Advances in Genetic Reprogramming: Prospects from Developmental Biology to Regenerative Medicine
Jazyk angličtina Země Spojené arabské emiráty Médium print
Typ dokumentu časopisecké články, přehledy
Grantová podpora
2217/2022-2023
Excellence project PrF UHK
00179906
Ministry of Health project MHCZ - DRO (UHHK)
PubMed
37138422
DOI
10.2174/0929867330666230503144619
PII: CMC-EPUB-131443
Knihovny.cz E-zdroje
- Klíčová slova
- Genetic engineering, induced pluripotency, nuclear reprogramming, regenerative medicine, somatic cell nuclear transfer, stem cells.,
- MeSH
- genetické inženýrství MeSH
- indukované pluripotentní kmenové buňky metabolismus cytologie MeSH
- lidé MeSH
- přeprogramování buněk * MeSH
- regenerativní lékařství * MeSH
- tkáňové inženýrství MeSH
- vývojová biologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The foundations of cell reprogramming were laid by Yamanaka and co-workers, who showed that somatic cells can be reprogrammed into pluripotent cells (induced pluripotency). Since this discovery, the field of regenerative medicine has seen advancements. For example, because they can differentiate into multiple cell types, pluripotent stem cells are considered vital components in regenerative medicine aimed at the functional restoration of damaged tissue. Despite years of research, both replacement and restoration of failed organs/ tissues have remained elusive scientific feats. However, with the inception of cell engineering and nuclear reprogramming, useful solutions have been identified to counter the need for compatible and sustainable organs. By combining the science underlying genetic engineering and nuclear reprogramming with regenerative medicine, scientists have engineered cells to make gene and stem cell therapies applicable and effective. These approaches have enabled the targeting of various pathways to reprogramme cells, i.e., make them behave in beneficial ways in a patient-specific manner. Technological advancements have clearly supported the concept and realization of regenerative medicine. Genetic engineering is used for tissue engineering and nuclear reprogramming and has led to advances in regenerative medicine. Targeted therapies and replacement of traumatized , damaged, or aged organs can be realized through genetic engineering. Furthermore, the success of these therapies has been validated through thousands of clinical trials. Scientists are currently evaluating induced tissue-specific stem cells (iTSCs), which may lead to tumour-free applications of pluripotency induction. In this review, we present state-of-the-art genetic engineering that has been used in regenerative medicine. We also focus on ways that genetic engineering and nuclear reprogramming have transformed regenerative medicine and have become unique therapeutic niches.
Biomedical Research Center University Hospital Hradec Kralove Hradec Kralove 50005 Czech Republic
Head of Bioinformatic Division NMC Genetics India Pvt Ltd Gurugram India
School of Bioengineering and Biosciences Lovely Professional University Phagwara Punjab India
Zobrazit více v PubMed
Ryall J.G.; Cliff T.; Dalton S.; Sartorelli V.; Metabolic reprogramming of stem cell epigenetics. Cell Stem Cell 2015,17(6),651-662 PubMed DOI
Mall M.; Wernig M.; The novel tool of cell reprogramming for applications in molecular medicine. J Mol Med 2017,95(7),695-703 PubMed DOI
Spemann H.; Mangold H.; Induction of embryonic primordia by implantation of organizers from a different species. 1923. Int J Dev Biol 2001,45(1),13-38 PubMed
Hemmi J.J.; Mishra A.; Hornsby P.J.; Overcoming barriers to reprogramming and differentiation in nonhuman primate induced pluripotent stem cells. Primate Biol 2017,4(2),153-162 PubMed DOI
Nizzardo M.; Simone C.; Falcone M.; Riboldi G.; Comi G.P.; Bresolin N.; Corti S.; Direct reprogramming of adult somatic cells into other lineages: past evidence and future perspectives. Cell Transplant 2013,22(6),921-944 PubMed DOI
Ilic D.; Polak J.M.; Stem cells in regenerative medicine: introduction. Br Med Bull 2011,98(1),117-126 PubMed DOI
Santos A.R.; Nascimento V.A.; Genari S.C.; Lombello C.B.; Mechanisms of Cell Regeneration - From Differentiation to Maintenance of Cell Phenotype. In: Cells and Biomaterials in Regenerative Medicine, 2014.
Ullah I.; Subbarao R.B.; Rho G.J.; Human mesenchymal stem cells - current trends and future prospective. Biosci Rep 2015,35(2),e00191 PubMed DOI
Sisakhtnezhad S.; Matin M.M.; Transdifferentiation: A cell and molecular reprogramming process. Cell Tissue Res 2012,348(3),379-396 PubMed DOI
Le Magnen C.; Shen M.M.; Abate-Shen C.; Lineage plasticity in cancer progression and treatment. Annu Rev Cancer Biol 2018,2(1),271-289 PubMed DOI
Nakagawa H.; Whelan K.; Lynch J.P.; Mechanisms of Barrett’s oesophagus: Intestinal differentiation, stem cells, and tissue models. Best Pract Res Clin Gastroenterol 2015,29(1),3-16 PubMed DOI
Ye L.; Robertson M.A.; Mastracci T.L.; Anderson R.M.; An insulin signaling feedback loop regulates pancreas progenitor cell differentiation during islet development and regeneration. Dev Biol 2016,409(2),354-369 PubMed DOI
Yamamizu K.; Piao Y.; Sharov A.A.; Zsiros V.; Yu H.; Nakazawa K.; Schlessinger D.; Ko M.S.H.; Identification of transcription factors for lineage-specific ESC differentiation. Stem Cell Reports 2013,1(6),545-559 PubMed DOI
Palomo A.; Lucas M.; Dilley R.; McLenachan S.; Chen F.; Requena J.; Sal M.; Lucas A.; Alvarez I.; Jaraquemada D.; Edel M.; The power and the promise of cell reprogramming: Personalized autologous body organ and cell transplantation. J Clin Med 2014,3(2),373-387 PubMed DOI
Bhartiya D.; Hinduja I.; Patel H.; Bhilawadikar R.; Making gametes from pluripotent stem cells – a promising role for very small embryonic-like stem cells. Reprod Biol Endocrinol 2014,12(1),114 PubMed DOI
Son M.Y.; Lee M.O.; Jeon H.; Seol B.; Kim J.H.; Chang J.S.; Cho Y.S.; Generation and characterization of integration-free induced pluripotent stem cells from patients with autoimmune disease. Exp Mol Med 2016,48(5),e232 PubMed DOI
Li M.; Cascino P.; Ummarino S.; Di Ruscio A.; Application of induced pluripotent stem cell technology to the study of hematological diseases. Cells 2017,6(1),7 PubMed DOI
Halley-Stott R.P.; Pasque V.; Gurdon J.B.; Nuclear reprogramming. Development 2013,140(12),2468-2471 PubMed DOI
Tahmasebi S.; Jafarnejad S.M.; Tam I.S.; Gonatopoulos-Pournatzis T.; Matta-Camacho E.; Tsukumo Y.; Yanagiya A.; Li W.; Atlasi Y.; Caron M.; Braunschweig U.; Pearl D.; Khoutorsky A.; Gkogkas C.G.; Nadon R.; Bourque G.; Yang X.J.; Tian B.; Stunnenberg H.G.; Yamanaka Y.; Blencowe B.J.; Giguère V.; Sonenberg N.; Control of embryonic stem cell self-renewal and differentiation via coordinated alternative splicing and translation of YY2. Proc Natl Acad Sci 2016,113(44),12360-12367 PubMed DOI
Singh V.K.; Saini A.; Kalsan M.; Kumar N.; Chandra R.; Describing the stem cell potency: The various methods of functional assessment and in silico diagnostics. Front Cell Dev Biol 2016,4,134 PubMed DOI
Xiao J.; Yang R.; Biswas S.; Qin X.; Zhang M.; Deng W.; Mesenchymal stem cells and induced pluripotent stem cells as therapies for multiple sclerosis. Int J Mol Sci 2015,16(12),9283-9302 PubMed DOI
Földes A.; Kádár K.; Kerémi B.; Zsembery Á.; Gyires K.; S Zádori Z.; Varga G.; Mesenchymal stem cells of dental origin-their potential for antiinflammatory and regenerative actions in brain and gut damage. Curr Neuropharmacol 2016,14(8),914-934 PubMed DOI
Alvarez C.V.; Garcia-Lavandeira M.; Garcia-Rendueles M.E.R.; Diaz-Rodriguez E.; Garcia-Rendueles A.R.; Perez-Romero S.; Vila T.V.; Rodrigues J.S.; Lear P.V.; Bravo S.B.; Defining stem cell types: Understanding the therapeutic potential of ESCs, ASCs, and iPS cells. J Mol Endocrinol 2012,49(2),R89-R111 PubMed DOI
Ravasio R.; Ceccacci E.; Minucci S.; Self-renewal of tumor cells: Epigenetic determinants of the cancer stem cell phenotype. Curr Opin Genet Dev 2016,36,92-99 PubMed DOI
Hossini A.M.; Quast A.S.; Plötz M.; Grauel K.; Exner T.; Küchler J.; Stachelscheid H.; Eberle J.; Rabien A.; Makrantonaki E.; Zouboulis C.C.; PI3K/AKT signaling pathway is essential for survival of induced pluripotent stem cells. PLoS One 2016,11(5),e0154770 PubMed DOI
Pekovic V.; Hutchison C.J.; Adult stem cell maintenance and tissue regeneration in the ageing context: the role for A-type lamins as intrinsic modulators of ageing in adult stem cells and their niches. J Anat 2008,213(1),5-25 PubMed DOI
Marques-Mari A.I.; Lacham-Kaplan O.; Medrano J.V.; Pellicer A.; Simón C.; Differentiation of germ cells and gametes from stem cells. Hum Reprod Update 2009,15(3),379-390 PubMed DOI
NIH Types of Stem Cell | Stem Cells | University of Nebraska Medical Center. Available from: https://www.unmc.edu/stemcells/educational-resources/types.html (Accessed on: Mar 29, 2021).
Stoltz J.F.; de Isla N.; Li Y.P.; Bensoussan D.; Zhang L.; Huselstein C.; Chen Y.; Decot V.; Magdalou J.; Li N.; Reppel L.; He Y.; Stem cells and regenerative medicine: Myth or reality of the 21th century. Stem Cells Int 2015,2015,1-19 PubMed DOI
Bhattacharyya S.; Kumar A.; Lal Khanduja K.; The voyage of stem cell toward terminal differentiation: A brief overview. Acta Biochim Biophys Sin 2012,44(6),463-475 PubMed DOI
Crane G.M.; Jeffery E.; Morrison S.J.; Adult haematopoietic stem cell niches. Nat Rev Immunol 2017,17(9),573-590 PubMed DOI
Bao B.; Ahmad A.; Azmi A.S.; Ali S.; Sarkar F.H.; Overview of Cancer Stem Cells (CSCS) and mechanisms of their regulation: Implications for cancer therapy. Curr Protoc Pharmacol 2013,14,14-25
Li S.; Li Q.; Cancer stem cells and tumor metastasis. Int J Oncol 2014,44(6),1806-1812 PubMed DOI
Eun K.; Ham S.W.; Kim H.; Cancer stem cell heterogeneity: Origin and new perspectives on CSC targeting. BMB Rep 2017,50(3),117-125 PubMed DOI
Conley S.J.; Gheordunescu E.; Kakarala P.; Newman B.; Korkaya H.; Heath A.N.; Clouthier S.G.; Wicha M.S.; Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc Natl Acad Sci 2012,109(8),2784-2789 PubMed DOI
Deng S.; Yang X.; Lassus H.; Liang S.; Kaur S.; Ye Q.; Li C.; Wang L.P.; Roby K.F.; Orsulic S.; Connolly D.C.; Zhang Y.; Montone K.; Bützow R.; Coukos G.; Zhang L.; Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1), in human epithelial cancers. PLoS One 2010,5(4),e10277 PubMed DOI
Jaworska D.; Król W.; Szliszka E.; Prostate cancer stem cells: Research advances. Int J Mol Sci 2015,16(11),27433-27449 PubMed DOI
Chen K.; Huang Y.; Chen J.; Understanding and targeting cancer stem cells: Therapeutic implications and challenges. Acta Pharmacol Sin 2013,34(6),732-740 PubMed DOI
Wang Q.E.; DNA damage responses in cancer stem cells: Implications for cancer therapeutic strategies. World J Biol Chem 2015,6(3),57-64 PubMed DOI
Kasai T.; Chen L.; Mizutani A.; Kudoh T.; Murakami H.; Fu L.; Seno M.; Cancer stem cells converted from pluripotent stem cells and the cancerous niche. J Stem Cells Regen Med 2014,10(1),2-7 PubMed DOI
Chagastelles P.C.; Nardi N.B.; Biology of stem cells: An overview. Kidney Int Suppl 2011,1(3),63-67 PubMed DOI
Mummery C.L.; Zhang J.; Ng E.S.; Elliott D.A.; Elefanty A.G.; Kamp T.J.; Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: A methods overview. Circ Res 2012,111(3),344-358 PubMed DOI
Ohnuki M.; Takahashi K.; Present and future challenges of induced pluripotent stem cells. Philos Trans R Soc Lond B Biol Sci 2015,370(1680),20140367 PubMed DOI
Martello G.; Smith A.; The nature of embryonic stem cells. Annu Rev Cell Dev Biol 2014,30(1),647-675 PubMed DOI
Yee J.; Turning somatic cells into pluripotent stem cells. New Educator 2010,3,25
Tucak A.; Vrabac D.; Smajić A.; Sažić A.; Future trends and possibilities of using induced pluripotent stem cells (iPSC) in regenerative medicine. IFMBE Proc 2017,62,459-464 DOI
Han J.W.; Yoon Y.; Induced pluripotent stem cells: Emerging techniques for nuclear reprogramming. Antioxid Redox Signal 2011,15(7),1799-1820 PubMed DOI
Wong W.T.; Sayed N.; Cooke J.P.; Induced pluripotent stem cells: How they will change the practice of cardiovascular medicine. Methodist DeBakey Cardiovasc J 2013,9(4),206-209 PubMed DOI
