One or two pups - optimal reproduction strategies of common noctule females
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
37170295
PubMed Central
PMC10127298
DOI
10.1186/s40850-022-00119-8
PII: 10.1186/s40850-022-00119-8
Knihovny.cz E-zdroje
- Klíčová slova
- Body weight, Chiroptera, Embryo resorption, Gestation, Progesterone,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The success of animal reproduction is impacted by a trade-off between energetic costs and mortality associated with immediate vs. future reproductive attempts. The reproductive strategies of European insectivorous bats differ from common mammalian standards due to the use of delayed fertilisation. Phenology of bat reproduction, including length of pregnancy, which may vary in the same species at different latitudes, between years at the same site or between individuals within a colony, is influenced by ecological conditions. To assess factors influencing the course of pregnancy, we evaluated levels of blood progesterone in 20 female common noctule bats Nyctalus noctula. The bats were individually tagged and randomly divided into two groups with different hibernation ending points (i.e. a control group vs. a treatment group with one-week longer hibernation). Following emergence from hibernation, the bats were kept in a wooden box at a stable temperature of 22 °C. RESULTS: The majority of females gave birth to a single neonate (65%), but one female aborted her pups 2 days before the first successful births of other females. Based on development of progesterone concentration, we were able to define a number of different reproduction strategies, i.e. females with single offspring or twins, and females with supposed resorption of one embryo (embryonic mortality after implantation of the developing fertilised egg). Progesterone levels were much higher in females with two embryos during the first part of gestation and after birth. Progesterone levels were at their highest mid-gestation, with no difference between females carrying one or two foetuses. Length of gestation differed significantly between the two groups, with the longer hibernation (treatment) group having a roughly two-day shorter gestation period. CONCLUSIONS: Female N. noctula are able to manipulate their litter size to balance immediate and future reproduction success. The estimated gestation length of approx. 49-days appears to be standard for N. noctula, with females optimising their thermoregulatory behaviour to keep the length of gestation as close to the standard as possible.
Department of Botany and Zoology Masaryk University Kotlářská 267 2 611 37 Brno Czech Republic
Institute of Vertebrate Biology of the Czech Academy of Sciences Květná 8 603 65 Brno Czech Republic
Zobrazit více v PubMed
Dobson FS, Oli MK. The life histories of orders of mammals: fast and slow breeding. Curr Sci. 2008;95:862–865.
Barclay RMR, Ulmer J, MacKenzie CJA, Thompson MS, Olson L, McCool J, Cropley E, Poll G. Variation in the reproductive rate of bats. Can J Zool. 2004;82:688–693. doi: 10.1139/z04-057. DOI
Willis CKR. Trade-offs influencing the physiological ecology of hibernation in temperate-zone bats. Integr Comp Biol. 2017;57:1214–1224. doi: 10.1093/icb/icx087. PubMed DOI
Hayssen V, Lacy RC, Parker PJ. Metatherian reproduction: transitional or transcending? Am Nat. 1985;126:617–632. doi: 10.1086/284443. DOI
Gaisler J. Reproduction in the lesser horseshoe bat (Rhinolophus hipposideros hipposideros Bechstein, 1800) Bijd Tot Dierkunde. 1966;36:45–62. doi: 10.1163/26660644-03601003. DOI
Kleiman DG. Maternal care, growth rate, and development in the noctule (Nyctalus noctula), pipistrelle (Pipistrellus pipistrellus), and serotine (Eptesicus serotinus) bats. J Zool Lond. 1969;157:187–211. doi: 10.1111/j.1469-7998.1969.tb01697.x. DOI
Gaisler J, Hanák V, Dungel J. A contribution to the population ecology of Nyctalus noctula (Mammalia:Chiroptera) Acta Sci Nat Brno. 1979;13:1–38.
Krishna A. Dominic CJ Reproduction in the Indian sheath-tailed bat. Acta Theriol. 1982;27:97–106. doi: 10.4098/AT.arch.82-7. DOI
Heidemann PD, Powell KS. Age-specific reproductive strategies and delayed embryonic development in an old-world fruit bat, Ptenochirus jagori. J Mammal. 1998;79:295–311. doi: 10.2307/1382866. DOI
Hayes MA, Adams RA. Geographic and elevational distribution of fringed myotis (Myotis thysanoides) in Colorado. West North Am Naturalist. 2014;74:446–455. doi: 10.3398/064.074.0410. DOI
Asdell SA. Patterns of mammalian reproduction, Ithaca, New York. 1946. p. 437.
