, Meyer T, Weiß C, Brenke J, et al. E1B-55K-Mediated regulation of RNF4 SUMO-Targeted ubiquitin ligase promotes human adenovirus gene expression. J Virol. 2018;92:e00164–18. doi: 10.1128/JVI.00164-18. PubMed DOI PMC
Schreiner S, Bürck C, Glass M, Groitl P, Wimmer P, Kinkley S, et al. Control of human adenovirus type 5 gene expression by cellular Daxx/ATRX chromatin-associated complexes. Nucleic Acids Res. 2013;41:3532–50. doi: 10.1093/nar/gkt064. PubMed DOI PMC
Schreiner S, Martinez R, Groitl P, Rayne F, Vaillant R, Wimmer P, et al. Transcriptional activation of the Adenoviral genome is mediated by capsid protein VI. PLoS Pathog. 2012;8:e1002549. doi: 10.1371/journal.ppat.1002549. PubMed DOI PMC
Tatsis N, Ertl HCJ. Adenoviruses as vaccine vectors. Mol Ther. 2004;10:616–29. doi: 10.1016/j.ymthe.2004.07.013. PubMed DOI PMC
Berscheminski J, Groitl P, Dobner T, Wimmer P, Schreiner S. The adenoviral oncogene E1A-13S interacts with a specific isoform of the tumor suppressor PML to enhance viral transcription. J Virol. 2013;87:965–77. doi: 10.1128/JVI.02023-12. PubMed DOI PMC
Berscheminski J, Wimmer P, Brun J, Ip WH, Groitl P, Horlacher T, et al. Sp100 isoform-specific regulation of human adenovirus 5 gene expression. J Virol. 2014;88:6076–92. doi: 10.1128/JVI.00469-14. PubMed DOI PMC
Stubbe M, Mai J, Paulus C, Stubbe HC, Berscheminski J, Karimi M, et al. Viral DNA binding protein SUMOylation promotes PML nuclear body localization next to viral replication Centers. mBio. 2020;11:e00049–20. doi: 10.1128/mBio.00049-20. PubMed DOI PMC
Komatsu T, Nagata K, Wodrich H. An adenovirus DNA replication factor, but not incoming genome complexes, targets PML Nuclear Bodies. J Virol. 2016;90:1657–67. doi: 10.1128/JVI.02545-15. PubMed DOI PMC
McBride AA. Human papillomaviruses: diversity, infection and host interactions. Nat Rev Microbiol. 2022;20:95–108. doi: 10.1038/s41579-021-00617-5. PubMed DOI
Schwarz E, Freese UK, Gissmann L, Mayer W, Roggenbuck B, Stremlau A, et al. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature. 1985;314:111–4. doi: 10.1038/314111a0. PubMed DOI
Pešut E, Đukić A, Lulić L, Skelin J, Šimić I, Milutin Gašperov N, et al. Human Papillomaviruses-Associated Cancers: an update of current knowledge. Viruses. 2021;13:2234. doi: 10.3390/v13112234. PubMed DOI PMC
Stoler MH, Whitbeck A, Wolinsky SM, Broker TR, Chow LT, Howett MK, et al. Infectious cycle of human papillomavirus type 11 in human foreskin xenografts in nude mice. J Virol. 1990;64:3310–8. doi: 10.1128/jvi.64.7.3310-3318.1990. PubMed DOI PMC
Moody C. Mechanisms by which HPV induces a replication competent environment in differentiating keratinocytes. Viruses. 2017;9:261. doi: 10.3390/v9090261. PubMed DOI PMC
McBride AA. Mechanisms and strategies of papillomavirus replication. Biol Chem. 2017;398:919–27. doi: 10.1515/hsz-2017-0113. PubMed DOI
Beyer-Finkler E, Stoler MarkH, Girardi F, Pfister H. Cell differentiation-related gene expression of human papillomavirus 33. Med Microbiol Immunol. 1990;179. PubMed
Bedell MA, Hudson JB, Golub TR, Turyk ME, Hosken M, Wilbanks GD, et al. Amplification of human papillomavirus genomes in vitro is dependent on epithelial differentiation. J Virol. 1991;65:2254–60. doi: 10.1128/jvi.65.5.2254-2260.1991. PubMed DOI PMC
