Phylogeny and lipid profiles of snow-algae isolated from Norwegian red-snow microbiomes
Language English Country Great Britain, England Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
37226528
PubMed Central
PMC10246834
DOI
10.1093/femsec/fiad057
PII: 7179409
Knihovny.cz E-resources
- Keywords
- 18S rRNA, ITS2 rRNA, fatty acids, imaging flow cytometry, microalgae, phylogeny,
- MeSH
- Chlorophyceae * MeSH
- Chlorophyta * genetics MeSH
- Phylogeny MeSH
- Lipids MeSH
- Microbiota * genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Norway MeSH
- Names of Substances
- Lipids MeSH
Snow algae blooms often form green or red coloured patches in melting alpine and polar snowfields worldwide, yet little is known about their biology, biogeography, and species diversity. We investigated eight isolates collected from red snow in northern Norway, using a combination of morphology, 18S rRNA gene and internal transcribed spacer 2 (ITS2) genetic markers. Phylogenetic and ITS2 rRNA secondary structure analyses assigned six isolates to the species Raphidonema nivale, Deuterostichococcus epilithicus, Chloromonas reticulata, and Xanthonema bristolianum. Two novel isolates belonging to the family Stichococcaceae (ARK-S05-19) and the genus Chloromonas (ARK-S08-19) were identified as potentially new species. In laboratory cultivation, differences in the growth rate and fatty acid profiles were observed between the strains. Chlorophyta were characterized by abundant C18:3n-3 fatty-acids with increases in C18:1n-9 in the stationary phase, whilst Xanthonema (Ochrophyta) was characterized by a large proportion of C20:5n-3, with increases in C16:1n-7 in the stationary phase. In a further experiment, lipid droplet formation was studied in C. reticulata at the single-cell level using imaging flow cytometry. Our study establishes new cultures of snow algae, reveals novel data on their biodiversity and biogeography, and provides an initial characterization of physiological traits that shape natural communities and their ecophysiological properties.
Agroécologie Institut Agro Dijon CNRS INRAE Univ Bourgogne Franche Comté F 21000 Dijon France
Bioprocess Engineering AlgaePARC Wageningen University PO Box 16 Wageningen 6700 AA The Netherlands
Department of Ecology Faculty of Science Charles University Viničná 7 12844 Prague Czech Republic
Faculty of Biosciences and Aquaculture Nord University 8049 Bodø Norway
See more in PubMed
Altschul SF, Gish W, Miller Wet al. . Basic local alignment search tool. J Mol Biol. 1990;215:403–10. PubMed
Andeden EE, Ozturk S, Aslim B. Effect of alkaline pH and nitrogen starvation on the triacylglycerol (TAG) content, growth, biochemical composition, and fatty acid profile of auxenochlorella protothecoides KP7. J Appl Phycol. 2021;33:211–25.
Andersen RA. Biology and systematics of heterokont and haptophyte algae. Am J Bot. 2004;91:1508–22. PubMed
Barcytė D, Hodač L, Nedbalová Let al. . Chloromonas arctica sp. nov., a psychrotolerant alga from snow in the High Arctic (Chlamydomonadales, Chlorophyta). Int J Syst Evol Microbiol. 2018b;68:851–9. PubMed
Barcytė D, Hodač L, Nedbalová Let al. . Chloromonas svalbardensis n. sp. with insights into the phylogroup Chloromonadinia (Chlorophyceae). J Eukaryot Microbiol. 2018a;65:882–92. PubMed
Bidigare RR, Ondrusek ME, Kennicutt MCet al. . Evidence a photoprotective for secondary carotenoids of snow algae. J Phycol. 1993;29:427–34.
Bigogno C, Khozin-Goldberg I, Cohen Z. Accumulation of arachidonic acid-rich triacylglycerols in the microalga Parietochloris incisa (Trebuxiophyceae, Chlorophyta). Phytochemistry. 2002;60:135–43. PubMed
Bischoff H. Phycological Studies IV. Some soil algae from enchanted rock and related algal species. U. Texas Pub. 1963;6318:1–95.