Yamanaka S.; Induced pluripotent stem cells: Past, present, and future. Cell Stem Cell 2012,10(6),678-684 PubMed DOI
Avior Y.; Sagi I.; Benvenisty N.; Pluripotent stem cells in disease modelling and drug discovery. Nat Rev Mol Cell Biol 2016,17(3),170-182 PubMed DOI
Roberts R.M.; Fisher S.J.; Trophoblast stem cells. Biol Reprod 2011,84(3),412-421 PubMed DOI
Vićovac L.; Aplin J.D.; Epithelial-mesenchymal transition during trophoblast differentiation. Cells Tissues Organs 1996,156(3),202-216 PubMed DOI
Telugu B.P.; Adachi K.; Schlitt J.M.; Ezashi T.; Schust D.J.; Roberts R.M.; Schulz L.C.; Comparison of extravillous trophoblast cells derived from human embryonic stem cells and from first trimester human placentas. Placenta 2013,34(7),536-543 PubMed DOI
Velicky P.; Knöfler M.; Pollheimer J.; Function and control of human invasive trophoblast subtypes: Intrinsic vs. maternal control. Cell Adhes Migr 2016,10(1-2),154-162 PubMed DOI
Horii M.; Li Y.; Wakeland A.K.; Pizzo D.P.; Nelson K.K.; Sabatini K.; Laurent L.C.; Liu Y.; Parast M.M.; Human pluripotent stem cells as a model of trophoblast differentiation in both normal development and disease. Proc Natl Acad Sci USA 2016,113(27),E3882-E3891 PubMed DOI
Erlebacher A.; Price K.A.; Glimcher L.H.; Maintenance of mouse trophoblast stem cell proliferation by TGF-β/activin. Dev Biol 2004,275(1),158-169 PubMed DOI
Rielland M.; Hue I.; Renard J.P.; Alice J.; Trophoblast stem cell derivation, cross-species comparison and use of nuclear transfer: New tools to study trophoblast growth and differentiation. Dev Biol 2008,322(1),1-10 PubMed DOI
M M.; P Z.; K P.; i K.; S L.; L Y.; R M.; K Z.; M M.; Stem cells’ guided gene therapy of cancer: New frontier in personalized and targeted therapy. J Cancer Res Ther 2014,2(1),22-33 DOI
Daley G.Q.; Stem cells and the evolving notion of cellular identity. Philos Trans R Soc Lond B Biol Sci 2015,370(1680),20140376 PubMed DOI
Yamanaka S.; Blau H.M.; Nuclear reprogramming to a pluripotent state by three approaches. Nature 2010,465(7299),704-712 PubMed DOI
Kim S.H.; Moon H.H.; Kim H.A.; Hwang K.C.; Lee M.; Choi D.; Hypoxia-inducible vascular endothelial growth factor-engineered mesenchymal stem cells prevent myocardial ischemic injury. Mol Ther 2011,19(4),741-750 PubMed DOI
Kim J.S.; Choi H.W.; Choi S.; Do J.T.; Reprogrammed pluripotent stem cells from somatic cells. Int J Stem Cells 2011,4(1),1-8 PubMed DOI
Jalali Tehrani H.; Parivar K.; Ai J.; Kajbafzadeh A.; Rahbarghazi R.; Hashemi M.; Sadeghizadeh M.; Effect of dexamethasone, insulin and EGF on the myogenic potential on human endometrial stem cell. Iran J Pharm Res 2014,13(2),659-664 PubMed
Műzes G.; Sipos F.; Heterogeneity of stem cells: A brief overview. Methods Mol Biol 2016,1516,1-12 PubMed DOI
Lluis F.; Cosma M.P.; Cell-fusion-mediated somatic-cell reprogramming: A mechanism for tissue regeneration. J Cell Physiol 2010,223(1),6-13 PubMed
Serov O.L.; Matveeva N.M.; Khabarova A.A.; Reprogramming mediated by cell fusion technology. Int Rev Cell Mol Biol 2011,291,155-190 PubMed DOI
Pomerantz J.; Blau H.M.; Nuclear reprogramming: A key to stem cell function in regenerative medicine. Nat Cell Biol 2004,6(9),810-816 PubMed DOI
Colman A.; Profile of John Gurdon and Shinya Yamanaka, 2012 nobel laureates in medicine or physiology. Proc Natl Acad Sci 2013,110(15),5740-5741 PubMed DOI
Blau H.M.; Sir John Gurdon: Father of nuclear reprogramming. Differentiation 2014,88(1),10-12 PubMed DOI
Plath K.; Lowry W.E.; Progress in understanding reprogramming to the induced pluripotent state. Nat Rev Genet 2011,12(4),253-265 PubMed DOI
Sampogna G.; Guraya S.Y.; Forgione A.; Regenerative medicine: Historical roots and potential strategies in modern medicine. J Microsc Ultrastruct 2015,3(3),101-107 PubMed DOI
Dey D.; Evans G.R.D.; Generation of Induced Pluripotent Stem (iPS) cells by nuclear reprogramming. Stem Cells Int 2011,2011,1-11 PubMed DOI
Halley-Stott R.P.; Gurdon J.B.; Epigenetic memory in the context of nuclear reprogramming and cancer. Brief Funct Genomics 2013,12(3),164-173 PubMed DOI
Loi P.; Iuso D.; Toschi P.; Palazzese L.; Czernik M.; Alternative strategies for nuclear reprogramming in Somatic Cell Nuclear transfer (SCNT). Anim Reprod 2017,14(2),377-382 DOI
Matoba S.; Liu Y.; Lu F.; Iwabuchi K.A.; Shen L.; Inoue A.; Zhang Y.; Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell 2014,159(4),884-895 PubMed DOI
Chung Y.G.; Matoba S.; Liu Y.; Eum J.H.; Lu F.; Jiang W.; Lee J.E.; Sepilian V.; Cha K.Y.; Lee D.R.; Zhang Y.; Histone demethylase expression enhances human somatic cell nuclear transfer efficiency and promotes derivation of pluripotent stem cells. Cell Stem Cell 2015,17(6),758-766 PubMed DOI
Liu D.; Li J.; Zhu K.; Wang C.; 1432 Direct in-situ GMT lentivirus-induced cell reprogramming for cardiac repair by ultrasound-targeted microbubble destruction. Eur Heart J 2018,39(S1),39 DOI
Federation A.J.; Bradner J.E.; Meissner A.; The use of small molecules in somatic-cell reprogramming. Trends Cell Biol 2014,24(3),179-187 PubMed DOI
Soufi A.; Donahue G.; Zaret K.S.; Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome. Cell 2012,151(5),994-1004 PubMed DOI
Taberlay P.C.; Kelly T.K.; Liu C.C.; You J.S.; De Carvalho D.D.; Miranda T.B.; Zhou X.J.; Liang G.; Jones P.A.; Polycomb-repressed genes have permissive enhancers that initiate reprogramming. Cell 2011,147(6),1283-1294 PubMed DOI
Vierbuchen T.; Wernig M.; Molecular roadblocks for cellular reprogramming. Mol Cell 2012,47(6),827-838 PubMed DOI
Li R.; Liang J.; Ni S.; Zhou T.; Qing X.; Li H.; He W.; Chen J.; Li F.; Zhuang Q.; Qin B.; Xu J.; Li W.; Yang J.; Gan Y.; Qin D.; Feng S.; Song H.; Yang D.; Zhang B.; Zeng L.; Lai L.; Esteban M.A.; Pei D.; A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 2010,7(1),51-63 PubMed DOI
Buganim Y.; Faddah D.A.; Cheng A.W.; Itskovich E.; Markoulaki S.; Ganz K.; Klemm S.L.; van Oudenaarden A.; Jaenisch R.; Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell 2012,150(6),1209-1222 PubMed DOI
Polo J.M.; Anderssen E.; Walsh R.M.; Schwarz B.A.; Nefzger C.M.; Lim S.M.; Borkent M.; Apostolou E.; Alaei S.; Cloutier J.; Bar-Nur O.; Cheloufi S.; Stadtfeld M.; Figueroa M.E.; Robinton D.; Natesan S.; Melnick A.; Zhu J.; Ramaswamy S.; Hochedlinger K.; A molecular roadmap of reprogramming somatic cells into iPS cells. Cell 2012,151(7),1617-1632 PubMed DOI
Cantone I.; Fisher A.G.; Epigenetic programming and reprogramming during development. Nat Struct Mol Biol 2013,20(3),282-289 PubMed DOI
Radzisheuskaya A.; Silva J.C.R.; Do all roads lead to Oct4? The emerging concepts of induced pluripotency. Trends Cell Biol 2014,24(5),275-284 PubMed DOI
Kelaini S.; Cochrane A.; Margariti A.; Direct reprogramming of adult cells: Avoiding the pluripotent state. Stem Cells Cloning 2014,7,19-29 PubMed
Cai Y.; Dai X.; Zhang Q.; Dai Z.; Gene expression of OCT4, SOX2, KLF4 and MYC (OSKM) induced pluripotent stem cells: Identification for potential mechanisms. Diagn Pathol 2015,10(1),35 PubMed DOI
Wong R.C.B.; Smith E.L.; Donovan P.J.; New Techniques in the Generation of Induced Pluripotent Stem Cells. In: Embryonic Stem Cells - Differentiation and Pluripotent Alternatives, 2011.
González F.; Huangfu D.; Mechanisms underlying the formation of induced pluripotent stem cells. Wiley Interdiscip Rev Dev Biol 2016,5(1),39-65 PubMed DOI
Anokye-Danso F.; Snitow M.; Morrisey E.E.; How microRNAs facilitate reprogramming to pluripotency. J Cell Sci 2012,125(Pt 18),4179-4187 PubMed
Tan G.C.; Dibb N.J.; MicroRNA-induced pluripotent stem cells. Malays J Pathol 2012,34(2),167-168 PubMed
Miyoshi N.; Ishii H.; Nagano H.; Haraguchi N.; Dewi D.L.; Kano Y.; Nishikawa S.; Tanemura M.; Mimori K.; Tanaka F.; Saito T.; Nishimura J.; Takemasa I.; Mizushima T.; Ikeda M.; Yamamoto H.; Sekimoto M.; Doki Y.; Mori M.; Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 2011,8(6),633-638 PubMed DOI
Lin C.; Yu C.; Ding S.; Toward directed reprogramming through exogenous factors. Curr Opin Genet Dev 2013,23(5),519-525 PubMed DOI
Liao Q.; Wang B.; Li X.; Jiang G.; miRNAs in acute myeloid leukemia. Oncotarget 2017,8(2),3666-3682 PubMed DOI
Rupaimoole R.; Calin G.A.; Lopez-Berestein G.; Sood A.K.; miRNA deregulation in cancer cells and the tumor microenvironment. Cancer Discov 2016,6(3),235-246 PubMed DOI
Hatziapostolou M.; Polytarchou C.; Iliopoulos D.; miRNAs link metabolic reprogramming to oncogenesis. Trends Endocrinol Metab 2013,24(7),361-373 PubMed DOI
Muraoka N.; Yamakawa H.; Miyamoto K.; Sadahiro T.; Umei T.; Isomi M.; Nakashima H.; Akiyama M.; Wada R.; Inagawa K.; Nishiyama T.; Kaneda R.; Fukuda T.; Takeda S.; Tohyama S.; Hashimoto H.; Kawamura Y.; Goshima N.; Aeba R.; Yamagishi H.; Fukuda K.; Ieda M.; MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures. EMBO J 2014,33(14),1565-1581 PubMed DOI
Wang M.; Gao Y.; Qu P.; Qing S.; Qiao F.; Zhang Y.; Mager J.; Wang Y.; Sperm-borne miR-449b influences cleavage, epigenetic reprogramming and apoptosis of SCNT embryos in bovine. Sci Rep 2017,7(1),13403 PubMed DOI
Zhang J.; Qu P.; Zhou C.; Liu X.; Ma X.; Wang M.; Wang Y.; Su J.; Liu J.; Zhang Y.; MicroRNA-125b is a key epigenetic regulatory factor that promotes nuclear transfer reprogramming. J Biol Chem 2017,292(38),15916-15926 PubMed DOI
Bernal J.A.; RNA-based tools for nuclear reprogramming and lineage-conversion: Towards clinical applications. J Cardiovasc Transl Res 2013,6(6),956-968 PubMed DOI
Moutsatsos I.K.; Turgeman G.; Zhou S.; Kurkalli B.G.; Pelled G.; Tzur L.; Kelley P.; Stumm N.; Mi S.; Müller R.; Zilberman Y.; Gazit D.; Exogenously regulated stem cell-mediated gene therapy for bone regeneration. Mol Ther 2001,3(4),449-461 PubMed DOI
Hoffmann A.; Czichos S.; Kaps C.; Bächner D.; Mayer H.; Zilberman Y.; Turgeman G.; Pelled G.; Gross G.; Gazit D.; Gazit D.; The T-box transcription factor Brachyury mediates cartilage development in mesenchymal stem cell line C3H10T1/2. J Cell Sci 2002,115(4),769-781 PubMed DOI
Martinek V.; Latterman C.; Usas A.; Abramowitch S.; Woo S.L.Y.; Fu F.H.; Huard J.; Enhancement of tendon-bone integration of anterior cruciate ligament grafts with bone morphogenetic protein-2 gene transfer: a histological and biomechanical study. J Bone Joint Surg Am 2002,84(7),1123-1131 PubMed DOI
Choy L.; Derynck R.; Transforming growth factor-β inhibits adipocyte differentiation by Smad3 interacting with CCAAT/enhancer-binding protein (C/EBP) and repressing C/EBP transactivation function. J Biol Chem 2003,278(11),9609-9619 PubMed DOI
Tiraby C.; Tavernier G.; Lefort C.; Larrouy D.; Bouillaud F.; Ricquier D.; Langin D.; Acquirement of brown fat cell features by human white adipocytes. J Biol Chem 2003,278(35),33370-33376 PubMed DOI
Braudeau C.; Bouchet D.; Tesson L.; Iyer S.; Rémy S.; Buelow R.; Anegon I.; Chauveau C.; Induction of long-term cardiac allograft survival by heme oxygenase-1 gene transfer. Gene Ther 2004,11(8),701-710 PubMed DOI
Peng H.; Usas A.; Olshanski A.; Ho A.M.; Gearhart B.; Cooper G.M.; Huard J.; VEGF improves, whereas sFlt1 inhibits, BMP2-induced bone formation and bone healing through modulation of angiogenesis. J Bone Miner Res 2005,20(11),2017-2027 PubMed DOI
Sugiyama O.; Sung An D.; Kung S.P.K.; Feeley B.T.; Gamradt S.; Liu N.Q.; Chen I.S.Y.; Lieberman J.R.; Lentivirus-mediated gene transfer induces long-term transgene expression of BMP-2 in vitro and new bone formation in vivo. Mol Ther 2005,11(3),390-398 PubMed DOI
Hasharoni A.; Zilberman Y.; Turgeman G.; Helm G.A.; Liebergall M.; Gazit D.; Murine spinal fusion induced by engineered mesenchymal stem cells that conditionally express bone morphogenetic protein-2. J Neurosurg Spine 2005,3(1),47-52 PubMed DOI
Zhang X.; Xie C.; Lin A.S.P.; Ito H.; Awad H.; Lieberman J.R.; Rubery P.T.; Schwarz E.M.; O’Keefe R.J.; Guldberg R.E.; Periosteal progenitor cell fate in segmental cortical bone graft transplantations: Implications for functional tissue engineering. J Bone Miner Res 2005,20(12),2124-2137 PubMed DOI
Chen Z.; Torrens J.I.; Anand A.; Spiegelman B.M.; Friedman J.M.; Krox20 stimulates adipogenesis via C/EBPβ-dependent and -independent mechanisms. Cell Metab 2005,1(2),93-106 PubMed DOI
