Automated Segmentation of Intracranial Thrombus on NCCT and CTA in Patients with Acute Ischemic Stroke Using a Coarse-to-Fine Deep Learning Model
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37202113
PubMed Central
PMC10249699
DOI
10.3174/ajnr.a7878
PII: ajnr.A7878
Knihovny.cz E-zdroje
- MeSH
- cévní mozková příhoda * diagnostické zobrazování MeSH
- CT angiografie metody MeSH
- deep learning * MeSH
- intrakraniální trombóza * diagnostické zobrazování MeSH
- ischemická cévní mozková příhoda * diagnostické zobrazování MeSH
- ischemie mozku * diagnostické zobrazování MeSH
- lidé MeSH
- trombóza * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND AND PURPOSE: Identifying the presence and extent of intracranial thrombi is crucial in selecting patients with acute ischemic stroke for treatment. This article aims to develop an automated approach to quantify thrombus on NCCT and CTA in patients with stroke. MATERIALS AND METHODS: A total of 499 patients with large-vessel occlusion from the Safety and Efficacy of Nerinetide in Subjects Undergoing Endovascular Thrombectomy for Stroke (ESCAPE-NA1) trial were included. All patients had thin-section NCCT and CTA images. Thrombi contoured manually were used as reference standard. A deep learning approach was developed to segment thrombi automatically. Of 499 patients, 263 and 66 patients were randomly selected to train and validate the deep learning model, respectively; the remaining 170 patients were independently used for testing. The deep learning model was quantitatively compared with the reference standard using the Dice coefficient and volumetric error. The proposed deep learning model was externally tested on 83 patients with and without large-vessel occlusion from another independent trial. RESULTS: The developed deep learning approach obtained a Dice coefficient of 70.7% (interquartile range, 58.0%-77.8%) in the internal cohort. The predicted thrombi length and volume were correlated with those of expert-contoured thrombi (r = 0.88 and 0.87, respectively; P < .001). When the derived deep learning model was applied to the external data set, the model obtained similar results in patients with large-vessel occlusion regarding the Dice coefficient (66.8%; interquartile range, 58.5%-74.6%), thrombus length (r = 0.73), and volume (r = 0.80). The model also obtained a sensitivity of 94.12% (32/34) and a specificity of 97.96% (48/49) in classifying large-vessel occlusion versus non-large-vessel occlusion. CONCLUSIONS: The proposed deep learning method can reliably detect and measure thrombi on NCCT and CTA in patients with acute ischemic stroke.
College of Electronic Engineering Xi'an Shiyou University Xi'an Shaanxi China
Department of Community Health Sciences
From the Department of Clinical Neurosciences and Hotchkiss Brain Institute
St Anne's University Hospital Brno and Faculty of Medicine Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Goyal M, Menon BK, van Zwam WH, et al. ; HERMES Collaborators. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet 2016;387:1723–31 10.1016/S0140-6736(16)00163-X PubMed DOI
Menon BK, Hill MD, Davalos A, et al. . Efficacy of endovascular thrombectomy in patients with M2 segment middle cerebral artery occlusions: meta-analysis of data from the HERMES Collaboration. J Neurointerv Surg 2019;11:1065–69 10.1136/neurintsurg-2018-014678 PubMed DOI
