Reactive astrogliosis in the era of single-cell transcriptomics

. 2023 ; 17 () : 1173200. [epub] 20230420

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37153637

Reactive astrogliosis is a reaction of astrocytes to disturbed homeostasis in the central nervous system (CNS), accompanied by changes in astrocyte numbers, morphology, and function. Reactive astrocytes are important in the onset and progression of many neuropathologies, such as neurotrauma, stroke, and neurodegenerative diseases. Single-cell transcriptomics has revealed remarkable heterogeneity of reactive astrocytes, indicating their multifaceted functions in a whole spectrum of neuropathologies, with important temporal and spatial resolution, both in the brain and in the spinal cord. Interestingly, transcriptomic signatures of reactive astrocytes partially overlap between neurological diseases, suggesting shared and unique gene expression patterns in response to individual neuropathologies. In the era of single-cell transcriptomics, the number of new datasets steeply increases, and they often benefit from comparisons and integration with previously published work. Here, we provide an overview of reactive astrocyte populations defined by single-cell or single-nucleus transcriptomics across multiple neuropathologies, attempting to facilitate the search for relevant reference points and to improve the interpretability of new datasets containing cells with signatures of reactive astrocytes.

Erratum v

PubMed

Zobrazit více v PubMed

Absinta M., Maric D., Gharagozloo M., Garton T., Smith M. D., Jin J., et al. . (2021). A lymphocyte-microglia-astrocyte axis in chronic active multiple sclerosis. Nature 597, 709–714. 10.1038/s41586-021-03892-7 PubMed DOI PMC

Al-Dalahmah O., Sosunov A. A., Shaik A., Ofori K., Liu Y., Vonsattel J. P., et al. . (2020). Single-nucleus RNA-seq identifies Huntington disease astrocyte states. Acta. Neuropathol. Commun. 8, 19. 10.1186/s40478-020-0880-6 PubMed DOI PMC

Barbar L., Jain T., Zimmer M., Kruglikov I., Sadick J. S., Wang M., et al. . (2020). CD49f. is a novel marker of functional and reactive human iPSC-derived astrocytes. Neuron 107, 436–453. 10.1016/j.neuron.2020.05.014 PubMed DOI PMC

Batiuk M. Y., Martirosyan A., Wahis J., Vin D., Marneffe F., Kusserow C., et al. . (2020). Identification of region-specific astrocyte subtypes at single cell resolution. Nat. Commun. 11, 1220. 10.1038/s41467-019-14198-8 PubMed DOI PMC

Bayraktar O. A., Bartels T., Holmqvist S., Kleshchevnikov V., Martirosyan A., Polioudakis D. (2020). Astrocyte layers in the mammalian cerebral cortex revealed by a single-cell in situ transcriptomic map. Nat. Neurosci. 23, 500–509. 10.1038/s41593-020-0602-1 PubMed DOI PMC

Cao Y., Zhu S., Yu B., Yao C. (2022). Single-cell RNA sequencing for traumatic spinal cord injury. FASEB J 36, e22656. 10.1096/fj.202200943R PubMed DOI

Chancellor K. B., Chancellor S. E., Duke-Cohan J. E., Huber B. R., Stein T. D., Alvarez V. E., et al. . (2021). Altered oligodendroglia and astroglia in chronic traumatic encephalopathy. Acta. Neuropathol. 142, 295–321. 10.1007/s00401-021-02322-2 PubMed DOI PMC

Cuevas-Diaz Duran R., Gonzalez-Orozco J. C., Velasco I., Wu J. Q. (2022). Single-cell and single-nuclei RNA sequencing as powerful tools to decipher cellular heterogeneity and dysregulation in neurodegenerative diseases. Front. Cell Dev. Biol. 10, 884748. 10.3389/fcell.2022.884748 PubMed DOI PMC

Escartin C., Galea E., Lakatos A., O'callaghan J. P., Petzold G. C., Serrano-Pozo, et al. . (2021). Reactive astrocyte nomenclature, definitions, and future directions. Nat. Neurosci. 24, 312–325. 10.1038/s41593-020-00783-4 PubMed DOI PMC