Hu Y.; Leaver S.G.; Plant G.W.; Hendriks W.T.J.; Niclou S.P.; Verhaagen J.; Harvey A.R.; Cui Q.; Lentiviral- mediated transfer of CNTF to schwann cells within reconstructed peripheral nerve grafts enhances adult retinal ganglion cell survival and axonal regeneration. Mol Ther 2005,11(6),906-915 PubMed DOI
Kuwaki K.; Tseng Y.L.; Dor F.J.M.F.; Shimizu A.; Houser S.L.; Sanderson T.M.; Lancos C.J.; Prabharasuth D.D.; Cheng J.; Moran K.; Hisashi Y.; Mueller N.; Yamada K.; Greenstein J.L.; Hawley R.J.; Patience C.; Awwad M.; Fishman J.A.; Robson S.C.; Schuurman H.J.; Sachs D.H.; Cooper D.K.C.; Heart transplantation in baboons using α1,3-galactosyltransferase gene-knockout pigs as donors: Initial experience. Nat Med 2005,11(1),29-31 PubMed DOI
Furukawa H.; Oshima K.; Tung T.; Cui G.; Laks H.; Sen L.; Liposome-mediated combinatorial cytokine gene therapy induces localized synergistic immunosuppression and promotes long-term survival of cardiac allografts. J Immunol 2005,174(11),6983-6992 PubMed DOI
Aslan H.; Zilberman Y.; Arbeli V.; Sheyn D.; Matan Y.; Liebergall M.; Li J.Z.; Helm G.A.; Gazit D.; Gazit Z.; Nucleofection-based ex vivo nonviral gene delivery to human stem cells as a platform for tissue regeneration. Tissue Eng 2006,12(4),877-889 PubMed DOI
Aslan H.; Zilberman Y.; Kandel L.; Liebergall M.; Oskouian R.J.; Gazit D.; Gazit Z.; Osteogenic differentiation of noncultured immunoisolated bone marrow-derived CD105+ cells. Stem Cells 2006,24(7),1728-1737 PubMed DOI
Hoffmann A.; Pelled G.; Turgeman G.; Eberle P.; Zilberman Y.; Shinar H.; Keinan-Adamsky K.; Winkel A.; Shahab S.; Navon G.; Gross G.; Gazit D.; Neotendon formation induced by manipulation of the Smad8 signalling pathway in mesenchymal stem cells. J Clin Invest 2006,116(4),940-952 PubMed DOI
Kamochi H.; Kurokawa M.S.; Yoshikawa H.; Ueda Y.; Masuda C.; Takada E.; Watanabe K.; Sakakibara M.; Natuki Y.; Kimura K.; Beppu M.; Aoki H.; Suzuki N.; Transplantation of myocyte precursors derived from embryonic stem cells transfected with IGFII gene in a mouse model of muscle injury. Transplantation 2006,82(4),516-526 PubMed DOI
Mathe Z.; Dupraz P.; Rinsch C.; Thorens B.; Bosco D.; Zbinden M.; Morel P.; Berney T.; Pepper M.S.; Tetracycline-regulated expression of VEGF-A in beta cells induces angiogenesis: Improvement of engraftment following transplantation. Cell Transplant 2006,15(7),621-636 PubMed DOI
Park K.I.; Himes B.T.; Stieg P.E.; Tessler A.; Fischer I.; Snyder E.Y.; Neural stem cells may be uniquely suited for combined gene therapy and cell replacement: Evidence from engraftment of Neurotrophin-3-expressing stem cells in hypoxic–ischemic brain injury. Exp Neurol 2006,199(1),179-190 PubMed DOI
Vassalli G.; Simeoni E.; Li J.P.; Fleury S.; Lentiviral gene transfer of the chemokine antagonist RANTES 9-68 prolongs heart graft survival. Transplantation 2006,81(2),240-246 PubMed DOI
Capito R.M.; Spector M.; Collagen scaffolds for nonviral IGF-1 gene delivery in articular cartilage tissue engineering. Gene Ther 2007,14(9),721-732 PubMed DOI
Chuang C-K.; Sung L-Y.; Hwang S-M.; Lo W-H.; Chen H-C.; Hu Y-C.; Baculovirus as a new gene delivery vector for stem cell engineering and bone tissue engineering. Gene Ther 2007,14(19),1417-1424 PubMed DOI
Luu H.H.; Song W.X.; Luo X.; Manning D.; Luo J.; Deng Z.L.; Sharff K.A.; Montag A.G.; Haydon R.C.; He T.C.; Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. J Orthop Res 2007,25(5),665-677 PubMed DOI
Pagnotto M.R.; Wang Z.; Karpie J.C.; Ferretti M.; Xiao X.; Chu C.R.; Adeno-associated viral gene transfer of transforming growth factor-β1 to human mesenchymal stem cells improves cartilage repair. Gene Ther 2007,14(10),804-813 PubMed DOI
Yokoi T.; Saito M.; Kiyono T.; Iseki S.; Kosaka K.; Nishida E.; Tsubakimoto T.; Harada H.; Eto K.; Noguchi T.; Teranaka T.; Establishment of immortalized dental follicle cells for generating periodontal ligament in vivo. Cell Tissue Res 2006,327(2),301-311 PubMed DOI
Li Y.; Li J.; Zhu J.; Sun B.; Branca M.; Tang Y.; Foster W.; Xiao X.; Huard J.; Decorin gene transfer promotes muscle cell differentiation and muscle regeneration. Mol Ther 2007,15(9),1616-1622 PubMed DOI
Qin R.; Mao T.; Gu X.; Hu K.; Liu Y.; Chen J.; Nie X.; Regulation of skeletal muscle differentiation in fibroblasts by exogenous MyoD gene in vitro and in vivo. Mol Cell Biochem 2007,302(1-2),233-239 PubMed DOI
Benchaouir R.; Meregalli M.; Farini A.; D’Antona G.; Belicchi M.; Goyenvalle A.; Battistelli M.; Bresolin N.; Bottinelli R.; Garcia L.; Torrente Y.; Restoration of human dystrophin following transplantation of exon-skipping-engineered DMD patient stem cells into dystrophic mice. Cell Stem Cell 2007,1(6),646-657 PubMed DOI
Quenneville S.P.; Chapdelaine P.; Skuk D.; Paradis M.; Goulet M.; Rousseau J.; Xiao X.; Garcia L.; Tremblay J.P.; Autologous transplantation of muscle precursor cells modified with a lentivirus for muscular dystrophy: Human cells and primate models. Mol Ther 2007,15(2),431-438 PubMed DOI
Jo J.; Nagaya N.; Miyahara Y.; Kataoka M.; Harada-Shiba M.; Kangawa K.; Tabata Y.; Transplantation of genetically engineered mesenchymal stem cells improves cardiac function in rats with myocardial infarction: benefit of a novel nonviral vector, cationized dextran. Tissue Eng 2007,13(2),313-322 PubMed DOI
Li W.; Ma N.; Ong L.L.; Nesselmann C.; Klopsch C.; Ladilov Y.; Furlani D.; Piechaczek C.; Moebius J.M.; Lützow K.; Lendlein A.; Stamm C.; Li R.K.; Steinhoff G.; Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells 2007,25(8),2118-2127 PubMed DOI
Elmadbouh I.; Haider H.K.; Jiang S.; Idris N.M.; Lu G.; Ashraf M.; Ex vivo delivered stromal cell-derived factor-1α promotes stem cell homing and induces angiomyogenesis in the infarcted myocardium. J Mol Cell Cardiol 2007,42(4),792-803 PubMed DOI
Kameda M.; Shingo T.; Takahashi K.; Muraoka K.; Kurozumi K.; Yasuhara T.; Maruo T.; Tsuboi T.; Uozumi T.; Matsui T.; Miyoshi Y.; Hamada H.; Date I.; Adult neural stem and progenitor cells modified to secrete GDNF can protect, migrate and integrate after intracerebral transplantation in rats with transient forebrain ischemia. Eur J Neurosci 2007,26(6),1462-1478 PubMed DOI
Karnieli O.; Izhar-Prato Y.; Bulvik S.; Efrat S.; Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem Cells 2007,25(11),2837-2844 PubMed DOI
Muniappan L.; Özcan S.; Induction of insulin secretion in engineered liver cells by nitric oxide. BMC Physiol 2007,7(1),11 PubMed DOI
Tian C.; Ansari M.J.I.; Paez-Cortez J.; Bagley J.; Godwin J.; Donnarumma M.; Sayegh M.H.; Iacomini J.; Induction of robust diabetes resistance and prevention of recurrent type 1 diabetes following islet transplantation by gene therapy. J Immunol 2007,179(10),6762-6769 PubMed DOI
Tatake R.J.; O’Neill M.M.; Kennedy C.A.; Reale V.D.; Runyan J.D.; Monaco K.A.D.; Yu K.; Osborne W.R.; Barton R.W.; Schneiderman R.D.; Glucose-regulated insulin production from genetically engineered human non- beta cells. Life Sci 2007,81(17-18),1346-1354 PubMed DOI
Papeta N.; Chen T.; Vianello F.; Gererty L.; Malik A.; Mok Y.T.; Tharp W.G.; Bagley J.; Zhao G.; Stevceva L.; Yoon V.; Sykes M.; Sachs D.; Iacomini J.; Poznansky M.C.; Long-term survival of transplanted allogeneic cells engineered to express a T cell chemorepellent. Transplantation 2007,83(2),174-183 PubMed DOI
Dudler J.; Simeoni E.; Fleury S.; Li J.; Pagnotta M.; Pascual M.; von Segesser L.K.; Vassalli G.; Gene transfer of interleukin-18-binding protein attenuates cardiac allograft rejection. Transpl Int 2007,20(5),460-466 PubMed DOI
Babister J.C.; Tare R.S.; Green D.W.; Inglis S.; Mann S.; Oreffo R.O.C.; Genetic manipulation of human mesenchymal progenitors to promote chondrogenesis using “bead-in-bead” polysaccharide capsules. Biomaterials 2008,29(1),58-65 PubMed DOI
Chen Y-L.; Chen P.K-T.; Jeng L-B.; Huang C-S.; Yang L-C.; Chung H-Y.; Chang S.C-N.; Periodontal regeneration using ex vivo autologous stem cells engineered to express the BMP-2 gene: An alternative to alveolaplasty. Gene Ther 2008,15(22),1469-1477 PubMed DOI
Sheyn D.; Pelled G.; Zilberman Y.; Talasazan F.; Frank J.M.; Gazit D.; Gazit Z.; Nonvirally engineered porcine adipose tissue-derived stem cells: use in posterior spinal fusion. Stem Cells 2008,26(4),1056-1064 PubMed DOI
Steinhardt Y.; Aslan H.; Regev E.; Zilberman Y.; Kallai I.; Gazit D.; Gazit Z.; Maxillofacial-derived stem cells regenerate critical mandibular bone defect. Tissue Eng Part A 2008,14(11),1763-1773 PubMed DOI
Steinert A.; Weber M.; Kunz M.; Palmer G.; Nöth U.; Evans C.; Murray M.; In situ IGF-1 gene delivery to cells emerging from the injured anterior cruciate ligament. Biomaterials 2008,29(7),904-916 PubMed DOI
Steinert A.F.; Palmer G.D.; Pilapil C.; Nöth U.; Evans C.H.; Ghivizzani S.C.; Enhanced in vitro chondrogenesis of primary mesenchymal stem cells by combined gene transfer. Tissue Eng Part A 2009,15(5),1127-1139 PubMed DOI
Majewski M.; Betz O.; Ochsner P.E.; Liu F.; Porter R.M.; Evans C.H.; Ex vivo adenoviral transfer of bone morphogenetic protein 12 (BMP-12) cDNA improves Achilles tendon healing in a rat model. Gene Ther 2008,15(16),1139-1146 PubMed DOI
Xie G.H.; Wang S.J.; Wang Y.; Zhang Y.; Zhang H.Z.; Jin S.; Wang Q.F.; Liu Z.C.; Ge H.L.; Fas Ligand gene transfer enhances the survival of tissue-engineered chondrocyte allografts in mini-pigs. Transpl Immunol 2008,19(2),145-151 PubMed DOI
Gonçalves M.A.F.V.; Swildens J.; Holkers M.; Narain A.; van Nierop G.P.; van de Watering M.J.M.; Knaän-Shanzer S.; de Vries A.A.F.; Genetic complementation of human muscle cells via directed stem cell fusion. Mol Ther 2008,16(4),741-748 PubMed DOI
Laumonier T.; Yang S.; Konig S.; Chauveau C.; Anegon I.; Hoffmeyer P.; Menetrey J.; Lentivirus mediated HO-1 gene transfer enhances myogenic precursor cell survival after autologous transplantation in pig. Mol Ther 2008,16(2),404-410 PubMed DOI
Kimura E.; Han J.J.; Li S.; Fall B.; Ra J.; Haraguchi M.; Tapscott S.J.; Chamberlain J.S.; Cell-lineage regulated myogenesis for dystrophin replacement: A novel therapeutic approach for treatment of muscular dystrophy. Hum Mol Genet 2008,17(16),2507-2517 PubMed DOI
Tseng Y.H.; Kokkotou E.; Schulz T.J.; Huang T.L.; Winnay J.N.; Taniguchi C.M.; Tran T.T.; Suzuki R.; Espinoza D.O.; Yamamoto Y.; Ahrens M.J.; Dudley A.T.; Norris A.W.; Kulkarni R.N.; Kahn C.R.; New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 2008,454(7207),1000-1004 PubMed DOI
Copland I.B.; Jolicoeur E.M.; Gillis M.A.; Cuerquis J.; Eliopoulos N.; Annabi B.; Calderone A.; Tanguay J.F.; Ducharme A.; Galipeau J.; Coupling erythropoietin secretion to mesenchymal stromal cells enhances their regenerative properties. Cardiovasc Res 2008,79(3),405-415 PubMed DOI
Zhang D.; Fan G.C.; Zhou X.; Zhao T.; Pasha Z.; Xu M.; Zhu Y.; Ashraf M.; Wang Y.; Over-expression of CXCR4 on mesenchymal stem cells augments myoangiogenesis in the infarcted myocardium. J Mol Cell Cardiol 2008,44(2),281-292 PubMed DOI
Haider H.K.; Jiang S.; Idris N.M.; Ashraf M.; IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1α/CXCR4 signaling to promote myocardial repair. Circ Res 2008,103(11),1300-1308 PubMed DOI
Cheng Z.; Ou L.; Zhou X.; Li F.; Jia X.; Zhang Y.; Liu X.; Li Y.; Ward C.A.; Melo L.G.; Kong D.; Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Mol Ther 2008,16(3),571-579 PubMed DOI
Chen N.K.F.; Wong J.S.; Kee I.H.C.; Lai S.H.; Thng C.H.; Ng W.H.; Ng R.T.H.; Tan S.Y.; Lee S.Y.; Tan M.E.H.; Sivalingam J.; Chow P.K.H.; Kon O.L.; Nonvirally modified autologous primary hepatocytes correct diabetes and prevent target organ injury in a large preclinical model. PLoS One 2008,3(3),e1734 PubMed DOI
Kim Y.H.; Lim D.G.; Wee Y.M.; Kim J.H.; Yun C.O.; Choi M.Y.; Park Y.H.; Kim S.C.; Han D.J.; Viral IL-10 gene transfer prolongs rat islet allograft survival. Cell Transplant 2008,17(6),609-618 PubMed DOI
May F.; Matiasek K.; Vroemen M.; Caspers C.; Mrva T.; Arndt C.; Schlenker B.; Gais P.; Brill T.; Buchner A.; Blesch A.; Hartung R.; Stief C.; Gansbacher B.; Weidner N.; GDNF-transduced Schwann cell grafts enhance regeneration of erectile nerves. Eur Urol 2008,54(5),1179-1187 PubMed DOI
Planchamp V.; Bermel C.; Tönges L.; Ostendorf T.; Kügler S.; Reed J.C.; Kermer P.; Bähr M.; Lingor P.; BAG1 promotes axonal outgrowth and regeneration in vivo via Raf-1 and reduction of ROCK activity. Brain 2008,131(10),2606-2619 PubMed DOI
Matsumoto T.; Cooper G.M.; Gharaibeh B.; Meszaros L.B.; Li G.; Usas A.; Fu F.H.; Huard J.; Cartilage repair in a rat model of osteoarthritis through intraarticular transplantation of muscle-derived stem cells expressing bone morphogenetic protein 4 and soluble flt-1. Arthritis Rheum 2009,60(5),1390-1405 PubMed DOI
Kang Q.; Song W.X.; Luo Q.; Tang N.; Luo J.; Luo X.; Chen J.; Bi Y.; He B.C.; Park J.K.; Jiang W.; Tang Y.; Huang J.; Su Y.; Zhu G.H.; He Y.; Yin H.; Hu Z.; Wang Y.; Chen L.; Zuo G.W.; Pan X.; Shen J.; Vokes T.; Reid R.R.; Haydon R.C.; Luu H.H.; He T.C.; A comprehensive analysis of the dual roles of BMPs in regulating adipogenic and osteogenic differentiation of mesenchymal progenitor cells. Stem Cells Dev 2009,18(4),545-558 PubMed DOI
Salzmann G.M.; Nuernberger B.; Schmitz P.; Anton M.; Stoddart M.J.; Grad S.; Milz S.; Tischer T.; Vogt S.; Gansbacher B.; Imhoff A.B.; Alini M.; Physicobiochemical synergism through gene therapy and functional tissue engineering for in vitro chondrogenesis. Tissue Eng Part A 2009,15(9),2513-2524 PubMed DOI
Xia W.; Jin Y.Q.; Kretlow J.D.; Liu W.; Ding W.; Sun H.; Zhou G.; Zhang W.; Cao Y.; Adenoviral transduction of hTGF-β1 enhances the chondrogenesis of bone marrow derived stromal cells. Biotechnol Lett 2009,31(5),639-646 PubMed DOI
Chen H.C.; Chang Y.H.; Chuang C.K.; Lin C.Y.; Sung L.Y.; Wang Y.H.; Hu Y.C.; The repair of osteochondral defects using baculovirus-mediated gene transfer with de-differentiated chondrocytes in bioreactor culture. Biomaterials 2009,30(4),674-681 PubMed DOI
Goudenege S.; Pisani D.F.; Wdziekonski B.; Di Santo J.P.; Bagnis C.; Dani C.; Dechesne C.A.; Enhancement of myogenic and muscle repair capacities of human adipose-derived stem cells with forced expression of MyoD. Mol Ther 2009,17(6),1064-1072 PubMed DOI
Kajimura S.; Seale P.; Kubota K.; Lunsford E.; Frangioni J.V.; Gygi S.P.; Spiegelman B.M.; Initiation of myoblast to brown fat switch by a PRDM16–C/EBP-β transcriptional complex. Nature 2009,460(7259),1154-1158 PubMed DOI
Xiao Q.; Luo Z.; Pepe A.E.; Margariti A.; Zeng L.; Xu Q.; Embryonic stem cell differentiation into smooth muscle cells is mediated by Nox4-produced HO. Am J Physiol Cell Physiol 2009,296(4),C711-C723 PubMed DOI
Ravassard P.; Emilie Bricout-Neveu ; Hazhouz Y.; Pechberty S.; Mallet J.; Czernichow P.; Scharfmann R.; A new strategy to generate functional insulin-producing cell lines by somatic gene transfer into pancreatic progenitors. PLoS One 2009,4(3),e4731 PubMed DOI
Kim H.M.; Hwang D.H.; Lee J.E.; Kim S.U.; Kim B.G.; Ex vivo VEGF delivery by neural stem cells enhances proliferation of glial progenitors, angiogenesis, and tissue sparing after spinal cord injury. PLoS One 2009,4(3),e4987 PubMed DOI
Liu H.; Liu L.; Liu K.; Bizargity P.; Hancock W.W.; Visner G.A.; Reduced cytotoxic function of effector CD8+ T cells is responsible for indoleamine 2,3-dioxygenase-dependent immune suppression. J Immunol 2009,183(2),1022-1031 PubMed DOI
Kojaoghlanian T.; Joseph A.; Follenzi A.; Zheng J.H.; Leiser M.; Fleischer N.; Horwitz M.S.; DiLorenzo T.P.; Goldstein H.; Lentivectors encoding immunosuppressive proteins genetically engineer pancreatic β-cells to correct diabetes in allogeneic mice. Gene Ther 2009,16(3),340-348 PubMed DOI
Kajiyama H.; Hamazaki T.S.; Tokuhara M.; Masui S.; Okabayashi K.; Ohnuma K.; Yabe S.; Yasuda K.; Ishiura S.; Okochi H.; Asashima M.; Pdx1-transfected adipose tissue-derived stem cells differentiate into insulin-producing cells in vivo and reduce hyperglycemia in diabetic mice. Int J Dev Biol 2010,54(4),699-705 PubMed DOI
Krebs M.D.; Salter E.; Chen E.; Sutter K.A.; Alsberg E.; Calcium phosphate-DNA nanoparticle gene delivery from alginate hydrogels induces in vivo osteogenesis. J Biomed Mater Res A 2010,92(3),1131-1138 PubMed
Yang F.; Cho S.W.; Son S.M.; Bogatyrev S.R.; Singh D.; Green J.J.; Mei Y.; Park S.; Bhang S.H.; Kim B.S.; Langer R.; Anderson D.G.; Genetic engineering of human stem cells for enhanced angiogenesis using biodegradable polymeric nanoparticles. Proc Natl Acad Sci 2010,107(8),3317-3322 PubMed DOI
Cheng F.C.; Tai M.H.; Sheu M.L.; Chen C.J.; Yang D.Y.; Su H.L.; Ho S.P.; Lai S.Z.; Pan H.C.; Enhancement of regeneration with glia cell line–derived neurotrophic factor–transduced human amniotic fluid mesenchymal stem cells after sciatic nerve crush injury [RETRACTED]. J Neurosurg 2010,112(4),868-879 PubMed DOI
Lee S.J.; Kang S.W.; Do H.J.; Han I.; Shin D.A.; Kim J.H.; Lee S.H.; Enhancement of bone regeneration by gene delivery of BMP2/Runx2 bicistronic vector into adipose-derived stromal cells. Biomaterials 2010,31(21),5652-5659 PubMed DOI
Luther G.; Wagner E.R.; Zhu G.; Kang Q.; Luo Q.; Lamplot J.; Bi Y.; Luo X.; Luo J.; Teven C.; Shi Q.; Kim S.H.; Gao J.L.; Huang E.; Yang K.; Rames R.; Liu X.; Li M.; Hu N.; Liu H.; Su Y.; Chen L.; He B.C.; Zuo G.W.; Deng Z.L.; Reid R.R.; Luu H.H.; Haydon R.C.; He T.C.; BMP-9 induced osteogenic differentiation of mesenchymal stem cells: Molecular mechanism and therapeutic potential. Curr Gene Ther 2011,11(3),229-240 PubMed DOI
Xiong N.; Zhang Z.; Huang J.; Chen C.; Zhang Z.; Jia M.; Xiong J.; Liu X.; Wang F.; Cao X.; Liang Z.; Sun S.; Lin Z.; Wang T.; VEGF-expressing human umbilical cord mesenchymal stem cells, an improved therapy strategy for Parkinson’s disease. Gene Ther 2011,18(4),394-402 PubMed DOI
Zhang S.; Chen S.; Li W.; Guo X.; Zhao P.; Xu J.; Chen Y.; Pan Q.; Liu X.; Zychlinski D.; Lu H.; Tortorella M.D.; Schambach A.; Wang Y.; Pei D.; Esteban M.A.; Rescue of ATP7B function in hepatocyte-like cells from Wilson’s disease induced pluripotent stem cells using gene therapy or the chaperone drug curcumin. Hum Mol Genet 2011,20(16),3176-3187 PubMed DOI
Lee E.X.; Lam D.H.; Wu C.; Yang J.; Tham C.K.; Ng W.H.; Wang S.; Glioma gene therapy using induced pluripotent stem cell derived neural stem cells. Mol Pharm 2011,8(5),1515-1524 PubMed DOI
Neri M.; Ricca A.; di Girolamo I.; Alcala’-Franco B.; Cavazzin C.; Orlacchio A.; Martino S.; Naldini L.; Gritti A.; Neural stem cell gene therapy ameliorates pathology and function in a mouse model of globoid cell leukodystrophy. Stem Cells 2011,29(10),1559-1571 PubMed DOI
Liu H.; Liu S.; Li Y.; Wang X.; Xue W.; Ge G.; Luo X.; The role of SDF-1-CXCR4/CXCR7 axis in the therapeutic effects of hypoxia-preconditioned mesenchymal stem cells for renal ischemia/reperfusion injury. PLoS One 2012,7(4),e34608 PubMed DOI
Takayama K.; Inamura M.; Kawabata K.; Katayama K.; Higuchi M.; Tashiro K.; Nonaka A.; Sakurai F.; Hayakawa T.; Kusuda Furue M.; Mizuguchi H.; Efficient generation of functional hepatocytes from human embryonic stem cells and induced pluripotent stem cells by HNF4α transduction. Mol Ther 2012,20(1),127-137 PubMed DOI
Hoke N.N.; Salloum F.N.; Kass D.A.; Das A.; Kukreja R.C.; Preconditioning by phosphodiesterase-5 inhibition improves therapeutic efficacy of adipose-derived stem cells following myocardial infarction in mice. Stem Cells 2012,30(2),326-335 PubMed DOI
Fei S.; Qi X.; Kedong S.; Guangchun J.; Jian L.; Wei Q.; The antitumor effect of mesenchymal stem cells transduced with a lentiviral vector expressing cytosine deaminase in a rat glioma model. J Cancer Res Clin Oncol 2012,138(2),347-357 PubMed DOI
Meng X.; Neises A.; Su R.J.; Payne K.J.; Ritter L.; Gridley D.S.; Wang J.; Sheng M.; William Lau K-H.; Baylink D.J.; Zhang X.B.; Efficient reprogramming of human cord blood CD34 cells into induced pluripotent stem cells with OCT4 and SOX2 alone. Mol Ther 2012,20(2),408-416 PubMed DOI
Lee J.M.; Im G.I.; SOX trio-co-transduced adipose stem cells in fibrin gel to enhance cartilage repair and delay the progression of osteoarthritis in the rat. Biomaterials 2012,33(7),2016-2024 PubMed DOI
Cho J.W.; Lee C.Y.; Ko Y.; Therapeutic potential of mesenchymal stem cells overexpressing human forkhead box A2 gene in the regeneration of damaged liver tissues. J Gastroenterol Hepatol 2012,27(8),1362-1370 PubMed DOI
Biffi A.; Montini E.; Lorioli L.; Cesani M.; Fumagalli F.; Plati T.; Baldoli C.; Martino S.; Calabria A.; Canale S.; Benedicenti F.; Vallanti G.; Biasco L.; Leo S.; Kabbara N.; Zanetti G.; Rizzo W.B.; Mehta N.A.L.; Cicalese M.P.; Casiraghi M.; Boelens J.J.; Del Carro U.; Dow D.J.; Schmidt M.; Assanelli A.; Neduva V.; Di Serio C.; Stupka E.; Gardner J.; Von Kalle C.; Bordignon C.; Ciceri F.; Rovelli A.; Roncarolo M.G.; Aiuti A.; Sessa M.; Naldini L.; Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 2013,341(6148),1233158
Filareto A.; Parker S.; Darabi R.; Borges L.; Iacovino M.; Schaaf T.; Mayerhofer T.; Chamberlain J.S.; Ervasti J.M.; McIvor R.S.; Kyba M.; Perlingeiro R.C.R.; An ex vivo gene therapy approach to treat muscular dystrophy using inducible pluripotent stem cells. Nat Commun 2013,4(1),1549 PubMed DOI
Okita K.; Yamakawa T.; Matsumura Y.; Sato Y.; Amano N.; Watanabe A.; Goshima N.; Yamanaka S.; An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells 2013,31(3),458-466 PubMed DOI
Eggenschwiler R.; Loya K.; Wu G.; Sharma A.D.; Sgodda M.; Zychlinski D.; Herr C.; Steinemann D.; Teckman J.; Bals R.; Ott M.; Schambach A.; Schöler H.R.; Cantz T.; Sustained knockdown of a disease-causing gene in patient-specific induced pluripotent stem cells using lentiviral vector-based gene therapy. Stem Cells Transl Med 2013,2(9),641-654 PubMed DOI
Lee H.K.; Finniss S.; Cazacu S.; Bucris E.; Ziv-Av A.; Xiang C.; Bobbitt K.; Rempel S.A.; Hasselbach L.; Mikkelsen T.; Slavin S.; Brodie C.; Mesenchymal stem cells deliver synthetic microRNA mimics to glioma cells and glioma stem cells and inhibit their cell migration and self-renewal. Oncotarget 2013,4(2),346-361 PubMed DOI
McGinley L.M.; McMahon J.; Stocca A.; Duffy A.; Flynn A.; O’Toole D.; O’Brien T.; Mesenchymal stem cell survival in the infarcted heart is enhanced by lentivirus vector-mediated heat shock protein 27 expression. Hum Gene Ther 2013,24(10),840-851 PubMed DOI
Ye L.; Muench M.O.; Fusaki N.; Beyer A.I.; Wang J.; Qi Z.; Yu J.; Kan Y.W.; Blood cell-derived induced pluripotent stem cells free of reprogramming factors generated by Sendai viral vectors. Stem Cells Transl Med 2013,2(8),558-566 PubMed DOI
Sebastiano V.; Zhen H.H.; Haddad B.; Bashkirova E.; Melo S.P.; Wang P.; Leung T.L.; Siprashvili Z.; Tichy A.; Li J.; Ameen M.; Hawkins J.; Lee S.; Li L.; Schwertschkow A.; Bauer G.; Lisowski L.; Kay M.A.; Kim S.K.; Lane A.T.; Wernig M.; Oro A.E.; Human COL7A1 -corrected induced pluripotent stem cells for the treatment of recessive dystrophic epidermolysis bullosa. Sci Transl Med 2014,6(264),264ra163 PubMed DOI
Seo K.W.; Sohn S.Y.; Bhang D.H.; Nam M.J.; Lee H.W.; Youn H.Y.; Therapeutic effects of hepatocyte growth factor-overexpressing human umbilical cord blood- derived mesenchymal stem cells on liver fibrosis in rats. Cell Biol Int 2014,38(1),106-116 PubMed DOI
Frisch J.; Venkatesan J.K.; Rey-Rico A.; Schmitt G.; Madry H.; Cucchiarini M.; Determination of the chondrogenic differentiation processes in human bone marrow-derived mesenchymal stem cells genetically modified to overexpress transforming growth factor-β via recombinant adeno-associated viral vectors. Hum Gene Ther 2014,25(12),1050-1060 PubMed DOI
Liao Y.H.; Chang Y.H.; Sung L.Y.; Li K.C.; Yeh C.L.; Yen T.C.; Hwang S.M.; Lin K.J.; Hu Y.C.; Osteogenic differentiation of adipose-derived stem cells and calvarial defect repair using baculovirus-mediated co-expression of BMP-2 and miR-148b. Biomaterials 2014,35(18),4901-4910 PubMed DOI
Umegaki-Arao N.; Pasmooij A.M.G.; Itoh M.; Cerise J.E.; Guo Z.; Levy B.; Gostyñski A.; Rothman L.R.; Jonkman M.F.; Christiano A.M.; Induced pluripotent stem cells from human revertant keratinocytes for the treatment of epidermolysis bullosa. Sci Transl Med 2014,6,264ra164-264ra164 DOI
Frisch J.; Venkatesan J.K.; Rey-Rico A.; Schmitt G.; Madry H.; Cucchiarini M.; Influence of insulin-like growth factor I overexpression via recombinant adeno-associated vector gene transfer upon the biological activities and differentiation potential of human bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther 2014,5(4),103 PubMed DOI