Crichton EG, Seamark RF, Crutzsch PH. The status of the corpus luteum during pregnancy in Miniopterus schreibersii (Chiroptera: Vespertilionidae) with emphasis on its role in developmental delay. Cell Tis Res. 1989;258:183–201. PubMed
Happold DCD, Happold M. Reproductive strategies of bats in Africa. J Zool Lond. 1990;222:557–583. doi: 10.1111/j.1469-7998.1990.tb06014.x. DOI
Bernard RTF, Tsita JN. Seasonally monoestrous reproduction in the molossid bat, Tadarida aegyptiaca from low temperate latitudes (33°S) in South Africa. South Afr J Zool. 1995;30:18–22. doi: 10.1080/02541858.1995.11448366. DOI
Bernard RTF, Cotterill FPD, Fergusson RA. On the occurrence of a short period of delayed implantation in Schreibers’ long fingered bat (Miniopterus schreibersii) from a tropical latitude in Zimbabwe. J Zool Lond. 1996;238:13–22. doi: 10.1111/j.1469-7998.1996.tb05376.x. DOI
Cryan PM, Bogan MA, Altenbach JS. Effect of elevation on distribution of female bats in the Black Hills, South Dakota. J Mammal. 2000;81:719–725. doi: 10.1644/1545-1542(2000)081<0719:EOEODO>2.3.CO;2. DOI
Ibanez C, Guille’n A, Agirre-Mendi PT, Juste J, Schreur G, Cordero AI, Popa-Lisseanu AG. Sexual segregation in Iberian noctule bats. J Mammal. 2009;90:235–243. doi: 10.1644/08-MAMM-A-037.1. DOI
Bernard RTF, Meester JAJ. Female reproduction and the female reproductive cycle of Hipposideros caffer caffer (Sundevall 1846) in Natal, South Africa. Ann Trans Mus. 1982;33:131–144.
Balasingh J, Isaac SS, Singaravel M, Nair NG, Subbaraj R. Parturition and mother-infant relations in the Indian false vampire bat Megaderma lyra. Behav Process. 1998;44:45–49. doi: 10.1016/S0376-6357(98)00032-1. PubMed DOI
Harbush CH, Racey PA. The sessile serotine: the influence of roost temperature on philopatry and reproductive phenology of Eptesicus serotinus (Schreber, 1774) (Mammalia: Chiroptera) Acta Chiropt. 2006;8:213–229. doi: 10.3161/1733-5329(2006)8[213:TSSTIO]2.0.CO;2. DOI
Burles DW, Brigham RM, Ring RA, Reimchen TE. Influence of weather on two insectivorous bats in temperate Pacific northwest rainforest. Can J Zool. 2009;87:132–138. doi: 10.1139/Z08-146. DOI
Adams RA. Bat reproduction declines when conditions mimic climate change projections for western North America. Ecology. 2010;91:2437–2445. doi: 10.1890/09-0091.1. PubMed DOI
Racey PA, Uchida TA, Mori T, Avery MI, Fenton MB. Sperm-epithelium relationships in relation to the time of insemination in little brown bats (Myotis lucifugus) J Reprod Fert. 1987;80:445–454. doi: 10.1530/jrf.0.0800445. PubMed DOI
Kurta A, Kunz TH, Nagy KA. Energetics and water flux of free-ranging big brown bats (Eptesicus fuscus) during pregnancy and lactation. J Mammal. 1990;71:59–65. doi: 10.2307/1381316. DOI
Racey PA, Swift SM. Variations in gestation length in a colony of pipistrelle bats (Pipistrellus pipistrellus) from year to year. J Reprod Fert. 1981;61:123–129. doi: 10.1530/jrf.0.0610123. PubMed DOI
Dietz M, Kalko EKV. Seasonal changes in daily torpor patterns of free-ranging female and male Daubenton’s bats (Myotis daubentonii) J Comp Physiol B. 2005;176:223–231. doi: 10.1007/s00360-005-0043-x. PubMed DOI
Grindal SD, Collard TS, Brigham RM, Barclay RMR. The influence of precipitation on reproduction by myotis bats in British Columbia. Am Midl Nat. 1992;128:339–344. doi: 10.2307/2426468. DOI
Pikula J, Bandouchova H, Kovacova V, Linhart P, Piacek V, Zukal J. Reproduction of rescued vespertilionid bats (Nyctalus noctula) in captivity: veterinary and physiologic aspects. Vet Clin N Am - Ex Anim Pract. 2017;20:665–677. doi: 10.1016/j.cvex.2016.11.013. PubMed DOI
Eisentraut M. Die Wirkung niedriger Tempraturen auf die Embryonalentwicklung bei Fledermäusen. Biol Zbl. 1937;57:59–74.