Menon BK, Al-Ajlan FS, Najm M, et al. ; INTERRSeCT Study Investigators. Association of clinical, imaging, and thrombus characteristics with recanalization of visible intracranial occlusion in patients with acute ischemic stroke. JAMA 2018;320:1017–26 10.1001/jama.2018.12498 PubMed DOI PMC
Riedel CH, Zimmermann P, Jensen-Kondering U, et al. . The importance of size: successful recanalization by intravenous thrombolysis in acute anterior stroke depends on thrombus length. Stroke 2011;42:1775–77 10.1161/STROKEAHA.110.609693 PubMed DOI
Qiu W, Kuang H, Nair J, et al. . Radiomics-based intracranial thrombus features on CT and CTA predict recanalization with intravenous alteplase in patients with acute ischemic stroke. AJNR Am J Neuroradiol 2019;40:39–44 10.3174/ajnr.A5918 PubMed DOI PMC
Hofmeister J, Bernava G, Rosi A, et al. . Clot-based radiomics predict a mechanical thrombectomy strategy for successful recanalization in acute ischemic stroke. Stroke 2020;51:2488–94 10.1161/STROKEAHA.120.030334 PubMed DOI PMC
Santos EM, Yoo AJ, Beenen LF, et al. ; MR CLEAN Investigators. Observer variability of absolute and relative thrombus density measurements in patients with acute ischemic stroke. Neuroradiology 2016;58:133–39 10.1007/s00234-015-1607-4 PubMed DOI PMC
Lalys F, Yan V, Kaladji A, et al. . Generic thrombus segmentation from pre- and post-operative CTA. Int J Comput Assist Radiol Surg 2017;12:1501–10 10.1007/s11548-017-1591-8 PubMed DOI
Lee K, Johnson RK, Yin Y, et al. . Three-dimensional thrombus segmentation in abdominal aortic aneurysms using graph search based on a triangular mesh. Comput Biol Med 2010;40:271–78 10.1016/j.compbiomed.2009.12.002 PubMed DOI PMC
Freiman M, Esses SJ, Joskowicz L, et al. . An iterative model-constrained graph-cut algorithm for abdominal aortic aneurysm thrombus segmentation. In: Proceedings of the 2010 IEEE International Conference on Biomedical Imaging: from Nano to Macro, Rotterdam, the Netherlands. April 14, 2010:672–75
Zhuge F, Rubin GD, Sun S, et al. . An abdominal aortic aneurysm segmentation method: level set with region and statistical information. Med Phys 2006;33:1440–53 10.1118/1.2193247 PubMed DOI
Qazi S, Qazi E, Wilson AT, et al. . Identifying thrombus on non-contrast CT in patients with acute ischemic stroke. Diagnostics (Basel) 2021;11:1919 10.3390/diagnostics11101919 PubMed DOI PMC
Hill MD, Goyal M, Menon BK, et al. ; ESCAPE-NA1 Investigators. Efficacy and Safety of Nerinetide for the Treatment of Acute Ischaemic Stroke (ESCAPE-NA1): a multicentre, double-blind, randomised controlled trial. Lancet 2020;395:878–87 10.1016/S0140-6736(20)30258-0 PubMed DOI
Menon BK, d’Esterre CD, Qazi EM, et al. . Multiphase CT angiography: a new tool for the imaging triage of patients with acute ischemic stroke. Radiology 2015;275:510–20 10.1148/radiol.15142256 PubMed DOI
Ospel JM, Volny O, Qiu W, et al. . Impact of multiphase computed tomography angiography for endovascular treatment decision-making on outcomes in patients with acute ischemic stroke. J Stroke 2021;23:377–87 10.5853/jos.2021.00619 PubMed DOI PMC
Beare R, Lowekamp B, Yaniv Z. Image segmentation, registration and characterization in R with SimpleITK. J Stat Soft 2018;86:8 10.18637/jss.v086.i08 PubMed DOI PMC
Najm M, Kuang H, Federico A, et al. . Automated brain extraction from head CT and CTA images using convex optimization with shape propagation. Comput Methods Programs Biomed 2019;176:1–8 10.1016/j.cmpb.2019.04.030 PubMed DOI
Fedorov A, Beichel R, Kalpathy-Cramer J, et al. . 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 2012;30:1323–41 10.1016/j.mri.2012.05.001 PubMed DOI PMC