Sahara M.; Hansson E.M.; Wernet O.; Lui K.O.; Später D.; Chien K.R.; Manipulation of a VEGF-Notch signaling circuit drives formation of functional vascular endothelial progenitors from human pluripotent stem cells. Cell Res 2014,24(7),820-841 PubMed DOI
Castiello M.C.; Scaramuzza S.; Pala F.; Ferrua F.; Uva P.; Brigida I.; Sereni L.; van der Burg M.; Ottaviano G.; Albert M.H.; Grazia Roncarolo M.; Naldini L.; Aiuti A.; Villa A.; Bosticardo M.; B-cell reconstitution after lentiviral vector–mediated gene therapy in patients with Wiskott-Aldrich syndrome. J Allergy Clin Immunol 2015,136(3),692-702.e2 PubMed DOI
Zhuang W.; Ge X.; Yang S.; Huang M.; Zhuang W.; Chen P.; Zhang X.; Fu J.; Qu J.; Li B.; Upregulation of lncRNA MEG3 promotes osteogenic differentiation of mesenchymal stem cells from multiple myeloma patients by targeting BMP4 transcription. Stem Cells 2015,33(6),1985-1997 PubMed DOI
Negre O.; Bartholomae C.; Beuzard Y.; Cavazzana M.; Christiansen L.; Courne C.; Deichmann A.; Denaro M.; Dreuzy E.; Finer M.; Fronza R.; Gillet-Legrand B.; Joubert C.; Kutner R.; Leboulch P.; Maouche L.; Paulard A.; Pierciey F.; Rothe M.; Ryu B.; Schmidt M.; Kalle C.; Payen E.; Veres G.; Preclinical evaluation of efficacy and safety of an improved lentiviral vector for the treatment of β-thalassemia and sickle cell disease. Curr Gene Ther 2014,15(1),64-81 PubMed DOI
Liu H.; Zhang C.; Zhu S.; Lu P.; Zhu T.; Gong X.; Zhang Z.; Hu J.; Yin Z.; Heng B.C.; Chen X.; Wei Ouyang H.; Mohawk promotes the tenogenesis of mesenchymal stem cells through activation of the TGFβ signaling pathway. Stem Cells 2015,33(2),443-455 PubMed DOI
Talluri T.R.; Kumar D.; Glage S.; Garrels W.; Ivics Z.; Debowski K.; Behr R.; Niemann H.; Kues W.A.; Derivation and characterization of bovine induced pluripotent stem cells by transposon-mediated reprogramming. Cell Reprogram 2015,17(2),131-140 PubMed DOI
Xue X.; Liu Y.; Zhang J.; Liu T.; Yang Z.; Wang H.; Bcl-xL genetic modification enhanced the therapeutic efficacy of mesenchymal stem cell transplantation in the treatment of heart infarction. Stem Cells Int 2015,2015,1-14 PubMed DOI
Rey-Rico A.; Venkatesan J.K.; Frisch J.; Rial-Hermida I.; Schmitt G.; Concheiro A.; Madry H.; Alvarez-Lorenzo C.; Cucchiarini M.; PEO–PPO–PEO micelles as effective rAAV-mediated gene delivery systems to target human mesenchymal stem cells without altering their differentiation potency. Acta Biomater 2015,27,42-52 PubMed DOI
Yin T.; He S.; Su C.; Chen X.; Zhang D.; Wan Y.; Ye T.; Shen G.; Wang Y.; Shi H.; Yang L.; Wei Y.; Genetically modified human placenta-derived mesenchymal stem cells with FGF-2 and PDGF-BB enhance neovascularization in a model of hindlimb ischemia. Mol Med Rep 2015,12(4),5093-5099 PubMed DOI
Rezvani M.; Español-Suñer R.; Malato Y.; Dumont L.; Grimm A.A.; Kienle E.; Bindman J.G.; Wiedtke E.; Hsu B.Y.; Naqvi S.J.; Schwabe R.F.; Corvera C.U.; Grimm D.; Willenbring H.; In vivo hepatic reprogramming of myofibroblasts with AAV vectors as a therapeutic strategy for liver fibrosis. Cell Stem Cell 2016,18(6),809-816 PubMed DOI
Pollock K.; Dahlenburg H.; Nelson H.; Fink K.D.; Cary W.; Hendrix K.; Annett G.; Torrest A.; Deng P.; Gutierrez J.; Nacey C.; Pepper K.; Kalomoiris S.; Anderson J.D.; McGee J.; Gruenloh W.; Fury B.; Bauer G.; Duffy A.; Tempkin T.; Wheelock V.; Nolta J.A.; Human mesenchymal stem cells genetically engineered to overexpress brain-derived neurotrophic factor improve outcomes in Huntington’s disease mouse models. Mol Ther 2016,24(5),965-977 PubMed DOI
Tao K.; Frisch J.; Rey-Rico A.; Venkatesan J.K.; Schmitt G.; Madry H.; Lin J.; Cucchiarini M.; Co-overexpression of TGF-β and SOX9 via rAAV gene transfer modulates the metabolic and chondrogenic activities of human bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther 2016,7(1),20 PubMed DOI
Fang S.; Xu C.; Zhang Y.; Xue C.; Yang C.; Bi H.; Qian X.; Wu M.; Ji K.; Zhao Y.; Wang Y.; Liu H.; Xing X.; Umbilical cord-derived mesenchymal stem cell-derived exosomal microRNAs suppress myofibroblast differentiation by inhibiting the transforming growth factor-β/SMAD2 pathway during wound healing. Stem Cells Transl Med 2016,5(10),1425-1439 PubMed DOI
Jacków J.; Titeux M.; Portier S.; Charbonnier S.; Ganier C.; Gaucher S.; Hovnanian A.; Gene-corrected fibroblast therapy for recessive dystrophic epidermolysis bullosa using a self-inactivating COL7A1 retroviral vector. J Invest Dermatol 2016,136(7),1346-1354 PubMed DOI
Bagno L.L.; Carvalho D.; Mesquita F.; Louzada R.A.; Andrade B.; Kasai-Brunswick T.H.; Lago V.M.; Suhet G.; Cipitelli D.; Werneck-De-Castro J.P.; Campos-De- Carvalho A.C.; Sustained IGF-1 secretion by adipose-derived stem cells improves infarcted heart function. Cell Transplant 2016,25(9),1609-1622 PubMed DOI
Cai M.; Shen R.; Song L.; Lu M.; Wang J.; Zhao S.; Tang Y.; Meng X.; Li Z.; He Z.X.; Bone marrow mesenchymal stem cells (BM-MSCs) improve heart function in swine myocardial infarction model through paracrine effects. Sci Rep 2016,6(1),28250 PubMed DOI
Meneghini V.; Frati G.; Sala D.; De Cicco S.; Luciani M.; Cavazzin C.; Paulis M.; Mentzen W.; Morena F.; Giannelli S.; Sanvito F.; Villa A.; Bulfone A.; Broccoli V.; Martino S.; Gritti A.; Generation of human induced pluripotent stem cell-derived bona fide neural stem cells for ex vivo gene therapy of metachromatic leukodystrophy. Stem Cells Transl Med 2017,6(2),352-368 PubMed DOI
Kargozar S.; Hashemian S.J.; Soleimani M.; Milan P.B.; Askari M.; Khalaj V.; Samadikuchaksaraie A.; Hamzehlou S.; Katebi A.R.; Latifi N.; Mozafari M.; Baino F.; Acceleration of bone regeneration in bioactive glass/gelatin composite scaffolds seeded with bone marrow-derived mesenchymal stem cells over-expressing bone morphogenetic protein-7. Mater Sci Eng C 2017,75,688-698 PubMed DOI
Tao S.C.; Yuan T.; Zhang Y.L.; Yin W.J.; Guo S.C.; Zhang C.Q.; Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics 2017,7(1),180-195 PubMed DOI
Nakajima M.; Nito C.; Sowa K.; Suda S.; Nishiyama Y.; Nakamura-Takahashi A.; Nitahara-Kasahara Y.; Imagawa K.; Hirato T.; Ueda M.; Kimura K.; Okada T.; Mesenchymal stem cells overexpressing interleukin-10 promote neuroprotection in experimental acute ischemic stroke. Mol Ther Methods Clin Dev 2017,6,102-111 PubMed DOI
Liu T.; Zhang Y.; Shen Z.; Zou X.; Chen X.; Chen L.; Wang Y.; Immunomodulatory effects of OX40Ig gene- modified adipose tissue-derived mesenchymal stem cells on rat kidney transplantation. Int J Mol Med 2017,39(1),144-152 PubMed DOI
Cho H.M.; Kim P.H.; Chang H.K.; Shen Y.; Bonsra K.; Kang B.J.; Yum S.Y.; Kim J.H.; Lee S.Y.; Choi M.; Kim H.H.; Jang G.; Cho J.Y.; Targeted genome engineering to control VEGF expression in human umbilical cord blood-derived mesenchymal stem cells: Potential implications for the treatment of myocardial infarction. Stem Cells Transl Med 2017,6(3),1040-1051 PubMed DOI
Wang H.; Xie Z.; Hou T.; Li Z.; Huang K.; Gong J.; Zhou W.; Tang K.; Xu J.; Dong S.; MiR-125b regulates the osteogenic differentiation of human mesenchymal stem cells by targeting BMPR1b. Cell Physiol Biochem 2017,41(2),530-542 PubMed DOI
Bougioukli S.; Sugiyama O.; Pannell W.; Ortega B.; Tan M.H.; Tang A.H.; Yoho R.; Oakes D.A.; Lieberman J.R.; Gene therapy for bone repair using human cells: Superior osteogenic potential of bone morphogenetic protein 2 - transduced mesenchymal stem cells derived from adipose tissue compared to bone marrow. Hum Gene Ther 2018,29(4),507-519 PubMed DOI
Sharma A.; Mücke M.; Seidman C.E.; Human induced pluripotent stem cell production and expansion from blood using a non-integrating viral reprogramming vector. Curr Protoc Mol Biol 2018,122(1),e58 PubMed DOI
Mirzaei H.; Salehi H.; Oskuee R.K.; Mohammadpour A.; Mirzaei H.R.; Sharifi M.R.; Salarinia R.; Darani H.Y.; Mokhtari M.; Masoudifar A.; Sahebkar A.; Salehi R.; Jaafari M.R.; The therapeutic potential of human adipose-derived mesenchymal stem cells producing CXCL10 in a mouse melanoma lung metastasis model. Cancer Lett 2018,419,30-39 PubMed DOI
Brendel C.; Rothe M.; Santilli G.; Charrier S.; Stein S.; Kunkel H.; Abriss D.; Müller-Kuller U.; Gaspar B.; Modlich U.; Galy A.; Schambach A.; Thrasher A.J.; Grez M.; Non-clinical efficacy and safety studies on G1XCGD, a lentiviral vector for ex vivo gene therapy of x-linked chronic granulomatous disease. Hum Gene Ther Clin Dev 2018,29(2),69-79 PubMed DOI
Zhang J.; Liu X.; Zhang Y.; Luan Z.; Yang Y.; Wang Z.; Zhang C.; Human Neural Stem Cells with GDNF site-specific integration at AAVS1 by using AAV vectors retained their stemness. Neurochem Res 2018,43(4),930-937 PubMed DOI
Lu X.; Chen X.; Xing J.; Lian M.; Huang D.; Lu Y.; Feng G.; Feng X.; miR-140-5p regulates the odontoblastic differentiation of dental pulp stem cells via the Wnt1/β- catenin signaling pathway. Stem Cell Res Ther 2019,10(1),226 PubMed DOI
Löfvall H.; Rothe M.; Schambach A.; Henriksen K.; Richter J.; Moscatelli I.; Hematopoietic stem cell-targeted neonatal gene therapy with a clinically applicable lentiviral vector corrects osteopetrosis in oc/oc mice. Hum Gene Ther 2019,30(11),1395-1404 PubMed DOI
Fang Q.; Zhai M.; Wu S.; Hu X.; Hua Z.; Sun H.; Guo J.; Zhang W.; Wang Z.; Adipocyte-derived stem cell-based gene therapy upon adipogenic differentiation on microcarriers attenuates type 1 diabetes in mice. Stem Cell Res Ther 2019,10(1),36 PubMed DOI
Xu Y.; Huang Y.; Guo Y.; Xiong Y.; Zhu S.; Xu L.; Lu J.; Li X.; Wan J.; Lu Y.; Wang Z.; microRNA-690 regulates induced pluripotent stem cells (iPSCs) differentiation into insulin-producing cells by targeting Sox9. Stem Cell Res Ther 2019,10(1),59 PubMed DOI
Wang T.; Zhang C.; Wu C.; Liu J.; Yu H.; Zhou X.; Zhang J.; Wang X.; He S.; Xu X.; Ma B.; Che X.; Li W.; miR-765 inhibits the osteogenic differentiation of human bone marrow mesenchymal stem cells by targeting BMP6 via regulating the BMP6/Smad1/5/9 signaling pathway. Stem Cell Res Ther 2020,11(1),62 PubMed DOI
Dhoke N.R.; Kaushik K.; Das A.; Cxcr6-based mesenchymal stem cell gene therapy potentiates skin regeneration in murine diabetic wounds. Mol Ther 2020,28(5),1314-1326 PubMed DOI
Ji F.; Pan J.; Shen Z.; Yang Z.; Wang J.; Bai X.; Tao J.; The Circular RNA circRNA124534 promotes osteogenic differentiation of human dental pulp stem cells through modulation of the mir-496/β-catenin pathway. Front Cell Dev Biol 2020,8,230 PubMed DOI
Capo V.; Penna S.; Merelli I.; Barcella M.; Scala S.; Basso-Ricci L.; Draghici E.; Palagano E.; Zonari E.; Desantis G.; Uva P.; Cusano R.; Sergi Sergi L.; Crisafulli L.; Moshous D.; Stepensky P.; Drabko K.; Kaya Z.; Unal E.; Gezdirici A.; Menna G.; Serafini M.; Aiuti A.; Locatelli S.L.; Carlo-Stella C.; Schulz A.S.; Ficara F.; Sobacchi C.; Gentner B.; Villa A.; Expanded circulating hematopoietic stem/progenitor cells as novel cell source for the treatment of TCIRG1 osteopetrosis. Haematologica 2020,106(1),74-86 PubMed DOI
Li J.; Lin Q.; Lin Y.; Lai R.; Zhang W.; Effects of DLX3 on the osteogenic differentiation of induced pluripotent stem cell-derived mesenchymal stem cells. Mol Med Rep 2021,23(4),232 PubMed DOI
Hotta A.; Ellis J.; Retroviral vector silencing during iPS cell induction: An epigenetic beacon that signals distinct pluripotent states. J Cell Biochem 2008,105(4),940-948 PubMed DOI
Takahashi K.; Tanabe K.; Ohnuki M.; Narita M.; Ichisaka T.; Tomoda K.; Yamanaka S.; Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007,131(5),861-872 PubMed DOI
González F.; Boué S.; Belmonte J.C.I.; Methods for making induced pluripotent stem cells: reprogramming à la carte. Nat Rev Genet 2011,12(4),231-242 PubMed DOI
Lowry W.E.; Richter L.; Yachechko R.; Pyle A.D.; Tchieu J.; Sridharan R.; Clark A.T.; Plath K.; Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci 2008,105(8),2883-2888 PubMed DOI
Bao L.; He L.; Chen J.; Wu Z.; Liao J.; Rao L.; Ren J.; Li H.; Zhu H.; Qian L.; Gu Y.; Dai H.; Xu X.; Zhou J.; Wang W.; Cui C.; Xiao L.; Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors. Cell Res 2011,21(4),600-608 PubMed DOI