Heideman PD. Enviromental regulation of reproduction, in: reproductive biology of bats. Chrichton EG, Krutzsch PH; 2000. pp. 469–499.
Jerrett DP. Female reproductive patterns in non-hibernating bats. J Reprod Fert. 1979;56:369–378. doi: 10.1530/jrf.0.0560369. PubMed DOI
Buchanan GD, Younglai EV. Plasma progesterone levels during pregnancy in the little brown bat Myotis Lucifugus (Vespertilionidae) Biol Reprod. 1986;34:878–884. doi: 10.1095/biolreprod34.5.878. PubMed DOI
Currie WB, Blake M, Wimsatt WA. Fetal development and maternal plasma concentrations of progesterone in the little brown bat (Myotis lucifugus) J Reprod Fert. 1988;82:401–407. doi: 10.1530/jrf.0.0820401. PubMed DOI
Hosken DJ, O'Shea JE, Blackberry MA. Blood plasma concentrations of progesterone, sperm storage and sperm viability and fertility in Gould’s wattled bat (Chalinolobus gouldii) J Reprod Fert. 1996;108:171–177. doi: 10.1530/jrf.0.1080171. PubMed DOI
Lloyd S, Bradley AJ, Hall LS. Changes in progesterone and testosterone during the breeding season of the large-footed myotis Myotis molucarum (Microchiroptera: Vespertilionidae) Acta Chiropt. 2001;3:107–117.
Mason MK, Hockman D, Jacobs DS, Illing N. Evaluation of maternal features as indicators of asynchronous embryonic development in Miniopterus natalensis. Acta Chiropt. 2010;12:161–171. doi: 10.3161/150811010X504662. DOI
Morton DB, Abbot D, Barclay R, BS BSC, Ewbank R, Gask D, Heath M, Mattic S, Poole T, Seamer J. Removal of blood from laboratory mammals and birds. Lab Anim. 1993;27:1–22. doi: 10.1258/002367793781082412. PubMed DOI
Sluiter JW, van Heerdt PF. Seasonal habits of the noctule bat (Nyctalus noctula) Arch Netherland Zool. 1964;16:423–439.
Oxberry BA. Female reproductive patterns in hibernating bats. J Reprod Fert. 1979;56:359–367. doi: 10.1530/jrf.0.0560359. PubMed DOI
Norquay KJO, Willis CKR. Hibernation phenology of Myotis lucifugus. J Zool. 2014;294:85–92. doi: 10.1111/jzo.12155. DOI
Jonasson KA, Willis CKR. Changes in body condition of hibernating bats support the thrifty female hypothesis and predict consequences for populations with white-nose syndrome. PLoS One. 2011;6(6):e21061. doi: 10.1371/journal.pone.0021061. PubMed DOI PMC
Czenze ZJ, Jonasson KA, Willis CKR. Thrifty females, frisky males: winter energetics of hibernating bats from a cold climate. Phys Biochem Zool. 2017;90:502–511. doi: 10.1086/692623. PubMed DOI
Ransome RD, McOwat TP. Birth timing and population changes in greater horseshoe bat colonies (Rhinolophus ferrumequinum) are synchronized by climatic temperature. Zool J Linnean Soc. 1994;112:337–351. doi: 10.1111/j.1096-3642.1994.tb00324.x. DOI
McOwat TP, Andrews PT. The influence of climate on the growth rate of Rhinolophus ferrumequinum in West Wales. Myotis. 1995;32-33:69–79.