Day PM, Roden RB, Lowy DR, Schiller JT. The papillomavirus minor capsid protein, L2, induces localization of the major capsid protein, L1, and the viral transcription/replication protein, E2, to PML oncogenic domains. J Virol. 1998;72:142–50. doi: 10.1128/JVI.72.1.142-150.1998. PubMed DOI PMC
Wang JW, Roden RBS. L2, the minor capsid protein of papillomavirus. Virology. 2013;445:175–86. doi: 10.1016/j.virol.2013.04.017. PubMed DOI PMC
DiGiuseppe S, Bienkowska-Haba M, Guion LGM, Keiffer TR, Sapp M. Human papillomavirus major capsid protein L1 remains Associated with the incoming viral genome throughout the entry process. J Virol. 2017;91:e00537–17. doi: 10.1128/JVI.00537-17. PubMed DOI PMC
DiGiuseppe S, Bienkowska-Haba M, Hilbig L, Sapp M. The nuclear retention signal of HPV16 L2 protein is essential for incoming viral genome to transverse the trans-golgi network. Virology. 2014;458–459:93–105. doi: 10.1016/j.virol.2014.04.024. PubMed DOI PMC
Popa A, Zhang W, Harrison MS, Goodner K, Kazakov T, Goodwin EC, et al. Direct binding of retromer to human papillomavirus type 16 minor capsid protein L2 mediates endosome exit during viral infection. PLoS Pathog. 2015;11:e1004699. doi: 10.1371/journal.ppat.1004699. PubMed DOI PMC
Aydin I, Weber S, Snijder B, Samperio Ventayol P, Kühbacher A, Becker M, et al. Large scale RNAi reveals the requirement of nuclear envelope breakdown for nuclear import of human papillomaviruses. PLoS Pathog. 2014;10:e1004162. doi: 10.1371/journal.ppat.1004162. PubMed DOI PMC
Day PM, Weisberg AS, Thompson CD, Hughes MM, Pang YY, Lowy DR, et al. Human papillomavirus 16 Capsids Mediate Nuclear entry during infection. J Virol. 2019;93:e00454–19. doi: 10.1128/JVI.00454-19. PubMed DOI PMC
Florin L, Schäfer F, Sotlar K, Streeck RE, Sapp M. Reorganization of nuclear domain 10 induced by papillomavirus capsid protein l2. Virology. 2002;295:97–107. doi: 10.1006/viro.2002.1360. PubMed DOI
Becker KA, Florin L, Sapp C, Sapp M. Dissection of human papillomavirus type 33 L2 domains involved in nuclear domains (ND) 10 homing and reorganization. Virology. 2003;314:161–7. doi: 10.1016/S0042-6822(03)00447-1. PubMed DOI
Tang SY, Li L, Liu Y, Liu AY, Yu MJ, Zhang Y, et al. [Interaction of DAXX and human papillomavirus type 16 E2 protein] Mol Biol (Mosk) 2014;48:682–6. doi: 10.1134/S0026893314040165. PubMed DOI
Roberts S, Hillman ML, Knight GL, Gallimore PH. The ND10 component promyelocytic leukemia protein relocates to human papillomavirus type 1 E4 intranuclear inclusion bodies in cultured keratinocytes and in warts. J Virol. 2003;77:673–84. doi: 10.1128/JVI.77.1.673-684.2003. PubMed DOI PMC
Day PM, Baker CC, Lowy DR, Schiller JT. Establishment of papillomavirus infection is enhanced by promyelocytic leukemia protein (PML) expression. Proc Natl Acad Sci USA. 2004;101:14252–7. doi: 10.1073/pnas.0404229101. PubMed DOI PMC
Bienkowska-Haba M, Luszczek W, Keiffer TR, Guion LGM, DiGiuseppe S, Scott RS, et al. Incoming human papillomavirus 16 genome is lost in PML protein-deficient HaCaT keratinocytes. Cell Microbiol. 2017;19:e12708. doi: 10.1111/cmi.12708. PubMed DOI PMC