Blagodatskaya EV, Blagodatsky SA, Anderson THet al. . Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies. Appl. Soil Ecol. 2007;37:95–105.
Borchhardt N, Baum C, Mikhailyuk Tet al. . Biological soil crusts of Arctic Svalbard-water availability as potential controlling factor for microalgal biodiversity. Front Microbiol. 2017a;8:1485–. PubMed PMC
Borchhardt N, Schiefelbein U, Abarca Net al. . Diversity of algae and lichens in biological soil crusts of Ardley and King George islands, Antarctica. Antarct Sci. 2017b;29:229–37.
Breuer G, Lamers PP, Martens D Eet al. . the impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresour Technol. 2012;124:217–26. PubMed
Britton G, Liaaen-Jensen S, Pfander H. Carotenoids, Vol. 4: Natural Functions, Birkhäuser Basel. Basel, Switzerland. 2008.
Broady PA, Ingerfeld M. Three new species and a new record of chaetophoracean (Chlorophyta) algae from terrestrial habitats in Antarctica. Eur J Phycol. 1993;28:25–31.
Broady PA, Ohtani S, Ingerfeld M. a comparison of strains of xanthonema ( = Heterothrix, Tribonematales, Xanthophyceae) from Antarctica, Europe, and New Zealand. Phycologia. 1997;36:164–71.
Broady PA. The distribution of terrestrial and hydro-terrestrial algal associations at three contrasting locations in southern Victoria Land, Antarctica. Algol Stud. 2005;118:95–112.
Brown SP, Ungerer MC, Jumpponen A. A community of clones: snow algae are diverse communities of spatially structured clones. Int J Plant Sci. 2016;177:432–9.
Butcher R. Contributions to our knowledge of the smaller marine algae. J Mar Biol Ass. 1952;31:175–91.
Caisová L, Marin B, Melkonian M. A consensus secondary structure of ITS2 in the Chlorophyta identified by phylogenetic reconstruction. Protist. 2013;164:482–96. PubMed
Chen W, Luo L, Han Det al. . Effect of dietary supplementation with filamentous microalga Tribonema ultriculosum on growth performance, fillet quality and immunity of rainbow trout oncorhynchus mykiss. Aquacult Nutr. 2021;27:1232–43.
Christen H. Flagellaten aus dem Schützenweiher bei Veltheim. Mitteilungen Der Naturwissenschaftlichen Gesellschaft in Winterthur. 1959;29:167–89.
Christie WW. LIPID MAPS Lipidomics Gateway, the LipidWeb, methyl esters of fatty acids, archive of mass spectra. 2021. https://www.lipidmaps.org/resources/lipidweb/index.php?page=ms/methesters/me-arch/index.htm.
Coleman AW. ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends Genet. 2003;19:370–5. PubMed
Coleman AW. Pan-eukaryote ITS2 homologies revealed by RNA secondary structure. Nucleic Acids Res. 2007;35:3322–9. PubMed PMC
Cook JM, Tedstone AJ, Williamson Cet al. . Glacier algae accelerate melt rates on the south-western Greenland ice sheet. The Cryosphere. 2020;14:309–30.
Darty K, Denise A, Ponty Y. VARNA: interactive drawing and editing of the RNA secondary structure. Bioinformatics. 2009;25:1974. PubMed PMC
Davey MP, Norman L, Sterk Pet al. . Snow algae communities in Antarctica: metabolic and taxonomic composition. New Phytol. 2019;222:1242–55. PubMed PMC
Dorodnikov M, Blagodatskaya E, Blagodatsky Set al. . Stimulation of r - vs. K -selected microorganisms by elevated atmospheric CO2 depends on soil aggregate size. FEMS Microbiol Ecol. 2009;69:43–52. PubMed
Elster J, Lukesová A, Svoboda Jet al. . Diversity and abundance of soil algae in the polar desert, Sverdrup Pass, central Ellesmere Island. Polar Rec. 1999;35:231–54.