Czenze ZJ, Willis CKR. Warming up and shipping out: arousal and emergence timing in hibernating little brown bats (Myotis lucifugus) J Comp Physiol. 2015;185:575–586. doi: 10.1007/s00360-015-0900-1. PubMed DOI
Frick WF, Reynolds DS, Kunz TH. Influence of climate and reproductive timing on demography of little brown myotis (Myotis lucifugus) J Anim Ecol. 2010;79:128–136. doi: 10.1111/j.1365-2656.2009.01615.x. PubMed DOI
Hajkova P, Pikula J. Veterinary treatment of evening bats (Vespertilionidae) in the Czech Republic. Vet Rec. 2007;161:139–140. doi: 10.1136/vr.161.4.139. PubMed DOI
Kunz TH. Reproduction, growth, and mortality of the Vespertilionid bat, Eptesicus fuscus, in Kansas. J Mammal. 1974;55:1–13. doi: 10.2307/1379252. PubMed DOI
Ranilla MJ, Sulon J, Mantecón AR, Beckers JF, Carro MD. Plasma pregnancy-associated glycoprotein and progesterone concentrations in pregnant Assaf ewes carrying single and twin lambs. Small Ruminant Res. 1997;24:125–131. doi: 10.1016/S0921-4488(96)00922-4. DOI
Kalcounis MC, Brigham RM. Impact of predation risk on emergence by little brown bats, Myotis lucifugus (Chiroptera: Vespertilionidae), from a maternity colony. Ethology. 1994;98:201–209. doi: 10.1111/j.1439-0310.1994.tb01071.x. DOI
Racey PA. Diagnosis of pregnancy and experimental extension of gestation in the pipistrelle bat, Pipistrellus pipistrellus. J Reprod Fert. 1969;19:465–474. doi: 10.1530/jrf.0.0190465. PubMed DOI
Hood WR, Bloss J, Kunz TH. Intrinsic and extrinsic sources of variation in size at birth and rates of postnatal growth in the big brown bat Eptesicus fuscus (Chiroptera:Vespertilionidae) J Zool Lond. 2002;258:355–363. doi: 10.1017/S0952836902001504. DOI
Racey PA. The breeding, care and management of vespertilionid bats in laboratory. Lab Anim. 1970;4:171–183. doi: 10.1258/002367770781071635. PubMed DOI
Rasweiler JJ, Badwaik NK. Delayed development in the short-tailed fruit bat, Carollia perspicillata. Reproduction. 1997;109:7–20. doi: 10.1530/jrf.0.1090007. PubMed DOI
Kiltie RA. Intraspecific variation in the mammalian gestation period. J Mammal. 1982;63:646–652. doi: 10.2307/1380270. DOI
McAllan BM, Geiser F. Torpor during reproduction in mammals and birds: dealing with an energetic conundrum. Integr Comp Biol. 2014;54:516–532. doi: 10.1093/icb/icu093. PubMed DOI
Racey PA. Enviromental factors affecting the length of gestation in heterothermic bats. J Reprod Fert. 1973;19:175–189. PubMed
Lausen CL. Barclay RMR thermoregulation and roost selection by reproductive female big brown bats (Eptesicus fuscus) roosting in rock crevices. J Zool. 2003;260:235–244. doi: 10.1017/S0952836903003686. DOI
Dzal YA, Brigham RM. The tradeoff between torpor use and reproduction in little brown bats (Myotis lucifugus) J Comp Physiol B. 2012;183:279–288. doi: 10.1007/s00360-012-0705-4. PubMed DOI
Johnson JS, Lacki MJ. Summer heterothermy in Rafinesque’s big-eared bats (Corynorhinus rafinesquii) roosting in tree cavities in bottomland hardwood forests. J Comp Physiol B. 2013;183:709–721. doi: 10.1007/s00360-012-0728-x. PubMed DOI
Pikula J, Heger T, Bandouchova H, Kovacova V, Nemcova M, Papezikova I, Piacek V, Zajickova R, Zukal J. Phagocyte activity reflects mammalian homeo- and hetero-thermic physiological states. BMC Vet Res. 2020;16(1):232. doi: 10.1186/s12917-020-02450-z. PubMed DOI PMC