Falcao A. M., Van Bruggen D., Marques S., Meijer M., Jakel S., Agirre E., et al. . (2018). Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nat Med 24, 1837–1844. 10.1038/s41591-018-0236-y PubMed DOI PMC

Franzen O., Gan L. M., Bjorkegren J. L. M. (2019). PanglaoDB: A web server for exploration of mouse and human single-cell RNA sequencing data. Database (Oxford). 2019, baz046. 10.1093/database/baz046 PubMed DOI PMC

Gomes C., Sequeira C., Barbosa M., Cunha C., Vaz A. R., Brites D., et al. . (2020). Astrocyte regional diversity in ALS includes distinct aberrant phenotypes with common and causal pathological processes. Exp. Cell Res. 395, 112209. 10.1016/j.yexcr.2020.112209 PubMed DOI

Graham N. S., Sharp D. J. (2019). Understanding neurodegeneration after traumatic brain injury: from mechanisms to clinical trials in dementia. J. Neurol. Neurosurg. Psychiatry 90, 1221–1233. 10.1136/jnnp-2017-317557 PubMed DOI PMC

Grubman A., Chew G., Ouyang J. F., Sun G., Choo X. Y., Mclean C., et al. . (2019). A single-cell atlas of entorhinal cortex from individuals with Alzheimer's disease reveals cell-type-specific gene expression regulation. Nat. Neurosci. 22, 2087–2097. 10.1038/s41593-019-0539-4 PubMed DOI

Guttenplan K. A., Weigel M. K., Adler D. I., Couthouis J., Liddelow S. A., Gitler A. D., et al. . (2020). Knockout of reactive astrocyte activating factors slows disease progression in an ALS mouse model. Nat. Commun. 11, 3753. 10.1038/s41467-020-17514-9 PubMed DOI PMC

Habib N., Mccabe C., Medina S., Varshavsky M., Kitsberg D., Dvir-Szternfeld R., et al. . (2020). Disease-associated astrocytes in Alzheimer's disease and aging. Nat. Neurosci. 23, 701–706. 10.1038/s41593-020-0624-8 PubMed DOI PMC

Hasel P., Liddelow S. A. (2021). Astrocytes. Curr. Biol. 31, R326–R327. 10.1016/j.cub.2021.01.056 PubMed DOI

Hasel P., Rose I. V. L., Sadick J. S., Kim R. D., Liddelow S. A. (2021). Neuroinflammatory astrocyte subtypes in the mouse brain. Nat. Neurosci. 24, 1475–1487. 10.1038/s41593-021-00905-6 PubMed DOI

Hol E. M., Pekny M. (2015). Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr. Opin. Cell Biol 32, 121–130. 10.1016/j.ceb.2015.02.004 PubMed DOI

Jakel S., Agirre E., Mendanha Falcao A., Van Bruggen D., Lee K. W., Knuesel I., et al. . (2019). Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature 566, 543–547. 10.1038/s41586-019-0903-2 PubMed DOI PMC

Jiang J., Wang C., Qi R., Fu H., Ma Q. (2020). scREAD: a single-Cell RNA-seq database for Alzheimer's disease. iScience 23, 101769. 10.1016/j.isci.2020.101769 PubMed DOI PMC

Kaya T., Mattugini N., Liu L., Ji H., Cantuti-Castelvetri L., Wu J., et al. . (2022). CD8+ T cells induce interferon-responsive oligodendrocytes and microglia in white matter aging. Nat Neurosci. 25, 1446–1457. 10.1038/s41593-022-01183-6 PubMed DOI PMC

Kenigsbuch M., Bost P., Halevi S., Chang Y., Chen S., Ma Q., et al. . (2022). A shared disease-associated oligodendrocyte signature among multiple CNS pathologies. Nat. Neurosci. 25, 876–886. 10.1038/s41593-022-01104-7 PubMed DOI PMC

Keren-Shaul H., Spinrad A., Weiner A., Matcovitch-Natan O., Dvir-Szternfeld R., Ulland T. K., et al. . (2017). A unique microglia type associated with restricting development of Alzheimer's Disease. Cell. 169, 1276–1290. 10.1016/j.cell.2017.05.018 PubMed DOI

