Theranostics Nanomedicine Applications for Colorectal Cancer and Metastasis: Recent Advances
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
37175627
PubMed Central
PMC10178331
DOI
10.3390/ijms24097922
PII: ijms24097922
Knihovny.cz E-zdroje
- Klíčová slova
- cancer therapy, clinical status, colorectal cancer, nanomedicine, theranostics,
- MeSH
- individualizovaná medicína MeSH
- kolorektální nádory * diagnóza farmakoterapie MeSH
- kovové nanočástice * MeSH
- lékové transportní systémy metody MeSH
- lidé MeSH
- nanočástice * terapeutické užití MeSH
- nanomedicína metody MeSH
- nanotrubičky uhlíkové * MeSH
- peritoneální nádory * MeSH
- teranostická nanomedicína MeSH
- zlato MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- nanotrubičky uhlíkové * MeSH
- zlato MeSH
Colorectal cancer (CRC) is the third most common cancer worldwide, and metastatic CRC is a fatal disease. The CRC-affected tissues show several molecular markers that could be used as a fresh strategy to create newer methods of treating the condition. The liver and the peritoneum are where metastasis occurs most frequently. Once the tumor has metastasized to the liver, peritoneal carcinomatosis is frequently regarded as the disease's final stage. However, nearly 50% of CRC patients with peritoneal carcinomatosis do not have liver metastases. New diagnostic and therapeutic approaches must be developed due to the disease's poor response to present treatment choices in advanced stages and the necessity of an accurate diagnosis in the early stages. Many unique and amazing nanomaterials with promise for both diagnosis and treatment may be found in nanotechnology. Numerous nanomaterials and nanoformulations, including carbon nanotubes, dendrimers, liposomes, silica nanoparticles, gold nanoparticles, metal-organic frameworks, core-shell polymeric nano-formulations, and nano-emulsion systems, among others, can be used for targeted anticancer drug delivery and diagnostic purposes in CRC. Theranostic approaches combined with nanomedicine have been proposed as a revolutionary approach to improve CRC detection and treatment. This review highlights recent studies, potential, and challenges for the development of nanoplatforms for the detection and treatment of CRC.
Zobrazit více v PubMed
Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI
Cardoso R., Guo F., Heisser T., Hackl M., Ihle P., De Schutter H., Van Damme N., Valerianova Z., Atanasov T., Májek O., et al. Colorectal cancer incidence, mortality, and stage distribution in European countries in the colorectal cancer screening era: An international population-based study. Lancet Oncol. 2021;22:1002–1013. doi: 10.1016/S1470-2045(21)00199-6. PubMed DOI
Veettil S.K., Wong T.Y., Pharm B., Loo Y.S., Pharm B., Playdon M.C., Lai N.M. Role of Diet in Colorectal Cancer Incidence Umbrella Review of Meta-analyses of Prospective Observational Studies. JAMA Netw. Open. 2021;4:e2037341. doi: 10.1001/jamanetworkopen.2020.37341. PubMed DOI PMC
Guo Y., Wang M., Zou Y., Jin L., Zhao Z., Liu Q., Wang S., Li J. Mechanisms of chemotherapeutic resistance and the application of targeted nanoparticles for enhanced chemotherapy in colorectal cancer. J. Nanobiotechnol. 2022;20:e2037341. doi: 10.1186/s12951-022-01586-4. PubMed DOI PMC
Shaukat A., Kaltenbach T., Dominitz J.A., Robertson D.J., Anderson J.C., Cruise M., Burke C.A., Gupta S., Lieberman D., Syngal S., et al. Endoscopic Recognition and Management Strategies for Malignant Colorectal Polyps: Recommendations of the US Multi-Society Task Force on Colorectal Cancer. Am. J. Gastroenterol. 2020;115:1751–1767. doi: 10.14309/ajg.0000000000001013. PubMed DOI
John M., Chyke A. DoubeniCauses of Socioeconomic Disparities in Colorectal Cancer and Intervention Framework and Strategies. Gastroenterology. 2021;158:354–367. doi: 10.1053/j.gastro.2019.10.029. PubMed DOI PMC
Silveira M.J., Castro F., Oliveira M.J. Biomaterials Science cancer treatment: A landscape to be explored? Biomater. Sci. 2021;9:3228–3243. doi: 10.1039/D1BM00137J. PubMed DOI
Barani M., Bilal M., Rahdar A., Arshad R., Kumar A., Hamishekar H., Kyzas G.Z. Nanodiagnosis and nanotreatment of colorectal cancer: An overview. J. Nanopart. Res. 2021;23:18. doi: 10.1007/s11051-020-05129-6. DOI
Martin J., Petrillo A., Smyth E.C., Shaida N., Khwaja S., Cheow H.K., Heister P., Praseedom R., Jah A., Balakrishnan A., et al. Colorectal liver metastases: Current management and future perspectives. World J. Clin. Oncol. 2020;11:761. doi: 10.5306/wjco.v11.i10.761. PubMed DOI PMC
Valderrama-treviño A.I., Valderrama-treviño A.I., Barrera-mera B., Ceballos-villalva J.C., Montalvo-javé E.E. Hepatic Metastasis from Colorectal Cancer. Euroasian J. Hepato Gastroenterol. 2017;7:166–175. doi: 10.5005/jp-journals-10018-1241. PubMed DOI PMC