Cieślar-Pobuda A.; Knoflach V.; Ringh M.V.; Stark J.; Likus W.; Siemianowicz K.; Ghavami S.; Hudecki A.; Green J.L.; Łos M.J.; Transdifferentiation and reprogramming: Overview of the processes, their similarities and differences. Biochim Biophys Acta Mol Cell Res 2017,1864(7),1359-1369 PubMed DOI
Cooray S.; Howe S.J.; Thrasher A.J.; Retrovirus and Lentivirus Vector Design and Methods of Cell Conditioning. Methods in Enzymology 2012,507,29-57
Chou B.K.; Mali P.; Huang X.; Ye Z.; Dowey S.N.; Resar L.M.S.; Zou C.; Zhang Y.A.; Tong J.; Cheng L.; Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res 2011,21(3),518-529 PubMed DOI
Hu K.; All roads lead to induced pluripotent stem cells: The technologies of iPSC generation. Stem Cells Dev 2014,23(12),1285-1300 PubMed DOI
Yu J.; Vodyanik M.A.; Smuga-Otto K.; Antosiewicz-Bourget J.; Frane J.L.; Tian S.; Nie J.; Jonsdottir G.A.; Ruotti V.; Stewart R.; Slukvin I.I.; Thomson J.A.; Induced pluripotent stem cell lines derived from human somatic cells. Science 2007,318,1917-1920
Maherali N.; Ahfeldt T.; Rigamonti A.; Utikal J.; Cowan C.; Hochedlinger K.; A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell 2008,3(3),340-345 PubMed DOI
Liu Q.; Hill P.J.; Karamitri A.; Ryan K.J.P.; Chen H.Y.; Lomax M.A.; Construction of a doxycycline inducible adipogenic lentiviral expression system. Plasmid 2013,69(1),96-103 PubMed DOI
Berdien B.; Mock U.; Atanackovic D.; Fehse B.; TALEN-mediated editing of endogenous T-cell receptors facilitates efficient reprogramming of T lymphocytes by lentiviral gene transfer. Gene Ther 2014,21(6),539-548 PubMed DOI
Fukuda T.; Ishizawa Y.; Donai K.; Sugano E.; Tomita H.; The poly-cistronic expression of four transcriptional factors (CRX, RAX, NEURO-D, OTX2) in fibroblasts via retro- or lentivirus causes partial reprogramming into photoreceptor cells. Cell Biol Int 2018,42(5),608-614 PubMed DOI
Heldt S.; Ressler K.J.; The use of lentiviral vectors combined with Cre/loxP to investigate the function of genes in complex behaviors. Front Mol Neurosci 2009,2,22 PubMed DOI
Chang C.W.; Lai Y.S.; Pawlik K.M.; Liu K.; Sun C.W.; Li C.; Schoeb T.R.; Townes T.M.; Polycistronic lentiviral vector for “hit and run” reprogramming of adult skin fibroblasts to induced pluripotent stem cells. Stem Cells 2009,27(5),1042-1049 PubMed DOI
Cochrane R.L.; Clark S.H.; Harris A.; Kream B.E.; Rearrangement of a conditional allele regardless of inheritance of a Cre recombinase transgene. Genesis 2007,45(1),17-20 PubMed DOI
Michel G.; Yu Y.; Chang T.; Yee J.K.; Site-specific gene insertion mediated by a Cre-loxP-carrying lentiviral vector. Mol Ther 2010,18(10),1814-1821 PubMed DOI
Malik N.; Rao M.S.; A review of the methods for human iPSC derivation. Methods Mol Biol 2013,997,23-33 PubMed DOI
Somers A.; Jean J.C.; Sommer C.A.; Omari A.; Ford C.C.; Mills J.A.; Ying L.; Sommer A.G.; Jean J.M.; Smith B.W.; Lafyatis R.; Demierre M.F.; Weiss D.J.; French D.L.; Gadue P.; Murphy G.J.; Mostoslavsky G.; Kotton D.N.; Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. Stem Cells 2010,28(10),1728-1740 PubMed DOI
Tipanee J.; Chai Y.C.; VandenDriessche T.; Chuah M.K.; Preclinical and clinical advances in transposon-based gene therapy. Biosci Rep 2017,37(6),BSR20160614 PubMed DOI
Hutchins A.P.; Pei D.; Transposable elements at the center of the crossroads between embryogenesis, embryonic stem cells, reprogramming, and long non-coding RNAs. Sci Bull 2015,60(20),1722-1733 PubMed DOI
Kapitonov V.V.; Jurka J.; RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol 2005,3(6),e181 PubMed DOI
Rebollo R.; Romanish M.T.; Mager D.L.; Transposable elements: An abundant and natural source of regulatory sequences for host genes. Annu Rev Genet 2012,46(1),21-42 PubMed DOI
Schlesinger S.; Goff S.P.; Retroviral transcriptional regulation and embryonic stem cells: war and peace. Mol Cell Biol 2015,35(5),770-777 PubMed DOI
Robbez-Masson L.; Rowe H.M.; Retrotransposons shape species-specific embryonic stem cell gene expression. Retrovirology 2015,12(1),45 PubMed DOI
Muñoz-López M.; García-Pérez J.; DNA transposons: Nature and applications in genomics. Curr Genomics 2010,11(2),115-128 PubMed DOI
Aronovich E.L.; McIvor R.S.; Hackett P.B.; The Sleeping Beauty transposon system: A non-viral vector for gene therapy. Hum Mol Genet 2011,20(R1),R14-R20 PubMed DOI
Grabundzija I.; Wang J.; Sebe A.; Erdei Z.; Kajdi R.; Devaraj A.; Steinemann D.; Szuhai K.; Stein U.; Cantz T.; Schambach A.; Baum C.; Izsvák Z.; Sarkadi B.; Ivics Z.; Sleeping Beauty transposon-based system for cellular reprogramming and targeted gene insertion in induced pluripotent stem cells. Nucleic Acids Res 2013,41(3),1829-1847 PubMed DOI
Menon S.; Shailendra S.; Renda A.; Longaker M.; Quarto N.; An overview of direct somatic reprogramming: The ins and outs of iPSCs. Int J Mol Sci 2016,17(1),141 PubMed DOI
Haridhasapavalan K.K.; Borgohain M.P.; Dey C.; Saha B.; Narayan G.; Kumar S.; Thummer R.P.; An insight into non-integrative gene delivery approaches to generate transgene-free induced pluripotent stem cells. Gene 2019,686,146-159 PubMed DOI
Lukashev A.N.; Zamyatnin A.A.; Viral vectors for gene therapy: Current state and clinical perspectives. Biochemistry 2016,81(7),700-708 PubMed DOI
Zhou W.; Freed C.R.; Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells 2009,27(11),2667-2674 PubMed DOI
Kotterman M.A.; Chalberg T.W.; Schaffer D.V.; Viral vectors for gene therapy: Translational and clinical outlook. Annu Rev Biomed Eng 2015,17(1),63-89 PubMed DOI
Tessadori F.; Zeng K.; Manders E.; Riool M.; Jackson D.; van Driel R.; Stable S/MAR-based episomal vectors are regulated at the chromatin level. Chromosome Res 2010,18(7),757-775 PubMed DOI
Slamecka J.; Salimova L.; McClellan S.; van Kelle M.; Kehl D.; Laurini J.; Cinelli P.; Owen L.; Hoerstrup S.P.; Weber B.; Non-integrating episomal plasmid-based reprogramming of human amniotic fluid stem cells into induced pluripotent stem cells in chemically defined conditions. Cell Cycle 2016,15(2),234-249 PubMed DOI
Humme S.; Reisbach G.; Feederle R.; Delecluse H.J.; Bousset K.; Hammerschmidt W.; Schepers A.; The EBV nuclear antigen 1 (EBNA1) enhances B cell immortalization several thousandfold. Proc Natl Acad Sci 2003,100(19),10989-10994 PubMed DOI
Okita K.; Matsumura Y.; Sato Y.; Okada A.; Morizane A.; Okamoto S.; Hong H.; Nakagawa M.; Tanabe K.; Tezuka K.; Shibata T.; Kunisada T.; Takahashi M.; Takahashi J.; Saji H.; Yamanaka S.; A more efficient method to generate integration-free human iPS cells. Nat Methods 2011,8(5),409-412 PubMed DOI
Su R.J.; Baylink D.J.; Neises A.; Kiroyan J.B.; Meng X.; Payne K.J.; Tschudy-Seney B.; Duan Y.; Appleby N.; Kearns-Jonker M.; Gridley D.S.; Wang J.; Lau K.H.W.; Zhang X.B.; Efficient generation of integration-free ips cells from human adult peripheral blood using BCL-XL together with Yamanaka factors. PLoS One 2013,8(5),e64496 PubMed DOI
Manzini S.; Vargiolu A.; Stehle I.M.; Bacci M.L.; Cerrito M.G.; Giovannoni R.; Zannoni A.; Bianco M.R.; Forni M.; Donini P.; Papa M.; Lipps H.J.; Lavitrano M.; Genetically modified pigs produced with a nonviral episomal vector. Proc Natl Acad Sci 2006,103(47),17672-17677 PubMed DOI
Hagedorn C.; Antoniou M.N.; Lipps H.J.; Genomic cis-acting sequences improve expression and establishment of a nonviral vector. Mol Ther Nucleic Acids 2013,2(8),e118 PubMed DOI
Kay M.A.; He C.Y.; Chen Z.Y.; A robust system for production of minicircle DNA vectors. Nat Biotechnol 2010,28(12),1287-1289 PubMed DOI
Narsinh K.H.; Jia F.; Robbins R.C.; Kay M.A.; Longaker M.T.; Wu J.C.; Generation of adult human induced pluripotent stem cells using nonviral minicircle DNA vectors. Nat Protoc 2011,6(1),78-88 PubMed DOI
Kaji K.; Norrby K.; Paca A.; Mileikovsky M.; Mohseni P.; Woltjen K.; Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 2009,458(7239),771-775 PubMed DOI
Jia F.; Wilson K.D.; Sun N.; Gupta D.M.; Huang M.; Li Z.; Panetta N.J.; Chen Z.Y.; Robbins R.C.; Kay M.A.; Longaker M.T.; Wu J.C.; A nonviral minicircle vector for deriving human iPS cells. Nat Methods 2010,7(3),197-199 PubMed DOI
Deng X.Y.; Wang H.; Wang T.; Fang X.T.; Zou L.L.; Li Z.Y.; Liu C.B.; Non-viral methods for generating integration-free, induced pluripotent stem cells. Curr Stem Cell Res Ther 2015,10(2),153-158 PubMed DOI
Li X.; Zhang P.; Wei C.; Zhang Y.; Generation of pluripotent stem cells via protein transduction. Int J Dev Biol 2014,58(1),21-27 PubMed DOI
Zahid M.; Robbins P.D.; Protein Transduction Domains P.; Protein transduction domains: Applications for molecular medicine. Curr Gene Ther 2012,12(5),374-380 PubMed DOI
Nordin F.; Ahmad R.N.R.; Farzaneh F.; Transactivator protein: An alternative for delivery of recombinant proteins for safer reprogramming of induced Pluripotent Stem Cell. Virus Res 2017,235,106-114 PubMed DOI
Iida A.; Hasegawa M.; Cytoplasmic RNA vector derived from nontransmissible sendai virus. Gene Therapy Protocols 2002,361-370
Nagai Y.; Kato A.; Accessory genes of the paramyxoviridae, a large family of nonsegmented negative-strand RNA viruses, as a focus of active investigation by reverse genetics. Curr Top Microbiol Immunol 2004,283,197-248 PubMed DOI
Shioda T.; Iwasaki K.; Shibuta H.; Determination of the complete nucleotide sequence of the Sendai virus genome RNA and the predicted amino acid sequences of the F, HN and L proteins. Nucleic Acids Res 1986,14(4),1545-1563 PubMed DOI
Takimoto T.; Taylor G.L.; Connaris H.C.; Crennell S.J.; Portner A.; Role of the hemagglutinin-neuraminidase protein in the mechanism of paramyxovirus-cell membrane fusion. J Virol 2002,76(24),13028-13033 PubMed DOI
Park A.; Hong P.; Won S.T.; Thibault P.A.; Vigant F.; Oguntuyo K.Y.; Taft J.D.; Lee B.; Sendai virus, an RNA virus with no risk of genomic integration, delivers CRISPR/Cas9 for efficient gene editing. Mol Ther Methods Clin Dev 2016,3,16057 PubMed DOI
Bitzer M.; Lauer U.; Baumann C.; Spiegel M.; Gregor M.; Neubert W.J.; Sendai virus efficiently infects cells via the asialoglycoprotein receptor and requires the presence of cleaved F0 precursor proteins for this alternative route of cell entry. J Virol 1997,71(7),5481-5486 PubMed DOI
Scheid A.; Hsu M.; Choppin P.W.; Role of paramyxovirus glycoproteins in the interactions between viral and cell membranes. Soc Gen Physiol Ser 1980,34,119-130 PubMed
Ogino T.; Kobayashi M.; Iwama M.; Mizumoto K.; Sendai virus RNA-dependent RNA polymerase L protein catalyzes cap methylation of virus-specific mRNA. J Biol Chem 2005,280(6),4429-4435 PubMed DOI
Garcin D.; Pelet T.; Calain P.; Roux L.; Curran J.; Kolakofsky D.; A highly recombinogenic system for the recovery of infectious Sendai paramyxovirus from cDNA: Generation of a novel copy-back nondefective interfering virus. EMBO J 1995,14(24),6087-6094 PubMed DOI
Hasan M.K.; Nagai Y.; Yu D.; Sakai Y.; Kato A.; Shioda T.; Creation of an infectious recombinant Sendai virus expressing the firefly luciferase gene from the 3′ proximal first locus. J Gen Virol 1997,78(11),2813-2820 PubMed DOI
Inoue M.; Tokusumi Y.; Ban H.; Kanaya T.; Tokusumi T.; Nagai Y.; Iida A.; Hasegawa M.; Nontransmissible virus-like particle formation by F-deficient sendai virus is temperature sensitive and reduced by mutations in M and HN proteins. J Virol 2003,77(5),3238-3246 PubMed DOI
Li H.O.; Zhu Y.F.; Asakawa M.; Kuma H.; Hirata T.; Ueda Y.; Lee Y.S.; Fukumura M.; Iida A.; Kato A.; Nagai Y.; Hasegawa M.; A cytoplasmic RNA vector derived from nontransmissible Sendai virus with efficient gene transfer and expression. J Virol 2000,74(14),6564-6569 PubMed DOI
Fujii Y.; Sakaguchi T.; Kiyotani K.; Huang C.; Fukuhara N.; Egi Y.; Yoshida T.; Involvement of the leader sequence in Sendai virus pathogenesis revealed by recovery of a pathogenic field isolate from cDNA. J Virol 2002,76(17),8540-8547 PubMed DOI
Fusaki N.; Ban H.; Nishiyama A.; Saeki K.; Hasegawa M.; Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad, Ser B, Phys Biol Sci 2009,85(8),348-362 PubMed DOI
Seki T.; Yuasa S.; Fukuda K.; Generation of induced pluripotent stem cells from a small amount of human peripheral blood using a combination of activated T cells and Sendai virus. Nat Protoc 2012,7(4),718-728 PubMed DOI