Engstrom CB, Yakimovich KM, Quarmby LM. Variation in snow algae blooms in the coast range of British Columbia. Front Microbiol. 2020;11:569. PubMed PMC
Goold H, Beisson F, Peltier Get al. . Microalgal lipid droplets: composition, diversity, biogenesis and functions. Plant Cell Rep. 2015;34:545–55. PubMed
Gray A, Krolikowski M, Fretwell Pet al. . Remote sensing reveals Antarctic green snow algae as important terrestrial carbon sink. Nat Commun. 2020;11:1–9. PubMed PMC
Hendriks L, Goris A, Neefs J-Met al. . the nucleotide sequence of the small ribosomal subunit RNA of the yeast Candida albicans and the evolutionary position of the fungi among the eukaryotes. Syst Appl Microbiol. 1989;12:223–9.
Hillebrand H, Dürselen CD, Kirschtel Det al. . Biovolume calculation for pelagic and benthic microalgae. J Phycol. 1999;35:403–24.
Hodač L, Hallmann C, Spitzer Ket al. . Widespread green algae Chlorella and Stichococcus exhibit polar-temperate and tropical-temperate biogeography. FEMS Microbiol Ecol. 2016;92(8):fiw122. PubMed
Hoham RW, Bonome TA, Martin CWet al. . A combined 18S rDNA and rbcL phylogenetic analysis of Chloromonas and Chlamydomonas (Chlorophyceae, Volvocales) emphasizing snow and other cold-temperature habitats. J Phycol. 2002;38:1051–64.
Hoham RW, Remias D. Snow and glacial algae: a review. J Phycol. 2020;56:264–82. PubMed PMC
Hoham RW. Pleiomorphism in the snow alga, Raphidonema nivale Lagerh. (Chlorophyta), and a revision of the genus Raphidonema Lagerh. Syesis. 1973;6:255–63.
Huerlimann R, Steinig EJ, Loxton Het al. . Effects of growth phase and nitrogen starvation on expression of fatty acid desaturases and fatty acid composition of Isochrysis aff. Galbana (TISO). Gene. 2014;545:36–44. PubMed
Hulatt CJ, Berecz O, Egeland ESet al. . Polar snow algae as a valuable source of lipids?. Bioresour Technol. 2017;235:338–47. PubMed
Keller A, Schleicher T, Schultz Jet al. . 8S-28S rRNA interaction and HMM-based ITS2 annotation. Gene. 2009;430:50–7. PubMed
Klebs G. Über die Organisation der Gallerte bei Einigen Algen und Flagellaten. Untersuchungen Botanische Institut Tübingen. 1886;2:333–417., pls III, IV.
Kol E. on the red snow of Finse (Norway). Ann Hist Musei Natl Hungarici. 1963;55:155–60.
Kol E. Trochiscia (Chlorophyta) red snow from Swedish Lapland. Ann Hist Musei Natl Hungarici. 1974;66:59–63.
Krug L, Erlacher A, Markut Ket al. . the microbiome of alpine snow algae shows a specific inter-kingdom connectivity and algae-bacteria interactions with supportive capacities. ISME J. 2020;14:2197–210. PubMed PMC
Kumar S, Stecher G, Li Met al. . MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547. PubMed PMC
Lang I, Hodac L, Friedl Tet al. . Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biol. 2011;11:124. PubMed PMC
Leya T, Rahn A, Lütz Cet al. . Response of Arctic snow and permafrost algae to high light and nitrogen stress by changes in pigment composition and applied aspects for biotechnology. FEMS Microbiol Ecol. 2009;67:432–43. PubMed
Leya T. Snow algae: adaptation strategies to survive on snow and ice. In: Seckbach J, Oren A, Stan-Lotter H (eds.). Polyextremophiles: Life under Multiple Forms of Stress, vol 27. 401–23. Springer Netherlands, Dordrecht. 2013.
Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–9. PubMed
Li-Beisson Y, Beisson F, Riekhof W. Metabolism of acyl-lipids in Chlamydomonas reinhardtii. Plant J. 2015;82:504–22. PubMed
Lukeš M, Procházková L, Shmidt V, Nedbalová L, Kaftan D. Temperature dependence of photosynthesis and thylakoid lipid composition in the red snow alga Chlamydomonas cf. nivalis (Chlorophyceae). FEMS Microbiology Ecology. 2014;89(2):303–315. PubMed
Lupette J, Marechal E. The puzzling conservation and diversification of lipid droplets from bacteria to eukaryotes. In: M. Kloc. Symbiosis: Cellular, Molecular, Medical and Evolutionary Aspects, vol 69. 281–334. Springer, Cham: Switzerland. 2020. PubMed
Lutz S, Anesio AM, Field Ket al. . Integrated ‘Omics’, targeted metabolite and single-cell analyses of Arctic snow algae functionality and adaptability. Front Microbiol. 2015;6:1323. PubMed PMC
Lutz S, Anesio AM, Raiswell Ret al. . the biogeography of red snow microbiomes and their role in melting Arctic glaciers. Nat Commun. 2016;7:11968. PubMed PMC
Lutz S, Procházková L, Benning LGet al. . Evaluating high-throughput sequencing data of microalgae living in melting snow: improvements and limitations. Fottea. 2019;19:115. PubMed PMC
Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27:2957–63. PubMed PMC
Maistro S, Broady PA, Andreoli Cet al. . Phylogeny and taxonomy of xanthophyceae (Stramenopiles, Chromalveolata). Protist. 2009;160:412–26. PubMed
Matsuzaki R, Hara Y, Nozaki H. A taxonomic revision of Chloromonas reticulata (Volvocales, Chlorophyceae), the type species of the genus Chloromonas, based on multigene phylogeny and comparative light and electron microscopy. Phycologia. 2012;51:74–85.
Matsuzaki R, Nozaki H, Takeuchi Net al. . Taxonomic re-examination of “Chloromonas nivalis (Volvocales, Chlorophyceae) zygotes” from Japan and description of C. muramotoi sp. nov. PLoS One. 2019;14:e0210986. PubMed PMC
Medlin L, Elwood HJ, Stickel Set al. . the characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene. 1988;71:491–9. PubMed
Miller MR, Quek SY, Staehler Ket al. . Changes in oil content, lipid class and fatty acid composition of the microalga Chaetoceros calcitrans over different phases of batch culture. Aquac Res. 2014;45:1634–47.
Nakada T, Tomita M, Wu JTet al. . Taxonomic revision of chlamydomonas subg. Amphichloris (Volvocales, Chlorophyceae), with resurrection of the genus Dangeardinia and descriptions of ixipapillifera gen. nov. and rhysamphichloris gen. nov. J Phycol. 2016;52:283–304. PubMed
Novakovskaya IV, Patova EN, Boldina ONet al. . Molecular phylogenetic analyses, ecology and morphological characteristics of Chloromonas reticulata (Goroschankin) Gobi which causes red blooming of snow in the subpolar Urals. Cryptogamie, Algologie. 2018;39:199–213.
Novis PM, Hoham RW, Beer Tet al. . Two snow species of the quadriflagellate green alga chlainomonas (Chlorophyta, Volvocales): ultrastructure and phylogenetic position within the Chloromonas clade. J Phycol. 2008;44:1001–12. PubMed
Novis PM, Podolyan A, Kodner R. New Zealand isolates from snow of the widespread algal genus Raphidonema assigned to a single species. N Z J Bot. 2023;61:1–12.
Nozaki H, Nakada T, Watanabe S. Evolutionary origin of Gloeomonas (Volvocales, Chlorophyceae), based on ultrastructure of chloroplasts and molecular phylogeny. J Phycol. 2010;46:195–201.
Pascher W. Heterokonten. Akademische Verlagsgesselschaft MBH, Leipzig. 1939.
Pianka ER. On r-and K-selection. Am Nat. 1970;104:592–7.