Zhou H., Liu Z., Wang Y., Wen X., Amador E.H., Yuan L., Ran X., Xiong L., Ran Y., Chen W., et al. Colorectal liver metastasis: Molecular mechanism and interventional therapy. Signal Transduct. Target. Ther. 2022;7:70. doi: 10.1038/s41392-022-00922-2. PubMed DOI PMC
Takahashi H., Berber E. Role of thermal ablation in the management of colorectal liver metastasis. Hepato Biliary Surg. Nutr. 2020;9:49–58. doi: 10.21037/hbsn.2019.06.08. PubMed DOI PMC
Zhao W., Jin L., Chen P., Li D., Gao W., Dong G. Colorectal cancer immunotherapy-Recent progress and future directions. Cancer Lett. 2022;545:215816. doi: 10.1016/j.canlet.2022.215816. PubMed DOI
Mao Q., Min J., Zeng R., Liu H., Li H., Zhang C., Zheng A., Lin J., Liu X., Wu M. Self-assembled traditional Chinese nanomedicine modulating tumor immunosuppressive microenvironment for colorectal cancer immunotherapy. Theranostics. 2022;12:6088–6105. doi: 10.7150/thno.72509. PubMed DOI PMC
Chen Q., Liu C., Liu C., Zhong D., Hua S., He J., Wang K., Zhou M. Wrapping Porphyromonas gingivalis for tumor microenvironment immunomodulation and photothermal immunotherapy. Nano Today. 2021;41:101311. doi: 10.1016/j.nantod.2021.101311. DOI
Hu X., Hou B., Xu Z., Saeed M., Sun F., Gao Z., Lai Y., Zhu T., Zhang F., Zhang W., et al. Supramolecular Prodrug Nanovectors for Active Tumor Targeting and Combination Immunotherapy of Colorectal Cancer. Adv. Sci. 2020;7:1903332. doi: 10.1002/advs.201903332. PubMed DOI PMC
Ding D., Zhong H., Liang R., Lan T., Zhu X., Huang S., Wang Y., Shao J., Shuai X., Wei B. Multifunctional Nanodrug Mediates Synergistic Photodynamic Therapy and MDSCs-Targeting Immunotherapy of Colon Cancer. Adv. Sci. 2021;8:2100712. doi: 10.1002/advs.202100712. PubMed DOI PMC
Li M., Yang J., Yao X., Li X., Xu Z., Tang S., Sun B., Lin S., Yang C., Liu J. Multifunctional Mesoporous Silica-Coated Gold Nanorods Mediate Mild Photothermal Heating-Enhanced Gene/Immunotherapy for Colorectal Cancer. Pharmaceutics. 2023;15:854. doi: 10.3390/pharmaceutics15030854. PubMed DOI PMC
Chen W., Jiang M., Yu W., Xu Z., Liu X., Jia Q., Guan X., Zhang W. CpG-Based Nanovaccines for Cancer Immunotherapy. Int. J. Nanomed. 2021;16:5281–5299. doi: 10.2147/IJN.S317626. PubMed DOI PMC
Zhou Y., Quan G., Wu Q., Zhang X., Niu B., Wu B., Huang Y., Pan X., Wu C. Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharm. Sin. B. 2018;8:165–177. doi: 10.1016/j.apsb.2018.01.007. PubMed DOI PMC
Zhang H., Li M., Kaboli P.J., Ji H., Du F., Wu X., Zhao Y., Shen J., Wan L., Yi T., et al. Identification of cluster of differentiation molecule-associated microRNAs as potential therapeutic targets for gastrointestinal cancer immunotherapy. Int. J. Biol. Mrk. 2021;36:22–32. doi: 10.1177/17246008211005473. PubMed DOI
Carvalho M.R., Carvalho C.R., Maia F.R., Caballero D., Kundu S.C., Reis R.L., Oliveira J.M. Peptide-Modified Dendrimer Nanoparticles for Targeted Therapy of Colorectal Cancer. Adv. Ther. 2019;2:1900132. doi: 10.1002/adtp.201900132. DOI
Briolay T., Petithomme T., Fouet M., Nguyen-Pham N., Blanquart C., Boisgerault N. Delivery of cancer therapies by synthetic and bio-inspired nanovectors. Mol. Cancer. 2021;20:55. doi: 10.1186/s12943-021-01346-2. PubMed DOI PMC
Palzer J., Eckstein L., Slabu I., Reisen O., Neumann U.P., Roeth A.A. Iron oxide nanoparticle-based hyperthermia as a treatment option in various gastrointestinal malignancies. Nanomaterials. 2021;11:3013. doi: 10.3390/nano11113013. PubMed DOI PMC
Suciu M., Ionescu C.M., Ciorita A., Tripon S.C., Nica D., Al-Salami H., Barbu-Tudoran L. Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements. Beilstein J. Nanotechnol. 2020;11:1092–1109. doi: 10.3762/bjnano.11.94. PubMed DOI PMC
Dabaghi M., Rasa S.M.M., Cirri E., Ori A., Neri F., Quaas R., Hilger I. Iron oxide nanoparticles carrying 5-fluorouracil in combination with magnetic hyperthermia induce thrombogenic collagen fibers, cellular stress, and immune responses in heterotopic human colon cancer in mice. Pharmaceutics. 2021;13:1625. doi: 10.3390/pharmaceutics13101625. PubMed DOI PMC
Alkahtane A.A., Alghamdi H.A., Aljasham A.T., Alkahtani S. A possible theranostic approach of chitosan-coated iron oxide nanoparticles against human colorectal carcinoma (HCT-116) cell line. Saudi J. Biol. Sci. 2022;29:154–160. doi: 10.1016/j.sjbs.2021.08.078. PubMed DOI PMC
Gil H.M., Price T.W., Chelani K., Bouillard J.S.G., Calaminus S.D.J., Stasiuk G.J. NIR-quantum dots in biomedical imaging and their future. iScience. 2021;24:102189. doi: 10.1016/j.isci.2021.102189. PubMed DOI PMC
Molaei M.J. Carbon quantum dots and their biomedical and therapeutic applications: A review. RSC Adv. 2019;9:6460–6481. doi: 10.1039/C8RA08088G. PubMed DOI PMC