Bund T, Spoden GA, Koynov K, Hellmann N, Boukhallouk F, Arnold P, et al. An L2 SUMO interacting motif is important for PML localization and infection of human papillomavirus type 16: SIM-based SUMO interaction of HPV16 L2. Cell Microbiol. 2014;16:1179–200. doi: 10.1111/cmi.12271. PubMed DOI
Guion L, Bienkowska-Haba M, DiGiuseppe S, Florin L, Sapp M. PML nuclear body-residing proteins sequentially associate with HPV genome after infectious nuclear delivery. PLoS Pathog. 2019;15:e1007590. doi: 10.1371/journal.ppat.1007590. PubMed DOI PMC
Kivipõld P, Võsa L, Ustav M, Kurg R. DAXX modulates human papillomavirus early gene expression and genome replication in U2OS cells. Virol J. 2015;12:104. doi: 10.1186/s12985-015-0335-z. PubMed DOI PMC
Schweiger L, Lelieveld-Fast LA, Mikuličić S, Strunk J, Freitag K, Tenzer S, et al. HPV16 induces formation of Virus-p62-PML hybrid bodies to enable infection. Viruses. 2022;14:1478. doi: 10.3390/v14071478. PubMed DOI PMC
Stepp WH, Meyers JM, McBride AA. Sp100 provides intrinsic immunity against human papillomavirus infection. mBio. 2013;4:e00845–13. doi: 10.1128/mBio.00845-13. PubMed DOI PMC
Stepp WH, Stamos JD, Khurana S, Warburton A, McBride AA. Sp100 colocalizes with HPV replication foci and restricts the productive stage of the infectious cycle. PLoS Pathog. 2017;13:e1006660. doi: 10.1371/journal.ppat.1006660. PubMed DOI PMC
Cook L, Polyomaviruses. Microbiol Spectr. 2016;4. PubMed
Ehlers B, Moens U. Genome analysis of non-human primate polyomaviruses. Infect Genet Evol. 2014;26:283–94. doi: 10.1016/j.meegid.2014.05.030. PubMed DOI
Prado JCM, Monezi TA, Amorim AT, Lino V, Paladino A, Boccardo E. Human polyomaviruses and cancer: an overview. Clin (Sao Paulo) 2018;73:e558s. doi: 10.6061/clinics/2018/e558s. PubMed DOI PMC
Gerits N, Moens U. Agnoprotein of mammalian polyomaviruses. Virology. 2012;432:316–26. doi: 10.1016/j.virol.2012.05.024. PubMed DOI PMC
Gardner SD, Field AM, Coleman DV, Hulme B. New human papovavirus (B.K.) isolated from urine after renal transplantation. Lancet. 1971;1:1253–7. doi: 10.1016/S0140-6736(71)91776-4. PubMed DOI
Padgett BL, Walker DL, ZuRhein GM, Eckroade RJ, Dessel BH. Cultivation of papova-like virus from human brain with progressive multifocal leucoencephalopathy. Lancet. 1971;1:1257–60. doi: 10.1016/S0140-6736(71)91777-6. PubMed DOI
Feng H, Shuda M, Chang Y, Moore PS. Clonal integration of a Polyomavirus in Human Merkel Cell Carcinoma. Science. 2008;319:1096–100. doi: 10.1126/science.1152586. PubMed DOI PMC
Horníková L, Bruštíková K, Forstová J. Microtubules in Polyomavirus infection. Viruses. 2020;12:121. doi: 10.3390/v12010121. PubMed DOI PMC
Jul-Larsen A, Visted T, Karlsen BO, Rinaldo CH, Bjerkvig R, Lønning PE, et al. PML-nuclear bodies accumulate DNA in response to polyomavirus BK and simian virus 40 replication. Exp Cell Res. 2004;298:58–73. doi: 10.1016/j.yexcr.2004.03.045. PubMed DOI
Jiang WQ, Szekely L, Klein G, Ringertz N. Intranuclear redistribution of SV40T, p53, and PML in a conditionally SV40T-immortalized cell line. Exp Cell Res. 1996;229:289–300. doi: 10.1006/excr.1996.0374. PubMed DOI