Probert I, Siano R, Poirier Cet al. . Brandtodinium gen. nov. and B. nutricula comb. nov. (Dinophyceae), a dinoflagellate commonly found in symbiosis with polycystine radiolarians. J Phycol. 2014;50:388–99. PubMed
Procházková L, Leya T, Křížková Het al. . Sanguina nivaloides and Sanguina aurantia gen. Et spp. nov. (Chlorophyta): the taxonomy, phylogeny, biogeography and ecology of two newly recognised algae causing red and orange snow. FEMS Microbiol Ecol. 2019a;95(6):fiz064. PubMed PMC
Procházková L, Matsuzaki R, Řezanka Tet al. . the snow alga Chloromonas kaweckae sp. nov. (Volvocales, Chlorophyta) Causes green surface blooms in the high tatras (Slovakia) and tolerates high irradiance. J Phycol. 2022;59(1):236–48. PubMed PMC
Procházková L, Remias D, Bilger Wet al. . Cysts of the snow alga Chloromonas krienitzii (Chlorophyceae) show increased tolerance to ultraviolet radiation and elevated visible light. Front Plant Sci. 2020;11:14–27. PubMed PMC
Procházková L, Remias D, Holzinger Aet al. . Ecophysiological and morphological comparison of two populations of Chlainomonas sp. (Chlorophyta) causing red snow on ice-covered lakes in the High Tatras and Austrian Alps. Eur J Phycol. 2018b;53:230–43. PubMed PMC
Procházková L, Remias D, Řezanka Tet al. . Chloromonas nivalis subsp. Tatrae, subsp. nov. (Chlamydomonadales, Chlorophyta): re-examination of a snow alga from the High Tatra Mountains (Slovakia). Fottea. 2018a;18:1–18. PubMed PMC
Procházková L, Remias D, Řezanka Tet al. . Ecophysiology of Chloromonas hindakii sp. nov. (Chlorophyceae), causing orange snow blooms at different light conditions. Microorganisms. 2019b;7:434. PubMed PMC
Pröschold T, Darienko T. the green puzzle Stichococcus (Trebouxiophyceae, Chlorophyta): new generic and species concept among this widely distributed genus. Phytotaxa. 2020;441:113–42.
Pröschold T, Marin B, Schlösser UGet al. . Molecular phylogeny and taxonomic revision of Chlamydomonas (Chlorophyta). I. Emendation of Chlamydomonas Ehrenberg and Chloromonas Gobi, and description of Oogamochlamys gen. nov. and Lobochlamys gen. nov. Protist. 2001;152:265–300. PubMed
Qiao H, Cong C, Sun Cet al. . Effect of culture conditions on growth, fatty acid composition and DHA/EPA ratio of phaeodactylum tricornutum. Aquaculture. 2016;452:311–7.
Radakovits R, Jinkerson RE, Fuerstenberg SIet al. . Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropsis gaditana. Nat Commun. 2012;3:686. PubMed PMC
Raymond BB, Engstrom CB, Quarmby LM. the underlying green biciliate morphology of the orange snow alga sanguina aurantia. Curr Biol. 2022;32(2):R68–9. PubMed
Remize M, Planchon F, Loh ANet al. . Study of synthesis pathways of the essential polyunsaturated fatty acid 20:5n-3 in the diatom Chaetoceros muelleri using 13C-isotope labeling. Biomolecules. 2020;10:797. PubMed PMC
Řezanka T, Nedbalová L, Sigler Ket al. . Identification of astaxanthin diglucoside diesters from snow alga Chlamydomonas nivalis by liquid chromatography–atmospheric pressure chemical ionization mass spectrometry. Phytochemistry. 2008;69:479–90. PubMed
Ronquist F, Huelsenbeck JP. MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–4. PubMed
Rybalka N, Andersen RA, Kostikov Iet al. . Testing for endemism, genotypic diversity and species concepts in Antarctic terrestrial microalgae of the Tribonemataceae (Stramenopiles, Xanthophyceae). Environ Microbiol. 2009;11:554–65. PubMed
Schulz K, Mikhailyuk T, Dreßler Met al. . Biological soil crusts from coastal dunes at the Baltic Sea: cyanobacterial and algal biodiversity and related soil properties. Microb Ecol. 2016;71:178–93. PubMed
Segawa T, Matsuzaki R, Takeuchi Net al. . Bipolar dispersal of red-snow algae. Nat Commun. 2018;9:3094. PubMed PMC
Segawa T, Yonezawa T, Matsuzaki Ret al. . Evolution of snow algae, from cosmopolitans to endemics, revealed by DNA analysis of ancient ice. ISME J. 2023;1–11. PubMed PMC
Skuja H. Ein fall von fakultativer symbiose zwischen operculatem discomycet und einer chlamydomonade. Archiv für protistenkunde. Nova Hedwigia. 1943;96:365–76.
Solovchenko A. Physiological role of neutral lipid accumulation in eukaryotic microalgae under stresses. Russ J Plant Physiol. 2012;59:167–76.
Spijkerman E, Wacker A, Weithoff Get al. . Elemental and fatty acid composition of snow algae in Arctic habitats. Front Microbio. 2012;3:1–15. PubMed PMC
Sprouffske K, Wagner A. Growthcurver: an R package for obtaining interpretable metrics from microbial growth curves. BMC Bioinf. 2016;17:172. PubMed PMC
Stewart A, Rioux D, Boyer Fet al. . Altitudinal zonation of green algae biodiversity in the French Alps. Front Plant Sci. 2021;12:38–54. PubMed PMC
Stibal M, Elster J. Growth and morphology variation as a response to changing environmental factors in two Arctic species of Raphidonema (Trebouxiophyceae) from snow and soil. Polar Biol. 2005;28:558–67.
Stibal M, Šabacká M, Kaštovská K. Microbial communities on glacier surfaces in Svalbard: impact of physical and chemical properties on abundance and structure of cyanobacteria and algae. Microb Ecol. 2006;52:644. PubMed
Susanti H, Yoshida M, Nakayama Tet al. . a taxonomic reassessment of Chlamydomonas meslinii (Volvocales, Chlorophyceae) with a description of Paludistella gen. nov. Phytotaxa. 2020;432:65–80.
Suzuki H, Hulatt CJ, Wijffels RHet al. . Growth and LC-PUFA production of the cold-adapted microalga Koliella antarctica in photobioreactors. J Appl Phycol. 2019;31:981–97.
Tesson SVM, Šantl-Temkiv T. Ice nucleation activity and aeolian dispersal success in airborne and aquatic microalgae. Front Microbiol. 2018;9:2681. PubMed PMC
Tucker AE, Brown SP. Sampling a gradient of red snow algae bloom density reveals novel connections between microbial communities and environmental features. Sci Rep. 2022;12:10536. PubMed PMC
Wan Afifudeen C-L, Loh SH, Aziz Aet al. . Double-high in palmitic and oleic acids accumulation in a non-model green microalga, Messastrum gracile SE-MC4 under nitrate-repletion and -starvation cultivations. Sci Rep. 2021;11:381. PubMed PMC
White TJ, Bruns T, Lee Set al. . Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: a Guide to Methods and Applications. London: Academic Press, 1990; 315–22.
Wolf M, Koetschan C, Müller T. ITS2, 18S, 16S or any other RNA—Simply aligning sequences and their individual secondary structures simultaneously by an automatic approach. Gene. 2014;546:145–9. PubMed
Xin Y, Shen C, She Yet al. . Biosynthesis of triacylglycerol molecules with a tailored PUFA profile in industrial microalgae. Molecular Plant. 2019;12:474–88. PubMed
Yakimovich KM, Engstrom CB, Quarmby LM. Alpine snow algae microbiome diversity in the coast range of British Columbia. Front Microbiol. 2020;11:1721. PubMed PMC
Yakimovich KM, Gauthier NP, Engstrom CBet al. . A molecular analysis of microalgae from around the globe to revise Raphidonema (Trebouxiophyceae, Chlorophyta). J Phycol. 2021;57:1419–32. PubMed
Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31:3406–15. PubMed PMC