Lidke D.S., Lidke K.A., Rieger B., Jovin T.M., Arndt-Jovin D.J. Reaching out for signals: Filopodia sense EGF and respond by directed retrograde transport of activated receptors. J. Cell Biol. 2005;170:619–626. doi: 10.1083/jcb.200503140. PubMed DOI PMC
Jaiswal J.K., Mattoussi H., Mauro J.M., Simon S.M. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 2003;21:47–51. doi: 10.1038/nbt767. PubMed DOI
Carbary-Ganz J.L., Welge W.A., Barton J.K., Utzinger U. In vivo molecular imaging of colorectal cancer using quantum dots targeted to vascular endothelial growth factor receptor 2 and optical coherence tomography/laser-induced fluorescence dual-modality imaging. J. Biomed. Opt. 2015;20:96015. doi: 10.1117/1.JBO.20.9.096015. PubMed DOI PMC
Ailuno G., Balboni A., Caviglioli G., Lai F., Barbieri F., Dellacasagrande I., Florio T., Baldassari S. Boron Vehiculating Nanosystems for Neutron Capture Therapy in Cancer Treatment. Cells. 2022;11:4029. doi: 10.3390/cells11244029. PubMed DOI PMC
Kozien D., Szermer-Olearnik B., Rapak A., Szczygieł A., Anger-Góra N., Boratynski J., Pajtasz-Piasecka E., Bucko M.M., Pedzich Z. Boron-Rich Boron Carbide Nanoparticles as a Carrier in Boron Neutron Capture Therapy: Their Influence on Tumor and Immune Phagocytic Cells. Materials. 2021;14:3010. doi: 10.3390/ma14113010. PubMed DOI PMC
Lee P.W., Pokorski J.K. Poly(lactic-co-glycolic acid) devices: Production and applications for sustained protein delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2018;10:e1516. doi: 10.1002/wnan.1516. PubMed DOI PMC
Emami F., Yazdi S.J., Na D.H. Poly(lactic acid)/poly(lactic-co-glycolic acid) particulate carriers for pulmonary drug delivery. J. Pharm. Investig. 2019;49:427–442. doi: 10.1007/s40005-019-00443-1. DOI
Rezvantalab S., Drude N.I., Moraveji M.K., Güvener N., Koons E.K., Shi Y., Lammers T., Kiessling F. PLGA-based nanoparticles in cancer treatment. Front. Pharmacol. 2018;9:1260. doi: 10.3389/fphar.2018.01260. PubMed DOI PMC
Jain A.K., Swarnakar N.K., Godugu C., Singh R.P., Jain S. The effect of the oral administration of polymeric nanoparticles on the efficacy and toxicity of tamoxifen. Biomaterials. 2011;32:503–515. doi: 10.1016/j.biomaterials.2010.09.037. PubMed DOI
Al-Jamal K.T., Bai J., Wang J.T.W., Protti A., Southern P., Bogart L., Heidari H., Li X., Cakebread A., Asker D., et al. Magnetic Drug Targeting: Preclinical in Vivo Studies, Mathematical Modeling, and Extrapolation to Humans. Nano Lett. 2016;16:5652–5660. doi: 10.1021/acs.nanolett.6b02261. PubMed DOI
Eynali S., Khoei S., Khoee S., Esmaelbeygi E. Evaluation of the cytotoxic effects of hyperthermia and 5-fluorouracil-loaded magnetic nanoparticles on human colon cancer cell line HT-29. Int. J. Hyperth. 2017;33:327–335. doi: 10.1080/02656736.2016.1243260. PubMed DOI
Wu P., Zhou Q., Zhu H., Zhuang Y., Bao J. Enhanced antitumor efficacy in colon cancer using EGF functionalized PLGA nanoparticles loaded with 5-Fluorouracil and perfluorocarbon. BMC Cancer. 2020;20:354. doi: 10.1186/s12885-020-06803-7. PubMed DOI PMC
Yang M., Zhang F., Yang C., Wang L., Sung J., Garg P., Zhang M., Merlin D. Oral targeted delivery by nanoparticles enhances efficacy of an Hsp90 inhibitor by reducing systemic exposure in murine models of colitis and colitis-associated cancer. J. Crohn’s Colitis. 2020;14:130–141. doi: 10.1093/ecco-jcc/jjz113. PubMed DOI
Handali S., Moghimipour E., Rezaei M., Ramezani Z., Dorkoosh F.A. PHBV/PLGA nanoparticles for enhanced delivery of 5-fluorouracil as promising treatment of colon cancer. Pharm. Dev. Technol. 2020;25:206–218. doi: 10.1080/10837450.2019.1684945. PubMed DOI
Li J., Yu F., Chen Y., Oupický D. Polymeric drugs: Advances in the development of pharmacologically active polymers. J. Control. Release. 2015;219:369–382. doi: 10.1016/j.jconrel.2015.09.043. PubMed DOI PMC
Li T., Smet M., Dehaen W., Xu H. Selenium—Platinum Coordination Dendrimers with Controlled Anti-Cancer Activity. ACS Appl. Mater. Interfaces. 2016;8:3609–3614. doi: 10.1021/acsami.5b07877. PubMed DOI
Yan W., Tao M., Jiang B., Yao M., Jun Y., Dai W., Tang Z., Gao Y., Zhang L., Chen X., et al. Overcoming Drug Resistance in Colon Cancer by Aptamer-Mediated Targeted Co-Delivery of Drug and siRNA Using Grapefruit-Derived Nanovectors. Cell. Physiol. Biochem. 2018;223300:79–91. doi: 10.1159/000493960. PubMed DOI
Xie J., Wang J., Chen H., Shen W., Sinko P.J., Dong H., Zhao R., Lu Y., Zhu Y., Jia L. Multivalent Conjugation of Antibody to Dendrimers for the Enhanced Capture and Regulation on Colon Cancer Cells. Sci. Rep. 2015;5:srep09445. doi: 10.1038/srep09445. PubMed DOI PMC
Nabavizadeh F., Fanaei H., Imani A., Vahedian J., Amoli F.A., Ghorbi J., Sohanaki H., Mohammadi S.M., Golchoobian R. Evaluation of Nanocarrier Targeted Drug Delivery of Capecitabine-PAMAM Dendrimer Complex in a Mice Colorectal Cancer Model. Acta MEDICA Iran. 2016:54. PubMed