Tang Q, Bell P, Tegtmeyer P, Maul GG. Replication but not transcription of simian virus 40 DNA is dependent on nuclear domain 10. J Virol. 2000;74:9694–700. doi: 10.1128/JVI.74.20.9694-9700.2000. PubMed DOI PMC
Lanson NA, Egeland DB, Royals BA, Claycomb WC. The MRE11-NBS1-RAD50 pathway is perturbed in SV40 large T antigen-immortalized AT-1, AT-2 and HL-1 cardiomyocytes. Nucleic Acids Res. 2000;28:2882–92. doi: 10.1093/nar/28.15.2882. PubMed DOI PMC
Digweed M, Demuth I, Rothe S, Scholz R, Jordan A, Grötzinger C, et al. SV40 large T-antigen disturbs the formation of nuclear DNA-repair foci containing MRE11. Oncogene. 2002;21:4873–8. doi: 10.1038/sj.onc.1205616. PubMed DOI
Jiang M, Entezami P, Gamez M, Stamminger T, Imperiale MJ. Functional reorganization of promyelocytic leukemia nuclear bodies during BK virus infection. mBio. 2011;2:e00281–00210. doi: 10.1128/mBio.00281-11. PubMed DOI PMC
Erickson KD, Bouchet-Marquis C, Heiser K, Szomolanyi-Tsuda E, Mishra R, Lamothe B, et al. Virion assembly factories in the nucleus of polyomavirus-infected cells. PLoS Pathog. 2012;8:e1002630. doi: 10.1371/journal.ppat.1002630. PubMed DOI PMC
Neumann F, Czech-Sioli M, Dobner T, Grundhoff A, Schreiner S, Fischer N. Replication of Merkel cell polyomavirus induces reorganization of promyelocytic leukemia nuclear bodies. J Gen Virol. 2016;97:2926–38. doi: 10.1099/jgv.0.000593. PubMed DOI
Shishido-Hara Y, Yazawa T, Nagane M, Higuchi K, Abe-Suzuki S, Kurata M, et al. JC virus inclusions in progressive multifocal leukoencephalopathy: scaffolding promyelocytic leukemia nuclear bodies grow with cell cycle transition through an S-to-G2-like state in enlarging oligodendrocyte nuclei. J Neuropathol Exp Neurol. 2014;73:442–53. doi: 10.1097/NEN.0000000000000066. PubMed DOI PMC
Shishido-Hara Y, Higuchi K, Ohara S, Duyckaerts C, Hauw J-J, Uchihara T. Promyelocytic leukemia nuclear bodies provide a scaffold for human polyomavirus JC replication and are disrupted after development of viral inclusions in progressive multifocal leukoencephalopathy. J Neuropathol Exp Neurol. 2008;67:299–308. doi: 10.1097/NEN.0b013e31816a1dd3. PubMed DOI
Shishido-Hara Y, Ichinose S, Higuchi K, Hara Y, Yasui K. Major and minor capsid proteins of human polyomavirus JC cooperatively accumulate to nuclear domain 10 for assembly into virions. J Virol. 2004;78:9890–903. doi: 10.1128/JVI.78.18.9890-9903.2004. PubMed DOI PMC
Shishido-Hara Y, Ichinose S, Uchihara T. JC virus intranuclear inclusions associated with PML-NBs: analysis by electron microscopy and structured illumination microscopy. Am J Pathol. 2012;180:1095–106. doi: 10.1016/j.ajpath.2011.11.036. PubMed DOI
Assetta B, De Cecco M, O’Hara B, Atwood WJ. JC Polyomavirus infection of primary human renal epithelial cells is controlled by a type I IFN-Induced response. mBio. 2016;7:e00903–16. doi: 10.1128/mBio.00903-16. PubMed DOI PMC
Datta S, Chatterjee S, Veer V, Chakravarty R. Molecular biology of the hepatitis B virus for clinicians. J Clin Exp Hepatol. 2012;2:353–65. doi: 10.1016/j.jceh.2012.10.003. PubMed DOI PMC
Hepatitis B, [Internet]. Available from: https://www.who.int/news-room/fact-sheets/detail/hepatitis-b.
Dill JA, Camus AC, Leary JH, Di Giallonardo F, Holmes EC, Ng TFF. Distinct viral lineages from Fish and Amphibians reveal the Complex Evolutionary History of Hepadnaviruses. J Virol. 2016;90:7920–33. doi: 10.1128/JVI.00832-16. PubMed DOI PMC
Yoon GS, Yu E. Overexpression of promyelocytic leukemia protein and alteration of PML nuclear bodies in early stage of hepatocarcinogenesis. J Korean Med Sci. 2001;16:433–8. doi: 10.3346/jkms.2001.16.4.433. PubMed DOI PMC
Chung Y-L, Tsai T-Y. Promyelocytic leukemia nuclear bodies link the DNA damage repair pathway with hepatitis B virus replication: implications for hepatitis B virus exacerbation during chemotherapy and radiotherapy. Mol Cancer Res. 2009;7:1672–85. doi: 10.1158/1541-7786.MCR-09-0112. PubMed DOI
Li L, Li Y, Xiong Z, Shu W, Yang Y, Guo Z, et al. FoxO4 inhibits HBV core promoter activity through ERK-mediated downregulation of HNF4α. Antiviral Res. 2019;170:104568. doi: 10.1016/j.antiviral.2019.104568. PubMed DOI
Li Y, He M, Gong R, Wang Z, Lu L, Peng S, et al. Forkhead O transcription factor 4 restricts HBV covalently closed circular DNA transcription and HBV replication through genetic downregulation of hepatocyte nuclear factor 4 alpha and epigenetic suppression of covalently closed circular DNA via interacting with promyelocytic leukemia protein. J Virol. 2022;96:e0054622. doi: 10.1128/jvi.00546-22. PubMed DOI PMC
Studach L, Wang W-H, Weber G, Tang J, Hullinger RL, Malbrue R, et al. Polo-like kinase 1 activated by the hepatitis B virus X protein attenuates both the DNA damage checkpoint and DNA repair resulting in partial polyploidy. J Biol Chem. 2010;285:30282–93. doi: 10.1074/jbc.M109.093963. PubMed DOI PMC
Zhang H, Diab A, Fan H, Mani SKK, Hullinger R, Merle P, et al. PLK1 and HOTAIR accelerate proteasomal degradation of SUZ12 and ZNF198 during Hepatitis B Virus-Induced Liver Carcinogenesis. Cancer Res. 2015;75:2363–74. doi: 10.1158/0008-5472.CAN-14-2928. PubMed DOI PMC
Wang W-H, Studach LL, Andrisani OM. Proteins ZNF198 and SUZ12 are down-regulated in hepatitis B virus (HBV) X protein-mediated hepatocyte transformation and in HBV replication. Hepatology. 2011;53:1137–47. doi: 10.1002/hep.24163. PubMed DOI PMC
Yoon J-H, Abdelmohsen K, Kim J, Yang X, Martindale JL, Tominaga-Yamanaka K, et al. Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. Nat Commun. 2013;4:2939. doi: 10.1038/ncomms3939. PubMed DOI PMC
Sengupta I, Das D, Singh SP, Chakravarty R, Das C. Host transcription factor speckled 110 kDa (Sp110), a nuclear body protein, is hijacked by hepatitis B virus protein X for viral persistence. J Biol Chem. 2017;292:20379–93. doi: 10.1074/jbc.M117.796839. PubMed DOI PMC
Kegel A, Sjögren C. The Smc5/6 complex: more than repair? Cold Spring Harb Symp Quant Biol. 2010;75:179–87. doi: 10.1101/sqb.2010.75.047. PubMed DOI
Decorsière A, Mueller H, van Breugel PC, Abdul F, Gerossier L, Beran RK, et al. Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor. Nature. 2016;531:386–9. doi: 10.1038/nature17170. PubMed DOI