Seki T.; Yuasa S.; Oda M.; Egashira T.; Yae K.; Kusumoto D.; Nakata H.; Tohyama S.; Hashimoto H.; Kodaira M.; Okada Y.; Seimiya H.; Fusaki N.; Hasegawa M.; Fukuda K.; Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell 2010,7(1),11-14 PubMed DOI
Nishishita N.; Takenaka C.; Fusaki N.; Kawamata S.; Generation of human induced pluripotent stem cells from cord blood cells. J Stem Cells 2011,6(3),101-108 PubMed
Nakanishi M.; Otsu M.; Development of Sendai virus vectors and their potential applications in gene therapy and regenerative medicine. Curr Gene Ther 2012,12(5),410-416 PubMed DOI
Nishimura K.; Sano M.; Ohtaka M.; Furuta B.; Umemura Y.; Nakajima Y.; Ikehara Y.; Kobayashi T.; Segawa H.; Takayasu S.; Sato H.; Motomura K.; Uchida E.; Kanayasu-Toyoda T.; Asashima M.; Nakauchi H.; Yamaguchi T.; Nakanishi M.; Development of defective and persistent Sendai virus vector: A unique gene delivery/expression system ideal for cell reprogramming. J Biol Chem 2011,286(6),4760-4771 PubMed DOI
Brouwer M.; Zhou H.; Nadif Kasri N.; Choices for induction of pluripotency: Recent developments in human induced pluripotent stem cell reprogramming strategies. Stem Cell Rev 2016,12(1),54-72 PubMed DOI
Yonemitsu Y.; Kitson C.; Ferrari S.; Farley R.; Griesenbach U.; Judd D.; Steel R.; Scheid P.; Zhu J.; Jeffery P.K.; Kato A.; Hasan M.K.; Nagai Y.; Masaki I.; Fukumura M.; Hasegawa M.; Geddes D.M.; Alton E.W.F.W.; Efficient gene transfer to airway epithelium using recombinant Sendai virus. Nat Biotechnol 2000,18(9),970-973 PubMed DOI
Kano M.; Matano T.; Nakamura H.; Takeda A.; Kato A.; Ariyoshi K.; Mori K.; Sata T.; Nagai Y.; Elicitation of protective immunity against simian immunodeficiency virus infection by a recombinant Sendai virus expressing the Gag protein. AIDS 2000,14(9),1281-1282 PubMed DOI
Masaki I.; Yonemitsu Y.; Yamashita A.; Sata S.; Tanii M.; Komori K.; Nakagawa K.; Hou X.; Nagai Y.; Hasegawa M.; Sugimachi K.; Sueishi K.; Angiogenic gene therapy for experimental critical limb ischemia: acceleration of limb loss by overexpression of vascular endothelial growth factor 165 but not of fibroblast growth factor-2. Circ Res 2002,90(9),966-973 PubMed DOI
Griesenbach U.; Inoue M.; Meng C.; Farley R.; Chan M.; Newman N.K.; Brum A.; You J.; Kerton A.; Shoemark A.; Boyd A.C.; Davies J.C.; Higgins T.E.; Gill D.R.; Hyde S.C.; Innes J.A.; Porteous D.J.; Hasegawa M.; Alton E.W.F.W.; Assessment of F/HN-pseudotyped lentivirus as a clinically relevant vector for lung gene therapy. Am J Respir Crit Care Med 2012,186(9),846-856 PubMed DOI
Griesenbach U.; Inoue M.; Hasegawa M.; Alton E.W.F.W.; Sendai virus for gene therapy and vaccination. Curr Opin Mol Ther 2005,7(4),346-352 PubMed
Zangi L.; Lui K.O.; von Gise A.; Ma Q.; Ebina W.; Ptaszek L.M.; Später D.; Xu H.; Tabebordbar M.; Gorbatov R.; Sena B.; Nahrendorf M.; Briscoe D.M.; Li R.A.; Wagers A.J.; Rossi D.J.; Pu W.T.; Chien K.R.; Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat Biotechnol 2013,31(10),898-907 PubMed DOI
Karikó K.; Buckstein M.; Ni H.; Weissman D.; Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 2005,23(2),165-175 PubMed DOI
Hornung V.; Ellegast J.; Kim S.; Brzózka K.; Jung A.; Kato H.; Poeck H.; Akira S.; Conzelmann K.K.; Schlee M.; Endres S.; Hartmann G.; 5′-triphosphate RNA is the ligand for RIG-I. Science 2006,314,994-997
Grudzien-Nogalska E.; Kowalska J.; Su W.; Kuhn A.N.; Slepenkov S.V.; Darzynkiewicz E.; Sahin U.; Jemielity J.; Rhoads R.E.; Synthetic mRNAs with superior translation and stability properties. Methods Mol Biol 2013,969,55-72 PubMed DOI
Anderson B.R.; Muramatsu H.; Nallagatla S.R.; Bevilacqua P.C.; Sansing L.H.; Weissman D.; Karikó K.; Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res 2010,38(17),5884-5892 PubMed DOI
Rosa A.; Brivanlou A.H.; Synthetic mRNAs: Powerful tools for reprogramming and differentiation of human cells. Cell Stem Cell 2010,7(5),549-550 PubMed DOI
Ramanathan A.; Robb G.B.; Chan S.H.; mRNA capping: Biological functions and applications. Nucleic Acids Res 2016,44(16),7511-7526 PubMed DOI
Kuhn A.N.; Beiβert T.; Simon P.; Vallazza B.; Buck J.; Davies B.P.; Tureci O.; Sahin U.; mRNA as a versatile tool for exogenous protein expression. Curr Gene Ther 2012,12(5),347-361 PubMed DOI
Kogut I.; McCarthy S.M.; Pavlova M.; Astling D.P.; Chen X.; Jakimenko A.; Jones K.L.; Getahun A.; Cambier J.C.; Pasmooij A.M.G.; Jonkman M.F.; Roop D.R.; Bilousova G.; High-efficiency RNA-based reprogramming of human primary fibroblasts. Nat Commun 2018,9(1),745 PubMed DOI
Pichlmair A.; Schulz O.; Tan C.P.; Näslund T.I.; Liljeström P.; Weber F.; Reis E; RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 2006,314,997-1001
Warren L.; Manos P.D.; Ahfeldt T.; Loh Y.H.; Li H.; Lau F.; Ebina W.; Mandal P.K.; Smith Z.D.; Meissner A.; Daley G.Q.; Brack A.S.; Collins J.J.; Cowan C.; Schlaeger T.M.; Rossi D.J.; Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 2010,7(5),618-630 PubMed DOI
Karikó K.; Muramatsu H.; Keller J.M.; Weissman D.; Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mRNA encoding erythropoietin. Mol Ther 2012,20(5),948-953 PubMed DOI
Motorin Y.; Helm M.; RNA nucleotide methylation. Wiley Interdiscip Rev RNA 2011,2(5),611-631 PubMed DOI
Mandal P.K.; Rossi D.J.; Reprogramming human fibroblasts to pluripotency using modified mRNA. Nat Protoc 2013,8(3),568-582 PubMed DOI
Kormann M.S.D.; Hasenpusch G.; Aneja M.K.; Nica G.; Flemmer A.W.; Herber-Jonat S.; Huppmann M.; Mays L.E.; Illenyi M.; Schams A.; Griese M.; Bittmann I.; Handgretinger R.; Hartl D.; Rosenecker J.; Rudolph C.; Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat Biotechnol 2011,29(2),154-157 PubMed DOI
Gerardo H.; Lima A.; Carvalho J.; Ramos J.R.D.; Couceiro S.; Travasso R.D.M.; Pires das Neves R.; Grãos M.; Soft culture substrates favor stem-like cellular phenotype and facilitate reprogramming of human mesenchymal stem/stromal cells (hMSCs) through mechanotransduction. Sci Rep 2019,9(1),9086 DOI
Zhao R.; Li R.; An T.; Liu X.; Conditional cell reprogramming in modeling digestive system diseases. Front Cell Dev Biol 2021,9,669756 PubMed DOI
Wu X.; Wang S.; Li M.; Li J.; Shen J.; Zhao Y.; Pang J.; Wen Q.; Chen M.; Wei B.; Kaboli P.J.; Du F.; Zhao Q.; Cho C.H.; Wang Y.; Xiao Z.; Wu X.; Conditional reprogramming: Next generation cell culture. Acta Pharm Sin B 2020,10(8),1360-1381 PubMed DOI
Yoshioka N.; Gros E.; Li H.R.; Kumar S.; Deacon D.C.; Maron C.; Muotri A.R.; Chi N.C.; Fu X.D.; Yu B.D.; Dowdy S.F.; Efficient generation of human iPSCs by a synthetic self-replicative RNA. Cell Stem Cell 2013,13(2),246-254 PubMed DOI
Takahashi K.; Yamanaka S.; Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006,126(4),663-676 PubMed DOI
Takahashi K.; Okita K.; Nakagawa M.; Yamanaka S.; Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2007,2(12),3081-3089 PubMed DOI
Zhao T.; Zhang Z.N.; Rong Z.; Xu Y.; Immunogenicity of induced pluripotent stem cells. Nature 2011,474(7350),212-215 PubMed DOI
Lister R.; Pelizzola M.; Kida Y.S.; Hawkins R.D.; Nery J.R.; Hon G.; Antosiewicz-Bourget J.; O’Malley R.; Castanon R.; Klugman S.; Downes M.; Yu R.; Stewart R.; Ren B.; Thomson J.A.; Evans R.M.; Ecker J.R.; Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 2011,471(7336),68-73 PubMed DOI
Lee S.B.; Seo D.; Choi D.; Park K.Y.; Holczbauer A.; Marquardt J.U.; Conner E.A.; Factor V.M.; Thorgeirsson S.S.; Contribution of hepatic lineage stage-specific donor memory to the differential potential of induced mouse pluripotent stem cells. Stem Cells 2012,30(5),997-1007 PubMed DOI
Bar-Nur O.; Russ H.A.; Efrat S.; Benvenisty N.; Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell 2011,9(1),17-23 PubMed DOI
Xu H.; Yi B.A.; Wu H.; Bock C.; Gu H.; Lui K.O.; Park J.H.C.; Shao Y.; Riley A.K.; Domian I.J.; Hu E.; Willette R.; Lepore J.; Meissner A.; Wang Z.; Chien K.R.; Highly efficient derivation of ventricular cardiomyocytes from induced pluripotent stem cells with a distinct epigenetic signature. Cell Res 2012,22(1),142-154 PubMed DOI
Ohi Y.; Qin H.; Hong C.; Blouin L.; Polo J.M.; Guo T.; Qi Z.; Downey S.L.; Manos P.D.; Rossi D.J.; Yu J.; Hebrok M.; Hochedlinger K.; Costello J.F.; Song J.S.; Ramalho-Santos M.; Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat Cell Biol 2011,13(5),541-549 PubMed DOI
Okita K.; Ichisaka T.; Yamanaka S.; Generation of germline-competent induced pluripotent stem cells. Nature 2007,448(7151),313-317 PubMed DOI
Lin T.; Wu S.; Reprogramming with small molecules instead of exogenous transcription factors. Stem Cells Int 2015,2015,1-11 PubMed DOI
Clevers H.; Nusse R.; Wnt/β-catenin signaling and disease. Cell 2012,149(6),1192-1205 PubMed DOI
Kim Y.; Jeong J.; Choi D.; Small-molecule-mediated reprogramming: A silver lining for regenerative medicine. Exp Mol Med 2020,52(2),213-226 PubMed DOI
Hou P.; Li Y.; Zhang X.; Liu C.; Guan J.; Li H.; Zhao T.; Ye J.; Yang W.; Liu K.; Ge J.; Xu J.; Zhang Q.; Zhao Y.; Deng H.; Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 2013,341(6146),651-654 PubMed DOI
Ye J.; Ge J.; Zhang X.; Cheng L.; Zhang Z.; He S.; Wang Y.; Lin H.; Yang W.; Liu J.; Zhao Y.; Deng H.; Pluripotent stem cells induced from mouse neural stem cells and small intestinal epithelial cells by small molecule compounds. Cell Res 2016,26(1),34-45 PubMed DOI
Cheng L.; Hu W.; Qiu B.; Zhao J.; Yu Y.; Guan W.; Wang M.; Yang W.; Pei G.; Generation of neural progenitor cells by chemical cocktails and hypoxia. Cell Res 2014,24(6),665-679 PubMed DOI
Zhang M.; Lin Y.H.; Sun Y.J.; Zhu S.; Zheng J.; Liu K.; Cao N.; Li K.; Huang Y.; Ding S.; Pharmacological reprogramming of fibroblasts into neural stem cells by signaling-directed transcriptional activation. Cell Stem Cell 2016,18(5),653-667 PubMed DOI
Hu W.; Qiu B.; Guan W.; Wang Q.; Wang M.; Li W.; Gao L.; Shen L.; Huang Y.; Xie G.; Zhao H.; Jin Y.; Tang B.; Yu Y.; Zhao J.; Pei G.; Direct conversion of normal and alzheimer’s disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell 2015,17(2),204-212 PubMed DOI
Zhang L.; Yin J.C.; Yeh H.; Ma N.X.; Lee G.; Chen X.A.; Wang Y.; Lin L.; Chen L.; Jin P.; Wu G.Y.; Chen G.; Small molecules efficiently reprogram human astroglial cells into functional neurons. Cell Stem Cell 2015,17(6),735-747 PubMed DOI
Fu Y.; Huang C.; Xu X.; Gu H.; Ye Y.; Jiang C.; Qiu Z.; Xie X.; Direct reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktails. Cell Res 2015,25(9),1013-1024 PubMed DOI
Cao N.; Huang Y.; Zheng J.; Spencer C.I.; Zhang Y.; Fu J.-D.; Nie B.; Xie M.; Zhang M.; Wang H.; Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science 2016,352,1216-1220
Katsuda T.; Kawamata M.; Hagiwara K.; Takahashi R.; Yamamoto Y.; Camargo F.D.; Ochiya T.; Conversion of terminally committed hepatocytes to culturable bipotent progenitor cells with regenerative capacity. Cell Stem Cell 2017,20(1),41-55 PubMed DOI
Kim Y.; Kang K.; Lee S.B.; Seo D.; Yoon S.; Kim S.J.; Jang K.; Jung Y.K.; Lee K.G.; Factor V.M.; Jeong J.; Choi D.; Small molecule-mediated reprogramming of human hepatocytes into bipotent progenitor cells. J Hepatol 2019,70(1),97-107 PubMed DOI
Fu G.B.; Huang W.J.; Zeng M.; Zhou X.; Wu H.P.; Liu C.C.; Wu H.; Weng J.; Zhang H.D.; Cai Y.C.; Ashton C.; Ding M.; Tang D.; Zhang B.H.; Gao Y.; Yu W.F.; Zhai B.; He Z.Y.; Wang H.Y.; Yan H.X.; Expansion and differentiation of human hepatocyte-derived liver progenitor-like cells and their use for the study of hepatotropic pathogens. Cell Res 2019,29(1),8-22 PubMed DOI
Zhang K.; Zhang L.; Liu W.; Ma X.; Cen J.; Sun Z.; Wang C.; Feng S.; Zhang Z.; Yue L.; Sun L.; Zhu Z.; Chen X.; Feng A.; Wu J.; Jiang Z.; Li P.; Cheng X.; Gao D.; Peng L.; Hui L.; In vitro expansion of primary human hepatocytes with efficient liver repopulation capacity. Cell Stem Cell 2018,23(6),806-819.e4 PubMed DOI
Nie B.; Nie T.; Hui X.; Gu P.; Mao L.; Li K.; Yuan R.; Zheng J.; Wang H.; Li K.; Tang S.; Zhang Y.; Xu T.; Xu A.; Wu D.; Ding S.; Brown adipogenic reprogramming induced by a small molecule. Cell Rep 2017,18(3),624-635 PubMed DOI