Yushkevich PA, Piven J, Hazlett HC, et al. . User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 2006;31:1116–28 10.1016/j.neuroimage.2006.01.015 PubMed DOI
Warfield SK, Zou KH, Wells WM. Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging 2004;23:903–21 10.1109/TMI.2004.828354 PubMed DOI PMC
Ronneberger O, Fischer P, Brox T.. U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab N, Hornegger J, Wells W, et al., eds. In: Medical Image Computing and Computer-Assisted Intervention, Munich, Germany. October 5–9, 2015
Woo S, Park J, Lee JY, et al. . CBAM: Convolutional Block Attention Module. arXiv July 17, 2018. https://arxiv.org/pdf/1807.06521v1.pdf. Accessed October 6, 2018
Feng S, Zhao H, Shi F, et al. . CPFNet: Context Pyramid Fusion Network for Medical Image Segmentation. IEEE Trans Med Imaging 2020;39:3008–18 10.1109/TMI.2020.2983721 PubMed DOI
Ma J, Chen J, Ng M, et al. . Loss odyssey in medical image segmentation. Med Image Anal 2021;71:102035 10.1016/j.media.2021.102035 PubMed DOI
Mourya GK, Gogoi M, Talbar SN, et al. . Cascaded dilated deep residual network for volumetric liver segmentation from CT image. International Journal of E-Health and Medical Communications 2021;12:34–45 10.4018/IJEHMC.2021010103 DOI
Mukaka MM. Statistics corner: a guide to appropriate use of correlation coefficient in medical research. Malawi Med J 2012;24:69–71 PubMed PMC
Santos EM, Marquering HA, Berkhemer OA, et al. ; MR CLEAN Investigators. Development and validation of intracranial thrombus segmentation on CT angiography in patients with acute ischemic stroke. PLoS One 2014;9:e101985 10.1371/journal.pone.0101985 PubMed DOI PMC
Riedel CH, Jensen U, Rohr A, et al. . Assessment of thrombus in acute middle cerebral artery occlusion using thin-slice nonenhanced computed tomography reconstructions. Stroke 2010;41:1659–64 10.1161/STROKEAHA.110.580662 PubMed DOI
Lucas C, Schöttler JJ, Kemmling A, et al. . Automatic detection and segmentation of the acute vessel thrombus in cerebral CT. Informatik Aktuell Springer; 2019:74–79 10.1007/978-3-658-25326-4_19 DOI
Mojtahedi M, Kappelhof M, Ponomareva E, et al. . Fully automated thrombus segmentation on CT images of patients with acute ischemic stroke. Diagnostics (Basel) 2022;12:698 10.3390/diagnostics12030698 PubMed DOI PMC
Dutra BG, Tolhuisen ML, Alves HC; MR CLEAN Registry Investigators, et al.. Thrombus imaging characteristics and outcomes in acute ischemic stroke patients undergoing endovascular treatment. Stroke 2019;50:2057–64 10.1161/STROKEAHA.118.024247 PubMed DOI
Yoo J, Baek JH, Park H, et al. . Thrombus volume as a predictor of nonrecanalization after intravenous thrombolysis in acute stroke. Stroke 2018;49:2108–15 10.1161/STROKEAHA.118.021864 PubMed DOI
Campbell BC, Kappelhof M, Fischer U. Role of intravenous thrombolytics prior to endovascular thrombectomy. Stroke 2022;53:2085–92 10.1161/STROKEAHA.122.036929 PubMed DOI
Huang C, Tian J, Yuan C, et al. . Fully automated segmentation of lower extremity deep vein thrombosis using convolutional neural network. Biomed Res Int 2019;2019:3401683 10.1155/2019/3401683 PubMed DOI PMC
Santos EM, Niessen WJ, Yoo AJ, et al. ; MR CLEAN Investigators. Automated entire thrombus density measurements for robust and comprehensive thrombus characterization in patients with acute ischemic stroke. PLoS One 2016;11:e0145641 10.1371/journal.pone.0145641 PubMed DOI PMC