Lake B. B., Chen S., Sos B. C., Fan J., Kaeser G. E., Yung Y. C., et al. . (2018). Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat. Biotechnol. 36, 70–80. 10.1038/nbt.4038 PubMed DOI PMC

Lau S. F., Cao H., Fu A. K. Y., Ip N. Y. (2020). Single-nucleus transcriptome analysis reveals dysregulation of angiogenic endothelial cells and neuroprotective glia in Alzheimer's disease. Proc. Natl. Acad. Sci. U S A 117, 25800–25809. 10.1073/pnas.2008762117 PubMed DOI PMC

Lee H. G., Wheeler M. A., Quintana F. J. (2022). Function and therapeutic value of astrocytes in neurological diseases. Nat. Rev. Drug Discov. 21, 339–358. 10.1038/s41573-022-00390-x PubMed DOI PMC

Lee S. H., Rezzonico M. G., Friedman B. A., Huntley M. H., Meilandt W. J., Pandey S., et al. . (2021). TREM2-independent oligodendrocyte, astrocyte, and T cell responses to tau and amyloid pathology in mouse models of Alzheimer disease. Cell Rep. 37, 110158. 10.1016/j.celrep.2021.110158 PubMed DOI

Leng K., Li E., Eser R., Piergies A., Sit R., Tan M., et al. (2021). Molecular characterization of selectively vulnerable neurons in Alzheimer's disease. Nat. Neurosci. 24, 276–287. 10.1038/s41593-020-00764-7 PubMed DOI PMC

Leng K., Rose I. V. L., Kim H., Xia W., Romero-Fernandez W., Rooney B., et al. . (2022). CRISPRi screens in human iPSC-derived astrocytes elucidate regulators of distinct inflammatory reactive states. Nat. Neurosci. 25, 1528–1542. 10.1038/s41593-022-01180-9 PubMed DOI PMC

Li C., Wu Z., Zhou L., Shao J., Hu X., Xu W., et al. . (2022). Temporal and spatial cellular and molecular pathological alterations with single-cell resolution in the adult spinal cord after injury. Signal Transduct. Target Ther. 7, 65. 10.1038/s41392-022-00885-4 PubMed DOI PMC

Li J., Pan L., Pembroke W. G., Rexach J. E., Godoy M. I., Condro M. C., et al. . (2021). Conservation and divergence of vulnerability and responses to stressors between human and mouse astrocytes. Nat. Commun. 12, 3958. 10.1038/s41467-021-24232-3 PubMed DOI PMC

Liddelow S. A., Guttenplan K. A., Clarke L. E., Bennett F. C., Bohlen C. J., Schirmer L., et al. . (2017). Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487. 10.1038/nature21029 PubMed DOI PMC

Lo C. H., Skarica M., Mansoor M., Bhandarkar S., Toro S., Pitt D., et al. . (2021). Astrocyte heterogeneity in multiple sclerosis: current understanding and technical challenges. Front. Cell Neurosci. 15, 726479. 10.3389/fncel.2021.726479 PubMed DOI PMC

Ma H., Zhou Y., Li Z., Zhu L., Li H., Zhang G., et al. . (2022). Single-cell RNA-sequencing analyses revealed heterogeneity and dynamic changes of metabolic pathways in astrocytes at the acute phase of ischemic stroke. Oxid. Med. Cell Longev. 2022, 1817721. 10.1155/2022/1817721 PubMed DOI PMC

Ma S. X., Lim S. B. (2021). Single-cell RNA sequencing in parkinson's disease. Biomedicines 9, 368 10.3390/biomedicines9040368 PubMed DOI PMC

Malla B., Guo X., Senger G., Chasapopoulou Z., Yildirim F. (2021). A Systematic review of transcriptional dysregulation in huntington's disease studied by RNA sequencing. Front Genet. 12, 751033. 10.3389/fgene.2021.751033 PubMed DOI PMC

Mathys H., Davila-Velderrain J., Peng Z., Gao F., Mohammadi S., Young J. Z., et al. . (2019). Single-cell transcriptomic analysis of Alzheimer's disease. Nature 570, 332–337. 10.1038/s41586-019-1195-2 PubMed DOI PMC