Murphy CM, Xu Y, Li F, Nio K, Reszka-Blanco N, Li X, et al. Hepatitis B Virus X protein promotes degradation of SMC5/6 to enhance HBV replication. Cell Rep. 2016;16:2846–54. doi: 10.1016/j.celrep.2016.08.026. PubMed DOI PMC
Kanno T, Berta DG, Sjögren C. The Smc5/6 complex is an ATP-Dependent intermolecular DNA linker. Cell Rep. 2015;12:1471–82. doi: 10.1016/j.celrep.2015.07.048. PubMed DOI
Angers S, Li T, Yi X, MacCoss MJ, Moon RT, Zheng N. Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature. 2006;443:590–3. doi: 10.1038/nature05175. PubMed DOI
Minor MM, Hollinger FB, McNees AL, Jung SY, Jain A, Hyser JM, et al. Hepatitis B Virus HBx protein mediates the degradation of host restriction factors through the Cullin 4 DDB1 E3 ubiquitin ligase complex. Cells. 2020;9:834. doi: 10.3390/cells9040834. PubMed DOI PMC
Abdul F, Filleton F, Gerossier L, Paturel A, Hall J, Strubin M, et al. Smc5/6 antagonism by HBx is an evolutionarily conserved function of Hepatitis B Virus infection in mammals. J Virol. 2018;92:e00769–18. doi: 10.1128/JVI.00769-18. PubMed DOI PMC
van Breugel PC, Robert EI, Mueller H, Decorsière A, Zoulim F, Hantz O, et al. Hepatitis B virus X protein stimulates gene expression selectively from extrachromosomal DNA templates. Hepatology. 2012;56:2116–24. doi: 10.1002/hep.25928. PubMed DOI
Niu C, Livingston CM, Li L, Beran RK, Daffis S, Ramakrishnan D, et al. The Smc5/6 Complex restricts HBV when localized to ND10 without inducing an Innate Immune Response and is counteracted by the HBV X protein shortly after infection. PLOS ONE Public Library of Science. 2017;12:e0169648. doi: 10.1371/journal.pone.0169648. PubMed DOI PMC
Abdul F, Diman A, Baechler B, Ramakrishnan D, Kornyeyev D, Beran RK, et al. Smc5/6 silences episomal transcription by a three-step function. Nat Struct Mol Biol. 2022;29:922–31. doi: 10.1038/s41594-022-00829-0. PubMed DOI
Xu W, Ma C, Zhang Q, Zhao R, Hu D, Zhang X, et al. PJA1 coordinates with the SMC5/6 Complex to restrict DNA viruses and episomal genes in an Interferon-Independent Manner. J Virol. 2018;92:e00825–18. doi: 10.1128/JVI.00825-18. PubMed DOI PMC
Van Damme E, Vanhove J, Severyn B, Verschueren L, Pauwels F. The Hepatitis B Virus Interactome: a comprehensive overview. Front Microbiol. 2021;12:724877. doi: 10.3389/fmicb.2021.724877. PubMed DOI PMC
Kakkola L, Tommiska J, Boele LCL, Miettinen S, Blom T, Kekarainen T, et al. Construction and biological activity of a full-length molecular clone of human Torque teno virus (TTV) genotype 6. FEBS J. 2007;274:4719–30. doi: 10.1111/j.1742-4658.2007.06020.x. PubMed DOI
Wawrzyniak P, Płucienniczak G, Bartosik D. The different faces of Rolling-Circle replication and its multifunctional initiator proteins. Front Microbiol. 2017;8:2353. doi: 10.3389/fmicb.2017.02353. PubMed DOI PMC
Kaczorowska J, van der Hoek L. Human anelloviruses: diverse, omnipresent and commensal members of the virome. FEMS Microbiol Rev. 2020;44:305–13. doi: 10.1093/femsre/fuaa007. PubMed DOI PMC
Freer G, Maggi F, Pifferi M, Di Cicco ME, Peroni DG, Pistello M. The Virome and its major component, Anellovirus, a Convoluted System Molding Human Immune Defenses and possibly affecting the development of Asthma and Respiratory Diseases in Childhood. Front Microbiol. 2018;9:686. doi: 10.3389/fmicb.2018.00686. PubMed DOI PMC
Bal A, Destras G, Sabatier M, Pichon M, Regue H, Oriol G, et al. Metagenomic analysis reveals high abundance of Torque Teno Mini Virus in the respiratory tract of children with Acute Respiratory illness. Viruses. 2022;14:955. doi: 10.3390/v14050955. PubMed DOI PMC
Nishizawa T, Okamoto H, Konishi K, Yoshizawa H, Miyakawa Y, Mayumi M. A novel DNA virus (TTV) associated with elevated transaminase levels in posttransfusion hepatitis of unknown etiology. Biochem Biophys Res Commun. 1997;241:92–7. doi: 10.1006/bbrc.1997.7765. PubMed DOI
Li Y, Fang L, Cui S, Fu J, Li X, Zhang H, et al. Genomic characterization of recent chicken Anemia virus isolates in China. Front Microbiol. 2017;8:401. PubMed PMC
Danen-Van Oorschot AA, Fischer DF, Grimbergen JM, Klein B, Zhuang S, Falkenburg JH, et al. Apoptin induces apoptosis in human transformed and malignant cells but not in normal cells. Proc Natl Acad Sci U S A. 1997;94:5843–7. doi: 10.1073/pnas.94.11.5843. PubMed DOI PMC
Danen-Van Oorschot AAAM, Zhang Y-H, Leliveld SR, Rohn JL, Seelen MCMJ, Bolk MW, et al. Importance of nuclear localization of apoptin for tumor-specific induction of apoptosis. J Biol Chem. 2003;278:27729–36. doi: 10.1074/jbc.M303114200. PubMed DOI
Oro C, Jans DA. The tumour specific pro-apoptotic factor apoptin (Vp3) from chicken anaemia virus. Curr Drug Targets. 2004;5:179–90. doi: 10.2174/1389450043490631. PubMed DOI
Natesan S, Kataria JM, Dhama K, Bhardwaj N, Sylvester A. Anti-neoplastic effect of chicken anemia virus VP3 protein (apoptin) in rous sarcoma virus-induced tumours in chicken. J Gen Virol. 2006;87:2933–40. doi: 10.1099/vir.0.82085-0. PubMed DOI
Poon IKH, Oro C, Dias MM, Zhang J-P, Jans DA. A tumor cell-specific nuclear targeting signal within chicken anemia virus VP3/apoptin. J Virol. 2005;79:1339–41. doi: 10.1128/JVI.79.2.1339-1341.2005. PubMed DOI PMC
Rohn JL, Zhang Y-H, Aalbers RIJM, Otto N, Den Hertog J, Henriquez NV, et al. A tumor-specific kinase activity regulates the viral death protein apoptin. J Biol Chem. 2002;277:50820–7. doi: 10.1074/jbc.M208557200. PubMed DOI
Heilman DW, Teodoro JG, Green MR. Apoptin nucleocytoplasmic shuttling is required for cell type-specific localization, apoptosis, and recruitment of the anaphase-promoting complex/cyclosome to PML bodies. J Virol. 2006;80:7535–45. doi: 10.1128/JVI.02741-05. PubMed DOI PMC
Janssen K, Hofmann TG, Jans DA, Hay RT, Schulze-Osthoff K, Fischer U. Apoptin is modified by SUMO conjugation and targeted to promyelocytic leukemia protein nuclear bodies. Oncogene. 2007;26:1557–66. doi: 10.1038/sj.onc.1209923. PubMed DOI
Cobb AM, De Silva SA, Hayward R, Sek K, Ulferts S, Grosse R, et al. Filamentous nuclear actin regulation of PML NBs during the DNA damage response is deregulated by prelamin A. Cell Death Dis. 2022;13:1042. doi: 10.1038/s41419-022-05491-4. PubMed DOI PMC
Mouse polyomavirus infection induces lamin reorganisation