Alibolandi M., Hoseini F., Mohammadi M., Ramezani P., Einafshar E., Taghdisi S.M., Ramezani M., Abnous K. Curcumin-entrapped MUC-1 aptamer targeted dendrimer-gold hybrid nanostructure as a theranostic system for colon adenocarcinoma. Int. J. Pharm. 2018;549:67–75. doi: 10.1016/j.ijpharm.2018.07.052. PubMed DOI
Alibolandi M., Taghdisi S.M., Ramezani P., Hosseini Shamili F., Farzad S.A., Abnous K., Ramezani M. Smart AS1411-aptamer conjugated pegylated PAMAM dendrimer for the superior delivery of camptothecin to colon adenocarcinoma in vitro and in vivo. Int. J. Pharm. 2017;519:352–364. doi: 10.1016/j.ijpharm.2017.01.044. PubMed DOI
England R.M., Hare J.I., Barnes J., Wilson J., Smith A., Strittmatter N., Kemmitt P.D., Waring M.J., Barry S.T., Alexander C., et al. Tumour regression and improved gastrointestinal tolerability from controlled release of SN-38 from novel polyoxazoline-modified dendrimers. J. Control. Release. 2017;247:73–85. doi: 10.1016/j.jconrel.2016.12.034. PubMed DOI
Narmani A., Kamali M., Amini B., Salimi A., Panahi Y. Targeting delivery of oxaliplatin with smart PEG-modified PAMAM G4 to colorectal cell line: In vitro studies. Process. Biochem. 2018;69:178–187. doi: 10.1016/j.procbio.2018.01.014. DOI
Liu X., Ying Y., Ping J. Biosensors and bioelectronics structure, synthesis, and sensing applications of single-walled carbon nanohorns. Biosens. Bioelectron. 2020;167:112495. doi: 10.1016/j.bios.2020.112495. PubMed DOI
Jin H., Gao S., Song D., Liu Y., Chen X. Intratumorally CpG immunotherapy with carbon nanotubes inhibits local tumor growth and liver metastasis by suppressing the epithelial–mesenchymal transition of colon cancer cells. Anti Cancer Drugs. 2020;32:278–285. doi: 10.1097/CAD.0000000000001000. PubMed DOI PMC
Lee P.-C., Chiou Y.-C., Wong J.-M., Peng C.-L., Shieh M.-J. Targeting colorectal cancer cells with single-walled carbon nanotubes conjugated to anticancer agent SN-38 and EGFR antibody. Biomaterials. 2013;34:8756–8765. doi: 10.1016/j.biomaterials.2013.07.067. PubMed DOI
González-Domínguez J., Grasa L., Frontiñán-Rubio J., Abás E., Domínguez-Alfaro A., Mesonero J., Criado A., Ansón-Casaos A. Intrinsic and selective activity of functionalized carbon nanotube/nanocellulose platforms against colon cancer cells. Colloids Surf. B Biointerfaces. 2022;212:112363. doi: 10.1016/j.colsurfb.2022.112363. PubMed DOI
Sciences M. Effective Photodynamic Therapy for Colon Cancer Cells Using Chlorin e6 Coated Hyaluronic Acid-Based Carbon Nanotubes. Int. J. Mol. Sci. 2020;21:4745. PubMed PMC
Silva R., Ferreira H., Cavaco-Paulo A. Sonoproduction of Liposomes and Protein Particles as Templates for Delivery Purposes. Biomacromolecules. 2011;12:3353–3368. doi: 10.1021/bm200658b. PubMed DOI
Patil Y.P., Jadhav S. Novel methods for liposome preparation. Chem. Phys. Lipids. 2014;177:8–18. doi: 10.1016/j.chemphyslip.2013.10.011. PubMed DOI
Noble G.T., Stefanick J.F., Ashley J.D., Kiziltepe T., Bilgicer B. Ligand-targeted liposome design: Challenges and fundamental considerations. Trends Biotechnol. 2014;32:32–45. doi: 10.1016/j.tibtech.2013.09.007. PubMed DOI
Allen T.M., Cullis P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013;65:36–48. doi: 10.1016/j.addr.2012.09.037. PubMed DOI
Maruyama K., Ishida O., Kasaoka S., Takizawa T., Utoguchi N., Shinohara A., Chiba M., Kobayashi H., Eriguchi M., Yanagie H. Intracellular targeting of sodium mercaptoundecahydrododecaborate (BSH) to solid tumors by transferrin-PEG liposomes, for boron neutron-capture therapy (BNCT) J. Control. Release. 2004;98:195–207. doi: 10.1016/j.jconrel.2004.04.018. PubMed DOI
Siddique S., Chow J.C.L. applied sciences Gold Nanoparticles for Drug Delivery and Cancer Therapy. Appl. Sci. 2020;10:3824. doi: 10.3390/app10113824. DOI
Zhao X., Pan J., Li W., Yang W., Qin L., Pan Y. Gold nanoparticles enhance cisplatin delivery and potentiate chemotherapy by decompressing colorectal cancer vessels. Int. J. Nanomed. 2018;13:6207–6221. doi: 10.2147/IJN.S176928. PubMed DOI PMC
Pissuwan D., Gazzana C., Mongkolsuk S., Cortie M.B. Single and multiple detections of foodborne pathogens by gold nanoparticle assays. WIREs Nanomed. Nanobiotechnology. 2019;12:e1584. doi: 10.1002/wnan.1584. PubMed DOI
Ganta S., Talekar M., Singh A., Coleman T.P., Amiji M.M. Nanoemulsions in Translational Research—Opportunities and Challenges in Targeted Cancer Therapy. AAPS PharmSciTech. 2014;15:694–708. doi: 10.1208/s12249-014-0088-9. PubMed DOI PMC
Sánchez-López E., Guerra M., Dias-Ferreira J., Lopez-Machado A., Ettcheto M., Cano A., Espina M., Camins A., Garcia M.L., Souto E.B. Current Applications of Nanoemulsions in Cancer Therapeutics. Nanomaterials. 2019;9:821. doi: 10.3390/nano9060821. PubMed DOI PMC
Brar B., Ranjan K., Palria A., Kumar R., Ghosh M., Sihag S., Minakshi P. Nanotechnology in Colorectal Cancer for Precision Diagnosis and Therapy. Front. Nanotechnol. 2021;3:699266. doi: 10.3389/fnano.2021.699266. DOI
Jong W.H. De Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomed. 2008;3:133–149. doi: 10.2147/IJN.S596. PubMed DOI PMC
Swetledge S., Jung J.P., Carter R., Sabliov C. Distribution of polymeric nanoparticles in the eye: Implications in ocular disease therapy. J. Nanobiotechnol. 2021;19:10. doi: 10.1186/s12951-020-00745-9. PubMed DOI PMC
Verma P., Srivastava A., Srikanth C.V., Bajaj A. Nanoparticle-mediated gene therapy strategies for mitigating inflammatory bowel disease. Biomater. Sci. 2020;9:1481–1502. doi: 10.1039/D0BM01359E. PubMed DOI
Thurner G.C., Haybaeck J., Debbage P. Targeting Drug Delivery in the Elderly: Are Nanoparticles an Option for Treating Osteoporosis? Int. J. Mol. Sci. 2021;22:8932. doi: 10.3390/ijms22168932. PubMed DOI PMC
Kulkarni P.V., Roney C.A., Antich P.P., Bonte F.J., Raghu A. Quinoline-n-butylcyanoacrylate-based nanoparticles for brain targeting for the diagnosis of Alzheimer’s disease. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010;2:35–47. doi: 10.1002/wnan.59. PubMed DOI
Alkaff S.A., Radhakrishnan K., Nedumaran A.M., Liao P., Czarny B. Nanocarriers for Stroke Therapy: Advances and Obstacles in Translating Animal Studies. Int. J. Nanomed. 2020;15:445–464. doi: 10.2147/IJN.S231853. PubMed DOI PMC
Taurin S., Nehoff H., Greish K. Anticancer nanomedicine and tumor vascular permeability; Where is the missing link? J. Control Release. 2012;164:265–275. doi: 10.1016/j.jconrel.2012.07.013. PubMed DOI
Chen Y., Ye J., Lv G., Liu W., Jiang H., Liu X., Wang X. Hydrogen Peroxide and Hypochlorite Responsive Fluorescent Nanoprobes for Sensitive Cancer Cell Imaging. Biosensors. 2022;12:111. doi: 10.3390/bios12020111. PubMed DOI PMC
Wang J., Li Y., Nie G. Multifunctional biomolecule nanostructures for cancer therapy. Nat. Rev. Mater. 2021;6:766–783. doi: 10.1038/s41578-021-00315-x. PubMed DOI PMC
Mundekkad D., Sciences M. Nanoparticles in Clinical Translation for Cancer Therapy. Int. J. Mol. Sci. 2022;23:1685. doi: 10.3390/ijms23031685. PubMed DOI PMC
Baek S., Singh R.K., Khanal D., Patel K.D., Lee E.-J., Leong K.W., Chrzanowski W., Kim H.-W. Smart multifunctional drug delivery towards anticancer therapy harmonized in mesoporous nanoparticles. Nanoscale. 2015;7:14191–14216. doi: 10.1039/C5NR02730F. PubMed DOI
Govindarasu M., Abirami P., Alharthi S.S., Thiruvengadam M., Rajakumar G., Vaiyapuri M. Synthesis, physicochemical characterization, and in vitro evaluation of biodegradable PLGA nanoparticles entrapped to folic acid for targeted delivery of kaempferitrin. Biotechnol. Appl. Biochem. 2022;69:2387–2398. doi: 10.1002/bab.2290. PubMed DOI
Sun T., Zhang Y.S., Pang B., Hyun D.C., Yang M., Xia Y. Engineered Nanoparticles for Drug Delivery in Cancer Therapy. Angew. Chem. Int. Ed. 2014;53:12320–12364. doi: 10.1002/anie.201403036. PubMed DOI
Oliveira A.L., Fernandes R., Ara D., Chan A.B., Schomann T., Tamburini F. Effect of oxaliplatin-loaded poly (d, l-Lactide-co-Glycolic Acid)(PLGA) nanoparticles combined with retinoic acid and cholesterol on apoptosis, drug resistance, and metastasis factors of colorectal cancer. Pharmaceutics. 2020;12:193. doi: 10.3390/pharmaceutics12020193. PubMed DOI PMC
Toudeshkchouei M.G., Zahedi P., Shavandi A. Microfluidic-Assisted Preparation of 5-Fluorouracil-Loaded PLGA Nanoparticles as a Potential System for Colorectal Cancer Therapy. Materials. 2020;13:1483. doi: 10.3390/ma13071483. PubMed DOI PMC
Xiao B., Si X., Han M.K., Viennois E., Zhang M., Merlin D., State G., Affairs V. Co-delivery of camptothecin and curcumin by cationic polymeric nanoparticles for synergistic colon cancer combination chemotherapy. J. Mater. Chem. B Mater. Biol. Med. 2015;3:7724–7733. doi: 10.1039/C5TB01245G. PubMed DOI PMC
Li L., Yang J., Wang W.-W., Yao Y.-C., Fang S.-H., Dai Z.-Y., Hong H.-H., Yang X., Shuai X.-T., Gao G.-Q. Pigment epithelium-derived factor gene loaded in cRGD–PEG–PEI suppresses colorectal cancer growth by targeting endothelial cells. Int. J. Pharm. 2012;438:1–10. doi: 10.1016/j.ijpharm.2012.08.043. PubMed DOI
Shi G., Li J., Yan X., Jin K., Li W., Liu X., Zhao J., Shang W., Zhang R. Low-density lipoprotein-decorated and Adriamycin-loaded silica nanoparticles for tumor-targeted chemotherapy of colorectal cancer. Adv. Clin. Exp. Med. 2018;28:479–487. doi: 10.17219/acem/79561. PubMed DOI
Liang G., Zhu Y., Jing A., Wang J., Hu F., Feng W., Xiao Z., Chen B. Cationic microRNA-delivering nanocarriers for efficient treatment of colon carcinoma in xenograft model. Gene Ther. 2016;23:829–838. doi: 10.1038/gt.2016.60. PubMed DOI
Javan B., Atyabi F., Shahbazi M. Hypoxia-inducible bidirectional shRNA expression vector delivery using PEI/chitosan-TBA copolymers for colorectal Cancer gene therapy. Life Sci. 2018;202:140–151. doi: 10.1016/j.lfs.2018.04.011. PubMed DOI
Zhu Y., Chen F. pH-Responsive Drug-Delivery Systems. Chem. Asian J. 2015;10:284–305. doi: 10.1002/asia.201402715. PubMed DOI
Sani N.S., Onsori H., Akrami S., Rahmati M. A Comparison of the Anti-Cancer Effects of Free and PLGA-PAA Encapsulated Hydroxytyrosol on the HT-29 Colorectal Cancer Cell Line. Anti-Cancer Agents Med. Chem. 2022;22:390–394. doi: 10.2174/1871520621666210308095712. PubMed DOI
Zhang X., Zhao M., Cao N., Qin W., Zhao M., Wu J., Lin D. Construction of a tumor microenvironment pH-responsive cleavable PEGylated hyaluronic acid nano-drug delivery system for colorectal cancer treatment. Biomater. Sci. 2020;8:1885–1896. doi: 10.1039/C9BM01927H. PubMed DOI
Xiong Y., Xiao C., Li Z., Yang X. Engineering nanomedicine for glutathione depletion-augmented cancer therapy. Chem. Soc. Rev. 2021;50:6013–6041. doi: 10.1039/D0CS00718H. PubMed DOI
Jiang X.-J., Lau J.T.F., Wang Q., Ng D.K.P., Lo P.-C. pH- and Thiol-Responsive BODIPY-Based Photosensitizers for Targeted Photodynamic Therapy. Chem. A Eur. J. 2016;22:8273–8281. doi: 10.1002/chem.201600452. PubMed DOI
Brunato S., Mastrotto F., Bellato F., Bastiancich C., Travanut A., Garofalo M., Mantovani G., Alexander C., Preat V., Salmaso S., et al. PEG-polyaminoacid based micelles for controlled release of doxorubicin: Rational design, safety and efficacy study. J. Control. Release. 2021;335:21–37. doi: 10.1016/j.jconrel.2021.05.010. PubMed DOI
Tasdogan A., Ubellacker J.M., Morrison S.J. Redox Regulation in Cancer Cells during Metastasis. Cancer Discov. 2021;11:2682–2692. doi: 10.1158/2159-8290.CD-21-0558. PubMed DOI PMC
Li D., Zhang R., Liu G., Kang Y., Wu J. Redox-Responsive Self-Assembled Nanoparticles for Cancer Therapy. Adv. Healthc. Mater. 2020;9:2000605. doi: 10.1002/adhm.202000605. PubMed DOI
Sauraj, Kumar A., Kumar B., Kulshreshtha A., Negi Y.S. Redox-sensitive nanoparticles based on xylan-lipoic acid conjugate for tumor targeted drug delivery of niclosamide in cancer therapy. Carbohydr. Res. 2020;499:108222. doi: 10.1016/j.carres.2020.108222. PubMed DOI
Wang J., Sun X., Mao W., Sun W., Tang J., Sui M., Shen Y., Gu Z. Tumor Redox Heterogeneity-Responsive Prodrug Nanocapsules for Cancer Chemotherapy. Adv. Mater. 2013;25:3670–3676. doi: 10.1002/adma.201300929. PubMed DOI
Lee H.L., Hwang S.C., Nah J.W., Kim J., Cha B., Kang D.H., Jeong Y.-I. Redox- and pH-Responsive Nanoparticles Release Piperlongumine in a Stimuli-Sensitive Manner to Inhibit Pulmonary Metastasis of Colorectal Carcinoma Cells. J. Pharm. Sci. 2018;107:2702–2712. doi: 10.1016/j.xphs.2018.06.011. PubMed DOI
Durán-Lobato M., Álvarez-Fuentes J., Fernández-Arévalo M., Martín-Banderas L. Receptor-targeted nanoparticles modulate cannabinoid anticancer activity through delayed cell internalization. Sci. Rep. 2022;12:1297. doi: 10.1038/s41598-022-05301-z. PubMed DOI PMC
Lee Y., Geckeler K.E. Cellular Interactions of a Water-Soluble Supramolecular Polymer Complex of Carbon Nanotubes with Human Epithelial Colorectal Adenocarcinoma Cells. Macromol. Biosci. 2012;12:1060–1067. doi: 10.1002/mabi.201200085. PubMed DOI
Lima S.A.C., Gaspar A., Reis S., Durães L. Multifunctional nanospheres for co-delivery of methotrexate and mild hyperthermia to colon cancer cells. Mater. Sci. Eng. C. 2017;75:1420–1426. doi: 10.1016/j.msec.2017.03.049. PubMed DOI
Yang C.-C., Yang S.-Y., Ho C.-S., Chang J.-F., Liu B.-H., Huang K.-W. Development of antibody functionalized magnetic nanoparticles for the immunoassay of carcinoembryonic antigen: A feasibility study for clinical use. J. Nanobiotechnol. 2014;12:44. doi: 10.1186/s12951-014-0044-6. PubMed DOI PMC
Chuah L.H., Roberts C., Billa N., Abdullah S., Rosli R., Manickam S. Using Nanoparticle Tracking Analysis (NTA) to Decipher Mucoadhesion Propensity of Curcumin-Containing Chitosan Nanoparticles and Curcumin Release. J. Dispers. Sci. Technol. 2014;35:1201–1207. doi: 10.1080/01932691.2013.800458. DOI
Maksimenko A., Alami M., Zouhiri F., Brion J., Pruvost A., Mougin J., Hamze A., Boissenot T., Provot O., Desmae D. Therapeutic modalities of squalenoyl nanocomposites in colon cancer: An ongoing search for improved efficacy. ACS Nano. 2018;8:2018–2032. doi: 10.1021/nn500517a. PubMed DOI PMC
Xie J., Gao Y., Zhao R., Sinko P.J., Gu S., Wang J., Li Y., Lu Y., Yu S., Wang L., et al. Ex vivo and in vivo capture and deactivation of circulating tumor cells by dual-antibody-coated nanomaterials. J. Control. Release. 2015;209:159–169. doi: 10.1016/j.jconrel.2015.04.036. PubMed DOI
Singhana B. Targeted Gold Nanoshells. Woodhead Publishing Limited; Sawston, UK: 2015.
Anitha A., Maya S., Sivaram A.J., Mony U., Jayakumar R. Combinatorial nanomedicines for colon cancer therapy. WIREs Nanomed. Nanobiotechnol. 2016;8:151–159. doi: 10.1002/wnan.1353. PubMed DOI
Chibaudel B., Maindrault-Gœbel F., Bachet J., Louvet C., Khalil A., Dupuis O., Hammel P., Garcia M., Bennamoun M., Brusquant D., et al. PEPCOL: A GERCOR randomized phase II study of nanoliposomal irinotecan PEP 02 (MM-398) or irinotecan with leucovorin/5-fluorouracil as second-line therapy in metastatic colorectal cancer. Cancer Med. 2016;5:676–683. doi: 10.1002/cam4.635. PubMed DOI PMC
Pangeni R., Choi S.W., Jeon O.-C., Byun Y., Park J.W. Multiple nanoemulsion system for an oral combinational delivery of oxaliplatin and 5-fluorouracil: Preparation and in vivo evaluation. Int. J. Nanomed. 2016;11:6379–6399. doi: 10.2147/IJN.S121114. PubMed DOI PMC
Hosseinifar T., Sheybani S., Abdouss M., Najafabadi S.A.H., Ardestani M.S. Pressure responsive nanogel base on Alginate-Cyclodextrin with enhanced apoptosis mechanism for colon cancer delivery. J. Biomed. Mater. Res. Part A. 2018;106:349–359. doi: 10.1002/jbm.a.36242. PubMed DOI
Zheng Y., You X., Guan S., Huang J., Wang L., Zhang J., Wu J. Poly(Ferulic Acid) with an Anticancer Effect as a Drug Nanocarrier for Enhanced Colon Cancer Therapy. Adv. Funct. Mater. 2019;29:1808646. doi: 10.1002/adfm.201808646. DOI
Wu C., Zhang Y., Yang D., Zhang J., Ma J., Cheng D., Chen J., Deng L. Novel SN38 derivative-based liposome as anticancer prodrug: An in vitro and in vivo study. Int. J. Nanomed. 2019;14:75–85. doi: 10.2147/IJN.S187906. PubMed DOI PMC
Canton A.S., Broek N.V.D., Danelon C. Development of a lipid-based delivery system for the chemotherapeutic compound SN-38. bioRxiv. 2019:792317. doi: 10.1101/792317. DOI
Guo J., Yu Z., Das M., Huang L. Nano Codelivery of Oxaliplatin and Folinic Acid Achieves Synergistic Chemo-Immunotherapy with 5-Fluorouracil for Colorectal Cancer and Liver Metastasis. ACS Nano. 2020;14:5075–5089. doi: 10.1021/acsnano.0c01676. PubMed DOI
Li S., Wang A., Jiang W., Guan Z. Pharmacokinetic characteristics and anticancer effects of 5-Fluorouracil loaded nanoparticles. BMC Cancer. 2008;8:103. doi: 10.1186/1471-2407-8-103. PubMed DOI PMC
Urbanska A.M., Karagiannis E.D., Guajardo G., Langer R.S., Anderson D.G. Therapeutic effect of orally administered microencapsulated oxaliplatin for colorectal cancer. Biomaterials. NIH Public Access. 2013;33:4752–4761. doi: 10.1016/j.biomaterials.2012.03.023.Therapeutic. PubMed DOI PMC
Blanco E., Hsiao A., Mann A.P., Landry M.G., Meric-Bernstam F., Ferrari M. Nanomedicine in cancer therapy: Innovative trends and prospects. Cancer Sci. 2011;102:1247–1252. doi: 10.1111/j.1349-7006.2011.01941.x. PubMed DOI PMC
Cevenini A., Celia C., Orrù S., Sarnataro D., Raia M., Mollo V., Locatelli M., Imperlini E., Peluso N., Peltrini R., et al. Liposome-Embedding Silicon Microparticle for Oxaliplatin Delivery in Tumor Chemotherapy. Pharmaceutics. 2020;12:559. doi: 10.3390/pharmaceutics12060559. PubMed DOI PMC
Han W., Xie B., Li Y., Shi L., Wan J., Chen X., Wang H. Orally Deliverable Nanotherapeutics for the Synergistic Treatment of Colitis-Associated Colorectal Cancer. Theranostics. 2019;9:7458–7473. doi: 10.7150/thno.38081. PubMed DOI PMC
Venkatesan P., Puvvada N., Dash R., Kumar B.P., Sarkar D., Azab B., Pathak A., Kundu S.C., Fisher P.B., Mandal M. The potential of celecoxib-loaded hydroxyapatite-chitosan nanocomposite for the treatment of colon cancer. Biomaterials. 2011;32:3794–3806. doi: 10.1016/j.biomaterials.2011.01.027. PubMed DOI
Tran P.H., Wang T., Yin W., Tran T.T., Nguyen T.N., Lee B.-J., Duan W. Aspirin-loaded nanoexosomes as cancer therapeutics. Int. J. Pharm. 2019;572:118786. doi: 10.1016/j.ijpharm.2019.118786. PubMed DOI
Minelli R., Serpe L., Pettazzoni P., Minero V., Barrera G., Gigliotti C., Mesturini R., Rosa A., Gasco P., Vivenza N., et al. Cholesteryl butyrate solid lipid nanoparticles inhibit the adhesion and migration of colon cancer cells. Br. J. Pharmacol. 2012;166:587–601. doi: 10.1111/j.1476-5381.2011.01768.x. PubMed DOI PMC
Chen W., Hu S. Suitable carriers for encapsulation and distribution of endostar: Comparison of endostar-loaded particulate carriers. Int. J. Nanomed. 2011;6:1535–1541. doi: 10.2147/IJN.S21881. PubMed DOI PMC
Marill J., Anesary N.M., Paris S. DNA damage enhancement by radiotherapy-activated hafnium oxide nanoparticles improves cGAS-STING pathway activation in human colorectal cancer cells. Radiother. Oncol. 2019;141:262–266. doi: 10.1016/j.radonc.2019.07.029. PubMed DOI
Rampado R., Crotti S., Caliceti P., Pucciarelli S., Agostini M. Nanovectors Design for Theranostic Applications in Colorectal Cancer. J. Oncol. 2019;2019:1–27. doi: 10.1155/2019/2740923. PubMed DOI PMC
Fortina P., Kricka L.J., Graves D.J., Park J., Hyslop T., Tam F., Halas N., Surrey S., Waldman S.A. Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer. Trends Biotechnol. 2007;25:145–152. doi: 10.1016/j.tibtech.2007.02.005. PubMed DOI
Bose S., Panda A.K., Mukherjee S., Sa G. Curcumin and tumor immune-editing: Resurrecting the immune system. Cell Div. 2015;10:6. doi: 10.1186/s13008-015-0012-z. PubMed DOI PMC
Lambe U., P M., Brar B., Guray M., NA I., Ranjan K., Bansal N., Khurana S.K., J M., Nrce H. Nanodiagnostics: A new frontier for veterinary and medical sciences. J. Exp. Biol. Agric. Sci. 2016;4:307–320. doi: 10.18006/2016.4(3S).307.320. DOI
Yallapu M.M., Nagesh P.K.B., Jaggi M., Chauhan S.C. Therapeutic Applications of Curcumin Nanoformulations. AAPS J. 2015;17:1341–1356. doi: 10.1208/s12248-015-9811-z. PubMed DOI PMC
Lécuyer T., Teston E., Ramirez-Garcia G., Maldiney T., Viana B., Seguin J., Mignet N., Scherman D., Richard C. Chemically engineered persistent luminescence nanoprobes for bioimaging. Theranostics. 2016;6:2488–2523. doi: 10.7150/thno.16589. PubMed DOI PMC
Rosado-De-Castro P.H., Morales M.D.P., Pimentel-Coelho P.M., Mendez-Otero R., Herranz F. Development and Application of Nanoparticles in Biomedical Imaging. Contrast Media Mol. Imaging. 2018;2018:1700. doi: 10.1155/2018/1403826. PubMed DOI PMC
Linton S.S., Sherwood S.G., Drews K.C., Kester M. Targeting cancer cells in the tumor microenvironment: Opportunities and challenges in combinatorial nanomedicine. WIREs Nanomed. Nanobiotechnol. 2016;8:208–222. doi: 10.1002/wnan.1358. PubMed DOI PMC
Cabeza L., Perazzoli G., Mesas C., Jiménez-Luna C., Prados J., Rama A.R., Melguizo C. Nanoparticles in Colorectal Cancer Therapy: Latest In Vivo Assays, Clinical Trials, and Patents. AAPS PharmSciTech. 2020;21:178. doi: 10.1208/s12249-020-01731-y. PubMed DOI
Goñi-De-Cerio F., Thevenot J., Oliveira H., Pérez-Andrés E., Berra E., Masa M., Suárez-Merino B., Lecommandoux S., Heredia P. Cellular Uptake and Cytotoxic Effect of Epidermal Growth Factor Receptor Targeted and Plitidepsin Loaded Co-Polymeric Polymersomes on Colorectal Cancer Cell Lines. J. Biomed. Nanotechnol. 2015;11:2034–2049. doi: 10.1166/jbn.2015.2148. PubMed DOI
Gidding C. Vincristine revisited. Crit. Rev. Oncol. 1999;29:267–287. doi: 10.1016/S1040-8428(98)00023-7. PubMed DOI
Bala V., Rao S., Boyd B.J., Prestidge C.A. Prodrug and nanomedicine approaches for the delivery of the camptothecin analogue SN38. J. Control. Release. 2013;172:48–61. doi: 10.1016/j.jconrel.2013.07.022. PubMed DOI
Phase 2 Study of Thermodox as Adjuvant Therapy with Thermal Ablation (RFA) in Treatment of Metastatic Colorectal Cancer(mCRC)—Full Text View—ClinicalTrials.gov. [(accessed on 13 March 2023)]; Available online: https://clinicaltrials.gov/ct2/show/NCT01464593.
NIH Clinical Trials.gov. [(accessed on 13 March 2023)]; Available online: https://clinicaltrials.gov/
Force U.P., Davidson K.W., Barry M.J., Mangione C.M., Cabana M., Chelmow D., Coker T.R., Davis E.M., Donahue K.E., Jaén C.R., et al. Aspirin Use to Prevent Cardiovascular Disease. JAMA. 2022;327:1577–1584. doi: 10.1001/jama.2022.4983. PubMed DOI
Hamaguchi T., Tsuji A., Yamaguchi K., Takeda K., Uetake H., Esaki T., Amagai K., Sakai D., Baba H., Kimura M., et al. A phase II study of NK012, a polymeric micelle formulation of SN-38, in unresectable, metastatic or recurrent colorectal cancer patients. Cancer Chemother. Pharmacol. 2018;82:1021–1029. doi: 10.1007/s00280-018-3693-6. PubMed DOI PMC