Morabito S., Miyoshi E., Michael N., Shahin S., Martini A. C., Head E., et al. . (2021). Single-nucleus chromatin accessibility and transcriptomic characterization of Alzheimer's disease. Nat. Genet. 53, 1143–1155. 10.1038/s41588-021-00894-z PubMed DOI PMC

Moulson A. J., Squair J. W., Franklin R. J. M., Tetzlaff W., Assinck P. (2021). Diversity of reactive astrogliosis in CNS pathology: heterogeneity or plasticity? Front. Cell Neurosci. 15, 703810. 10.3389/fncel.2021.703810 PubMed DOI PMC

Orre M., Kamphuis W., Osborn L. M., Jansen A. H. P., Kooijman L., Bossers K., et al. . (2014). Isolation of glia from Alzheimer's mice reveals inflammation and dysfunction. Neurobiol. Aging 35, 2746–2760. 10.1016/j.neurobiolaging.2014.06.004 PubMed DOI

Pajares M. A., Hernandez-Gerez E., Pekny M., Péres-Sala D. (2023). Alexander disease – the road ahead. Neural. Regen Res. 18, 2156–2160. PubMed PMC

Pekny M., Pekna M. (2014). Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev. 94, 1077–1098. 10.1152/physrev.00041.2013 PubMed DOI

Pekny M., Pekna M., Messing A., Steinhauser C., Lee J. M., Parpura V., et al. . (2016). Astrocytes: a central element in neurological diseases. Acta Neuropathol. 131, 323–345. 10.1007/s00401-015-1513-1 PubMed DOI

Pekny M., Wilhelmsson U., Tatlisumak T., Pekna M. (2019). Astrocyte activation and reactive gliosis-a new target in stroke? Neurosci Lett. 689, 45–55. 10.1016/j.neulet.2018.07.021 PubMed DOI

Rusnakova V., Honsa P., Dzamba D., Stahlberg A., Kubista M., Anderova M., et al. . (2013). Heterogeneity of astrocytes: from development to injury - single cell gene expression. PLoS ONE 8, e69734. 10.1371/journal.pone.0069734 PubMed DOI PMC

Sadick J. S., O'Dea M. R., Hasel P., Dykstra T., Faustin A., Liddelow S. A. (2022). Astrocytes and oligodendrocytes undergo subtype-specific transcriptional changes in Alzheimer's disease. Neuron. 110, 1788–1805. e10. 10.1016/j.neuron.2022.03.008 PubMed DOI PMC

Sanmarco L. M., Wheeler M. A., Gutierrez-Vazquez C., Polonio C. M., Linnerbauer M., Pinho-Ribeiro F. A., et al. . (2021). Gut-licensed IFNgamma(+) NK cells drive LAMP1(+)TRAIL(+) anti-inflammatory astrocytes. Nature 590, 473–479. 10.1038/s41586-020-03116-4 PubMed DOI PMC

Saura C. A., Deprada A., Capilla-Lopez M. D., Parra-Damas A. (2022). Revealing cell vulnerability in Alzheimer's disease by single-cell transcriptomics. New York, NY: Academic Press. 10.1016/j.semcdb.2022.05.007 PubMed DOI

Schirmer L., Velmeshev D., Holmqvist S., Kaufmann M., Werneburg S., Jung D., et al. . (2019). Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature 573, 75–82. 10.1038/s41586-019-1404-z PubMed DOI PMC

Serrano-Pozo A., Li Z., Woodbury M. E., Muñoz-Castro C., Wachter A., Jayakumar R., et al. . (2022). Astrocyte transcriptomic changes along the spatiotemporal progression of Alzheimer's disease. bioRxiv [Preprint]. 10.1101/2022.12.03.518999 DOI

Shi X., Luo L., Wang J., Shen H., Li Y., Mamtilahun M., et al. . (2021). Stroke subtype-dependent synapse elimination by reactive gliosis in mice. Nat. Commun. 12, 6943. 10.1038/s41467-021-27248-x PubMed DOI PMC