Liu J.; Liu Y.; Wang H.; Hao H.; Han Q.; Shen J.; Shi J.; Li C.; Mu Y.; Han W.; Direct differentiation of hepatic stem-like WB cells into insulin-producing cells using small molecules. Sci Rep 2013,3(1),1185 PubMed DOI
Mahla R.S.; Stem cells applications in regenerative medicine and disease therapeutics. Int J Cell Biol 2016,2016,1-24 PubMed DOI
Hanna J.; Wernig M.; Markoulaki S.; Sun C.W.; Meissner A.; Cassady J.P.; Beard C.; Brambrink T.; Wu L.C.; Townes T.M.; Jaenisch R.; Treatment of sickle cell anemia mouse model with IPS cells generated from autologous skin. Science 2007,318,1920-1923
Taylor C.J.; Bolton E.M.; Bradley J.A.; Immunological considerations for embryonic and induced pluripotent stem cell banking. Philos Trans R Soc Lond B Biol Sci 2011,366(1575),2312-2322 PubMed DOI
Scheiner Z.S.; Talib S.; Feigal E.G.; The potential for immunogenicity of autologous induced pluripotent stem cell-derived therapies. J Biol Chem 2014,289(8),4571-4577 PubMed DOI
Hochedlinger K.; Jaenisch R.; Induced pluripotency and epigenetic reprogramming. Cold Spring Harb Perspect Biol 2015,7(12),a019448 PubMed DOI
Saha K.; Jaenisch R.; Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell 2009,5(6),584-595 PubMed DOI
Simara P.; Motl J.A.; Kaufman D.S.; Pluripotent stem cells and gene therapy. Transl Res 2013,161(4),284-292 PubMed DOI
Buta C.; David R.; Dressel R.; Emgård M.; Fuchs C.; Gross U.; Healy L.; Hescheler J.; Kolar R.; Martin U.; Mikkers H.; Müller F.J.; Schneider R.K.; Seiler A.E.M.; Spielmann H.; Weitzer G.; Reconsidering pluripotency tests: Do we still need teratoma assays? Stem Cell Res 2013,11(1),552-562 PubMed DOI
Hong S.G.; Winkler T.; Wu C.; Guo V.; Pittaluga S.; Nicolae A.; Donahue R.E.; Metzger M.E.; Price S.D.; Uchida N.; Kuznetsov S.A.; Kilts T.; Li L.; Robey P.G.; Dunbar C.E.; Path to the clinic: Assessment of iPSC-based cell therapies in vivo in a nonhuman primate model. Cell Rep 2014,7(4),1298-1309 PubMed DOI
Vazin T.; Freed W.J.; Human embryonic stem cells: Derivation, culture, and differentiation: A review. Restor Neurol Neurosci 2010,28(4),589-603 PubMed DOI
Barrilleaux B.; Knoepfler P.S.; Inducing iPSCs to escape the dish. Cell Stem Cell 2011,9(2),103-111 PubMed DOI
Takahashi K.; Yamanaka S.; Induced pluripotent stem cells in medicine and biology. Development 2013,140(12),2457-2461 PubMed DOI
Medvedev S.P.; Shevchenko A.I.; Zakian S.M.; Induced pluripotent stem cells: Problems and advantages when applying them in regenerative medicine. Acta Nat 2010,2(2),18-27 PubMed DOI
Hong S.G.; Dunbar C.E.; Winkler T.; Assessing the risks of genotoxicity in the therapeutic development of induced pluripotent stem cells. Mol Ther 2013,21(2),272-281 PubMed DOI
Muir B.; Nunney L.; The expression of tumour suppressors and proto-oncogenes in tissues susceptible to their hereditary cancers. Br J Cancer 2015,113(2),345-353 PubMed DOI
Peterson S.E.; Loring J.F.; Genomic instability in pluripotent stem cells: Implications for clinical applications. J Biol Chem 2014,289(8),4578-4584 PubMed DOI
Fu X.; Xu Y.; Challenges to the clinical application of pluripotent stem cells: towards genomic and functional stability. Genome Med 2012,4(6),55 PubMed DOI
Harding J.; Mirochnitchenko O.; Preclinical studies for induced pluripotent stem cell-based therapeutics. J Biol Chem 2014,289(8),4585-4593 PubMed DOI
Li M.; Suzuki K.; Kim N.Y.; Liu G.H.; Izpisua B.J.C.; A cut above the rest: Targeted genome editing technologies in human pluripotent stem cells. J Biol Chem 2014,289(8),4594-4599 PubMed DOI
Siller R.; Greenhough S.; Park I-H.; Sullivan G.J.; Modelling human disease with pluripotent stem cells. Curr Gene Ther 2013,13(2),99-110 PubMed DOI
Mak I.W.Y.; Evaniew N.; Ghert M.; Lost in translation: Animal models and clinical trials in cancer treatment. Am J Transl Res 2014,6(2),114-118 PubMed
Ebert A.D.; Liang P.; Wu J.C.; Induced pluripotent stem cells as a disease modeling and drug screening platform. J Cardiovasc Pharmacol 2012,60(4),408-416 PubMed DOI
Park I.H.; Arora N.; Huo H.; Maherali N.; Ahfeldt T.; Shimamura A.; Lensch M.W.; Cowan C.; Hochedlinger K.; Daley G.Q.; Disease-specific induced pluripotent stem cells. Cell 2008,134(5),877-886 PubMed DOI
Ebert A.D.; Yu J.; Rose F.F.; Mattis V.B.; Lorson C.L.; Thomson J.A.; Svendsen C.N.; Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 2009,457(7227),277-280 PubMed DOI
Bellin M.; Marchetto M.C.; Gage F.H.; Mummery C.L.; Induced pluripotent stem cells: The new patient? Nat Rev Mol Cell Biol 2012,13(11),713-726 PubMed DOI
Merkle F.T.; Eggan K.; Modeling human disease with pluripotent stem cells: From genome association to function. Cell Stem Cell 2013,12(6),656-668 PubMed DOI
Martin U.; Pluripotent stem cells for disease modeling and drug screening: new perspectives for treatment of cystic fibrosis? Mol Cell Pediatr 2015,2(1),15 PubMed DOI
Moretti A.; Bellin M.; Welling A.; Jung C.B.; Lam J.T.; Bott-Flügel L.; Dorn T.; Goedel A.; Höhnke C.; Hofmann F.; Seyfarth M.; Sinnecker D.; Schömig A.; Laugwitz K.L.; Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med 2010,363(15),1397-1409 PubMed DOI
Mordwinkin N.M.; Burridge P.W.; Wu J.C.; A review of human pluripotent stem cell-derived cardiomyocytes for high-throughput drug discovery, cardiotoxicity screening, and publication standards. J Cardiovasc Transl Res 2013,6(1),22-30 PubMed DOI
Engle S.J.; Vincent F.; Small molecule screening in human induced pluripotent stem cell-derived terminal cell types. J Biol Chem 2014,289(8),4562-4570 PubMed DOI
Kolaja K.; Stem cells and stem cell-derived tissues and their use in safety assessment. J Biol Chem 2014,289(8),4555-4561 PubMed DOI
Engle S.J.; Puppala D.; Integrating human pluripotent stem cells into drug development. Cell Stem Cell 2013,12(6),669-677 PubMed DOI
Daley G.Q.; The promise and perils of stem cell therapeutics. Cell Stem Cell 2012,10(6),740-749 PubMed DOI
Singh V.K.; Kalsan M.; Kumar N.; Saini A.; Chandra R.; Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Front Cell Dev Biol 2015,3,2 PubMed DOI
Millette K.; Georgia S.; Gene editing and human pluripotent stem cells: Tools for advancing diabetes disease modeling and beta-cell development. Curr Diab Rep 2017,17(11),116 PubMed DOI
Pini V.; Morgan J.E.; Muntoni F.; O’Neill H.C.; Genome editing and muscle stem cells as a therapeutic tool for muscular dystrophies. Curr Stem Cell Rep 2017,3(2),137-148 PubMed DOI
Li H.; Chen G.; In vivo reprogramming for CNS repair: Regenerating neurons from endogenous glial cells. Neuron 2016,91(4),728-738 PubMed DOI
Cherry A.B.C.; Daley G.Q.; Reprogramming cellular identity for regenerative medicine. Cell 2012,148(6),1110-1122 PubMed DOI
Watt F.M.; Driskell R.R.; The therapeutic potential of stem cells. Philos Trans R Soc Lond B Biol Sci 2010,365(1537),155-163 PubMed DOI
Wobus A.M.; Boheler K.R.; Embryonic stem cells: Prospects for developmental biology and cell therapy. Physiol Rev 2005,85(2),635-678 PubMed DOI
Klimczak A.; Kozlowska U.; Mesenchymal stromal cells and tissue-specific progenitor cells: Their role in tissue homeostasis. Stem Cells Int 2016,2016,1-11 PubMed DOI
Piccin D.; Morshead C.M.; Potential and pitfalls of stem cell therapy in old age. Dis Model Mech 2010,3(7-8),421-425 PubMed DOI
Krampera M.; Franchini M.; Pizzolo G.; Aprili G.; Mesenchymal stem cells: From biology to clinical use. Blood Transfus 2007,5(3),120-129 PubMed
Via A.G.; Frizziero A.; Oliva F.; Biological properties of mesenchymal Stem Cells from different sources. Muscles Ligaments Tendons J 2012,2(3),154-162 PubMed
Farini A.; Sitzia C.; Erratico S.; Meregalli M.; Torrente Y.; Clinical applications of mesenchymal stem cells in chronic diseases. Stem Cells Int 2014,2014,1-11 PubMed DOI
Maleki M.; Ghanbarvand F.; Behvarz M.R.; Ejtemaei M.; Ghadirkhomi E.; Comparison of mesenchymal stem cell markers in multiple human adult stem cells. Int J Stem Cells 2014,7(2),118-126 PubMed DOI
Law S.; Chaudhuri S.; Mesenchymal stem cell and regenerative medicine: regeneration versus immunomodulatory challenges. Am J Stem Cells 2013,2(1),22-38 PubMed
Nagamura-Inoue T.; He H.; Umbilical cord-derived mesenchymal stem cells: Their advantages and potential clinical utility. World J Stem Cells 2014,6(2),195-202 PubMed DOI
Hordyjewska A.; Popiołek Ł.; Horecka A.; Characteristics of hematopoietic stem cells of umbilical cord blood. Cytotechnology 2015,67(3),387-396 PubMed DOI
Rosemann A.; Why regenerative stem cell medicine progresses slower than expected. J Cell Biochem 2014,115(12),2073-2076 PubMed DOI
McKenna D.; Sheth J.; Umbilical cord blood: Current status and promise for the future. Indian J Med Res 2011,134(3),261-269 PubMed
Ballen K.K.; Gluckman E.; Broxmeyer H.E.; Umbilical cord blood transplantation: The first 25 years and beyond. Blood 2013,122(4),491-498 PubMed DOI
Travlos G.S.; Normal structure, function, and histology of the bone marrow. Toxicol Pathol 2006,34(5),548-565 PubMed DOI
Brenner M.K.; Gene-modified cells for stem cell transplantation and cancer therapy. Hum Gene Ther 2014,25(7),563-569 PubMed DOI
Chen F.M.; Liu X.; Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci 2016,53,86-168 PubMed DOI
Howard C.A.; Fernandez-Vina M.A.; Appelbaum F.R.; Confer D.L.; Devine S.M.; Horowitz M.M.; Mendizabal A.; Laport G.G.; Pasquini M.C.; Spellman S.R.; Recommendations for donor human leukocyte antigen assessment and matching for allogeneic stem cell transplantation: consensus opinion of the Blood and Marrow Transplant Clinical Trials Network (BMT CTN). Biol Blood Marrow Transplant 2015,21(1),4-7 PubMed DOI
Acevedo-Whitehouse K.; Duffus A.L.J.; Effects of environmental change on wildlife health. Philos Trans R Soc Lond B Biol Sci 2009,364(1534),3429-3438 PubMed DOI
Kasso M.; Balakrishnan M.; Ex situ conservation of biodiversity with particular emphasis to ethiopia. ISRN Biodiversity 2013,2013,1-11 DOI
Khan S.; Nabi G.; Ullah M.W.; Yousaf M.; Manan S.; Siddique R.; Hou H.; Overview on the role of advance genomics in conservation biology of endangered species. Int J Genomics 2016,2016,1-8 PubMed DOI
Devi L.; Goel S.; Fertility preservation through gonadal cryopreservation. Reprod Med Biol 2016,15(4),235-251 PubMed DOI
Friedrich Ben-Nun I.; Montague S.C.; Houck M.L.; Tran H.T.; Garitaonandia I.; Leonardo T.R.; Wang Y.C.; Charter S.J.; Laurent L.C.; Ryder O.A.; Loring J.F.; Induced pluripotent stem cells from highly endangered species. Nat Methods 2011,8(10),829-831 PubMed DOI
Stanton M.M.; Tzatzalos E.; Donne M.; Kolundzic N.; Helgason I.; Ilic D.; Prospects for the use of induced pluripotent stem cells in animal conservation and environmental protection. Stem Cells Transl Med 2019,8(1),7-13 PubMed DOI
Ogorevc J.; Orehek S.; Dovč P.; Cellular reprogramming in farm animals: An overview of iPSC generation in the mammalian farm animal species. J Anim Sci Biotechnol 2016,7(1),10 PubMed DOI
Comizzoli P.; Wildt D.E.; On the horizon for fertility preservation in domestic and wild carnivores. Reprod Domest Anim 2012,47(S6),261-265 PubMed DOI
Ramaswamy K.; Yik W.Y.; Wang X.M.; Oliphant E.N.; Lu W.; Shibata D.; Ryder O.A.; Hacia J.G.; Derivation of induced pluripotent stem cells from orangutan skin fibroblasts. BMC Res Notes 2015,8(1),577 PubMed DOI
Omole A.E.; Fakoya A.O.J.; Ten years of progress and promise of induced pluripotent stem cells: Historical origins, characteristics, mechanisms, limitations, and potential applications. PeerJ 2018,6,e4370 PubMed DOI
Pothana L.; Makala H.; Devi L.; Varma V.P.; Goel S.; Germ cell differentiation in cryopreserved, immature, Indian spotted mouse deer (Moschiola indica) testes xenografted onto mice. Theriogenology 2015,83(4),625-633 PubMed DOI
Sayed N.; Liu C.; Wu J.C.; Translation of human-induced pluripotent stem cells. J Am Coll Cardiol 2016,67(18),2161-2176 PubMed DOI
Seki T.; Fukuda K.; Methods of induced pluripotent stem cells for clinical application. World J Stem Cells 2015,7(1),116-125 PubMed DOI
Brigida A.L.; Siniscalco D.; Induced pluripotent stem cells as a cellular model for studying down syndrome. J Stem Cells Regen Med 2016,12(2),54-60 PubMed DOI
Martin U.; Therapeutic application of pluripotent stem cells: Challenges and risks. Front Med 2017,4,229 PubMed DOI