Smajic S., Prada-Medina C. A., Landoulsi Z., Ghelfi J., Delcambre S., Dietrich C., et al. . (2022). Single-cell sequencing of human midbrain reveals glial activation and a Parkinson-specific neuronal state. Brain 145, 964–978. 10.1093/brain/awab446 PubMed DOI PMC

Small C., Dagra A., Martinez M., Williams E., Lucke-Wold B. (2022). Examining the role of astrogliosis and JNK signaling in post-traumatic epilepsy. Egypt J. Neurosurg. 37, 1–7. 10.1186/s41984-021-00141-x PubMed DOI

Stahlberg A., Andersson D., Aurelius J., Faiz M., Pekna M., Kubista M., et al. . (2011). Defining cell populations with single-cell gene expression profiling: correlations and identification of astrocyte subpopulations. Nucleic Acids Res. 39, e24. 10.1093/nar/gkq1182 PubMed DOI PMC

Stuart T., Butler A., Hoffman P., Hafemeister C., Papalexi E., Mauck W. M., et al. . (2019). Comprehensive Integration of Single-Cell Data. Cell. 177, 1888–1902. 10.1016/j.cell.2019.05.031 PubMed DOI PMC

Svensson V., da Veiga Beltrame E., Pachter L. (2020). A curated database reveals trends in single-cell transcriptomics. Database (Oxford). 2020, baaa073. 10.1093/database/baaa073 PubMed DOI PMC

Wang J. J., Ye G., Ren H., An C. R., Huang L., Chen H., et al. . (2021). Molecular expression profile of changes in rat acute spinal cord injury. Front. Cell Neurosci. 15, 720271. 10.3389/fncel.2021.720271 PubMed DOI PMC

Wheeler M. A., Clark I. C., Tjon E. C., Li Z., Zandee S. E. J., Couturier C. P., et al. . (2020). MAFG-driven astrocytes promote CNS inflammation. Nature 578, 593–599. 10.1038/s41586-020-1999-0 PubMed DOI PMC

Wilhelmsson U., Andersson D., Pablo D., Pekny Y., Stahlberg R., Mulder A., et al. . (2017). Injury leads to the appearance of cells with characteristics of both microglia and astrocytes in mouse and human brain. Cereb. Cortex 27, 3360–3377. 10.1093/cercor/bhx069 PubMed DOI

Wilhelmsson U., Bushong E. A., Price D. L., Smarr B. L., Phung V., Terada M., et al. . (2006). Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury. Proc. Natl. Acad. Sci. U S A 103, 17513–17518. 10.1073/pnas.0602841103 PubMed DOI PMC

Wolfe C. M., Fitz N. F., Nam K. N., Lefterov I., Koldamova R. (2018). The role of APOE and TREM2 in Alzheimer's disease-current understanding and perspectives. Int. J. Mol. Sci. 20, 81. 10.3390/ijms20010081 PubMed DOI PMC

Xu J., Zhang P., Huang Y., Zhou Y., Hou Y., Bekris L. M., et al. . (2021). Multimodal single-cell/nucleus RNA sequencing data analysis uncovers molecular networks between disease-associated microglia and astrocytes with implications for drug repurposing in Alzheimer's disease. Genome Res. 31, 1900–1912. 10.1101/gr.272484.120 PubMed DOI PMC

Zamanian J. L., Xu L., Foo L. C., Nouri N., Zhou L., Giffard R. G., et al. . (2012). Genomic analysis of reactive astrogliosis. J. Neurosci. 32, 6391–6410. 10.1523/JNEUROSCI.6221-11.2012 PubMed DOI PMC

Zamboni M., Llorens-Bobadilla E., Magnusson J. P., Frisen J. (2020). A widespread neurogenic potential of neocortical astrocytes is induced by injury. Cell Stem Cell 27, 605–617. 10.1016/j.stem.2020.07.006 PubMed DOI PMC

Zhou Y., Song W. M., Andhey P. S., Swain A., Levy T., Miller K. R., et al. . (2020). Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer's disease. Nat. Med. 26, 131–142. 10.1038/s41591-019-0695-9 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace