Recombinant ferritins for multimodal nanomedicine

. 2023 Dec ; 38 (1) : 2219868.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37263586

In all living organisms, ferritins are a group of proteins important for maintaining iron homeostasis. Increasing amount of studies has shown that recombinant ferritins can be widely used in multimodal nanomedicine, especially for anticancer treatment and vaccination. Recombinant particles prepared by fusing viral proteins and ferritin subunits produce a better immune response and higher antibody titres. Moreover, actively-targeted ferritin nanoparticles can recognise receptors and deliver natural or chemical drugs specifically to the tumour tissue. In addition, ferritin-linked or loaded with contrast agents or fluorescent dyes can be used as multimodal particles useful cancer theranostics. In this review, we fully summarised the unitisation of recombinant ferritins in multimodal nanomedicine. The research progress of using recombinant ferritins as nanovaccines, nanozymes, and bioengineered nanocarriers for targeted therapy and bioimaging is emphasised.

Zobrazit více v PubMed

Zhang N, Yu XQ, Xie JX, Xu HM.. New insights into the role of ferritin in iron homeostasis and neurodegenerative diseases. Mol Neurobiol. 2021;58(6):2812–2823. PubMed

Zang JC, Chen H, Zhao GH, Wang FD, Ren FZ.. Ferritin cage for encapsulation and delivery of bioactive nutrients: from structure, property to applications. Crit Rev Food Sci Nutr. 2017;57(17):3673–3683. PubMed

Adameyko KI, Burakov AV, Finoshin AD, Mikhailov KV, Kravchuk OI, Kozlova OS, Gornostaev NG, Cherkasov AV, Erokhov PA, Indeykina MI, et al. . Conservative and atypical ferritins of sponges. IJMS. 2021;22(16):8635. PubMed PMC

Zhen ZP, Tang W, Todd T, Xie J.. Ferritins as nanoplatforms for imaging and drug delivery. Expert Opin Drug Deliv. 2014;11(12):1913–1922. PubMed PMC

Garcia-Casal MN, Pasricha SR, Martinez RX, Lopez-Perez L, Pena-Rosas JP, Cochrane Tobacco Addiction Group. Serum or plasma ferritin concentration as an index of iron deficiency and overload. Cochrane Database Syst Rev. 2021;2021(5):CD011817. PubMed PMC

Ueda N, Takasawa K.. Impact of inflammation on ferritin, hepcidin and the management of iron deficiency anemia in chronic kidney disease. Nutrients. 2018;10(9):1173. PubMed PMC

Mahroum N, Alghory A, Kiyak Z, Alwani A, Seida R, Alrais M, Shoenfeld Y.. Ferritin-from iron, through inflammation and autoimmunity, to COVID-19. Journal of Autoimmunity. 2022;126:102778. PubMed PMC

Sun Q, Yang F, Wang H, Cui F, Li Y, Li S, Ren Y, Lan W, Li M, Zhu W, et al. . Elevated serum ferritin level as a predictor of reduced survival in patients with sporadic amyotrophic lateral sclerosis in China: a retrospective study. Amyotroph Lateral Scler Frontotemporal Degener. 2019;20(3-4):186–191. PubMed

Gossard TR, Trotti LM, Videnovic A, St Louis EK.. Restless legs syndrome: contemporary diagnosis and treatment. Neurotherapeutics. 2021;18(1):140–155. PubMed PMC

Devos D, Cabantchik ZI, Moreau C, Danel V, Mahoney-Sanchez L, Bouchaoui H, Gouel F, Rolland A-S, Duce JA, Devedjian J-C, et al. . Conservative iron chelation for neurodegenerative diseases such as Parkinson’s disease and amyotrophic lateral sclerosis. J Neural Transm. 2020;127(2):189–203. PubMed

Demchuk AM, Patel TR.. The biomedical and bioengineering potential of protein nanocompartments. Biotechnol Adv. 2020;41:107547. PubMed

Rodrigues MQ, Alves PM, Roldao A.. Functionalizing ferritin nanoparticles for vaccine development. Pharmaceutics. 2021;13(10):1621. PubMed PMC

Kim Y-I, Kim D, Yu K-M, Seo HD, Lee S-A, Casel MAB, Jang S-G, Kim S, Jung WRam, Lai C-J, et al. . Development of spike receptor-binding domain nanoparticles as a vaccine candidate against SARS-CoV-2 infection in ferrets. Mbio. 2021;12(2):e00230–21. PubMed PMC

Xu XL, Tian KW, Lou XF, Du YZ.. Potential of ferritin-based platforms for tumor immunotherapy. Molecules. 2022;27(9):2716. PubMed PMC

Shepherd BO, Chang D, Vasan S, Ake J, Modjarrad K.. HIV and SARS-CoV-2: tracing a path of vaccine research and development. Curr HIV/AIDS Rep. 2022;19(1):86–93. PubMed PMC

Pollet J, Chen WH, Strych U.. Recombinant protein vaccines, a proven approach against coronavirus pandemics. Adv Drug Deliv Rev. 2021;170:71–82. PubMed PMC

Palombarini F, Di Fabio E, Boffi A, Macone A, Bonamore A.. Ferritin nanocages for protein delivery to tumor cells. Molecules. 2020;25(4):825. PubMed PMC

Huang X, Chisholm J, Zhuang J, Xiao Y, Duncan G, Chen X, Suk JS, Hanes J.. Protein nanocages that penetrate airway mucus and tumor tissue. Proc Natl Acad Sci USA. 2017;114(32):E6595–E6602. PubMed PMC

Ghandehari H, Chan H-K, Harashima H, MacKay JA, Minko T, Schenke-Layland K, Shen Y, Vicent MJ.. Advanced drug delivery 2020-Parts 1,2 and 3 Preface. Adv Drug Deliv Rev. 2020;156:1–2. PubMed

Jiang B, Zhang R, Zhang J, Hou Y, Chen X, Zhou M, Tian X, Hao C, Fan K, Yan X, et al. . GRP78-targeted ferritin nanocaged ultra-high dose of doxorubicin for hepatocellular carcinoma therapy. Theranostics. 2019;9(8):2167–2182. PubMed PMC

Fan K, Xi J, Fan L, Wang P, Zhu C, Tang Y, Xu X, Liang M, Jiang B, Yan X, et al. . In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat Commun. 2018;9(1):1440. PubMed PMC

Sun XR, Hong YL, Gong YB, Zheng SS, Xie DH.. Bioengineered ferritin nanocarriers for cancer therapy. IJMS. 2021;22(13):7023. PubMed PMC

Houser KV, Chen GL, Carter C, Crank MC, Nguyen TA, Burgos Florez MC, Berkowitz NM, Mendoza F, Hendel CS, Gordon IJ, et al. . Safety and immunogenicity of a ferritin nanoparticle H2 influenza vaccine in healthy adults: a phase 1 trial. Nat Med. 2022;28(2):383–391. PubMed PMC

Powell AE, Zhang K, Sanyal M, Tang S, Weidenbacher PA, Li S, Pham TD, Pak JE, Chiu W, Kim PS, et al. . A single immunization with spike-functionalized ferritin vaccines elicits neutralizing antibody responses against SARS-CoV-2 in mice. ACS Cent Sci. 2021;7(1):183–199. PubMed PMC

Lai C-Y, To A, Wong TAS, et al. Recombinant protein subunit SARS-CoV-2 vaccines formulated with CoVaccine HT adjuvant induce broad, Th1 biased, humoral and cellular immune responses in mice. bioRxiv. 2021 PubMed PMC

Swanson KA, Rainho-Tomko JN, Williams ZP, Lanza L, Peredelchuk M, Kishko M, Pavot V, Alamares-Sapuay J, Adhikarla H, Gupta S, et al. . A respiratory syncytial virus (RSV) F protein nanoparticle vaccine focuses antibody responses to a conserved neutralization domain. Sci Immunol. 2020;5(47):eaba6466. PubMed

Kanekiyo M, Bu W, Joyce MG, Meng G, Whittle JRR, Baxa U, Yamamoto T, Narpala S, Todd J-P, Rao SS, et al. . Rational design of an epstein-barr virus vaccine targeting the receptor-binding site. Cell. 2015;162(5):1090–1100. PubMed PMC

Kanekiyo M, Wei C-J, Yassine HM, McTamney PM, Boyington JC, Whittle JRR, Rao SS, Kong W-P, Wang L, Nabel GJ, et al. . Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature. 2013;499(7456):102–106. PubMed PMC

Georgiev IS, Joyce MG, Chen RE, Leung K, McKee K, Druz A, Van Galen JG, Kanekiyo M, Tsybovsky Y, Yang ES, et al. . Two-component ferritin nanoparticles for multimerization of diverse trimeric antigens. ACS Infect Dis. 2018;4(5):788–796. PubMed PMC

von Hoven G, Rivas AJ, Neukirch C, Klein S, Hamm C, Qin Q, Meyenburg M, Füser S, Saftig P, Hellmann N, et al. . Dissecting the role of ADAM10 as a mediator of Staphylococcus aureus alpha-toxin action. Biochem J. 2016;473(13):1929–1940. PubMed

Wei J, Cheng X, Zhang Y, Gao C, Wang Y, Peng Q, Luo P, Yang L, Zou Q, Zeng H, et al. . Identification and application of a neutralizing epitope within alpha-hemolysin using human serum antibodies elicited by vaccination. Mol Immunol. 2021;135:45–52. PubMed

Wang W, Zhou X, Bian Y, Wang S, Chai Q, Guo Z, Wang Z, Zhu P, Peng H, Yan X, et al. . Dual-targeting nanoparticle vaccine elicits a therapeutic antibody response against chronic hepatitis B. Nat Nanotechnol. 2020;15(5):406–416. PubMed PMC

Qu Z, Guo Y, Li M, Cao C, Wang J, Gao M.. Recombinant ferritin nanoparticles can induce dendritic cell maturation through TLR4/NF-kappaB pathway. Biotechnol Lett. 2020;42(12):2489–2500. PubMed

Wang Z, Xu L, Yu H, Lv P, Lei Z, Zeng Y, Liu G, Cheng T.. Ferritin nanocage-based antigen delivery nanoplatforms: epitope engineering for peptide vaccine design. Biomater Sci. 2019;7(5):1794–1800. PubMed

Zhang B, Chao CW, Tsybovsky Y, Abiona OM, Hutchinson GB, Moliva JI, Olia AS, Pegu A, Phung E, Stewart-Jones GBE, et al. . A platform incorporating trimeric antigens into self-assembling nanoparticles reveals SARS-CoV-2-spike nanoparticles to elicit substantially higher neutralizing responses than spike alone. Sci Rep. 2020;10(1):18149. PubMed PMC

Souza PFN, Amaral JL, Bezerra LP, Lopes FES, Freire VN, Oliveira JTA, Freitas CDT.. ACE2-derived peptides interact with the RBD domain of SARS-CoV-2 spike glycoprotein, disrupting the interaction with the human ACE2 receptor. J Biomol Struct Dyn. 2022;40(12):5493–5506. PubMed PMC

Kalathiya U, Padariya M, Fahraeus R, Chakraborti S, Hupp TR.. Multivalent display of SARS-CoV-2 Spike (RBD Domain) of COVID-19 to nanomaterial, protein ferritin nanocages. Biomolecules. 2021;11(2):297. PubMed PMC

Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D.. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2):281–292.e6. PubMed PMC

Wang B, Li S, Qiao Y, Fu Y, Nie J, Jiang S, Yao X, Pan Y, Zhao L, Wu C, et al. . Self-assembling ferritin nanoparticles coupled with linear sequences from canine distemper virus haemagglutinin protein elicit robust immune responses. J Nanobiotechnol. 2022;20(1):32. PubMed PMC

Attarilar S, Yang J, Ebrahimi M, Wang Q, Liu J, Tang Y, Yang J.. The toxicity phenomenon and the related occurrence in metal and metal oxide nanoparticles: a brief review from the biomedical perspective. Front Bioeng Biotechnol. 2020;8:822. PubMed PMC

Kelly HG, Tan H-X, Juno JA, Esterbauer R, Ju Y, Jiang W, Wimmer VC, Duckworth BC, Groom JR, Caruso F, et al. . Self-assembling influenza nanoparticle vaccines drive extended germinal center activity and memory B cell maturation. Jci Insight. 2020;5(10):e136653. PubMed PMC

Zhang XD, Chen XK, Zhao YL.. Nanozymes: versatile platforms for cancer diagnosis and therapy. Nano-Micro Lett. 2022;14(1):95. PubMed PMC

Liang MM, Yan XY.. Nanozymes: from new concepts, mechanisms, and standards to applications. Acc Chem Res. 2019;52(8):2190–2200. PubMed

Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, et al. . Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2(9):577–583. PubMed

Zhu XH, Du JX, Zhu D, Ren SZ, Chen K, Zhu HL.. Recent Research on Methods to Improve Tumor Hypoxia Environment. Oxid Med Cell Longevity . 2020;2020:1–18. PubMed PMC

Candelaria PV, Leoh LS, Penichet ML, Daniels-Wells TR.. Antibodies Targeting the Transferrin Receptor 1 (TfR1) as direct anti-cancer agents. Front Immunol. 2021;12:607692. PubMed PMC

Hestericova M, Heinisch T, Lenz M, Ward TR.. Ferritin encapsulation of artificial metalloenzymes: engineering a tertiary coordination sphere for an artificial transfer hydrogenase. Dalton Trans. 2018;47(32):10837–10841. PubMed

Zhang L, Laug L, Münchgesang W, Pippel E, Gösele U, Brandsch M, Knez M.. Reducing stress on cells with apoferritin-encapsulated platinum nanoparticles. Nano Lett. 2010;10(1):219–223. PubMed

Wang T, He J, Duan D, Jiang B, Wang P, Fan K, Liang M, Yan X.. Bioengineered magnetoferritin nanozymes for pathological identification of high-risk and ruptured atherosclerotic plaques in humans. Nano Res. 2019;12(4):863–868.

Kasyutich O, Ilari A, Fiorillo A, Tatchev D, Hoell A, Ceci P.. Silver ion incorporation and nanoparticle formation inside the cavity of pyrococcus furiosus ferritin: structural and size-distribution analyses. J Am Chem Soc. 2010;132(10):3621–3627. PubMed

Peskova M, Ilkovics L, Hynek D, Dostalova S, Sanchez-Carnerero EM, Remes M, Heger Z, Pekarik V.. Detergent-modified catalytic and enzymomimetic activity of silver and palladium nanoparticles biotemplated by Pyrococcus furiosus ferritin. J Colloid Interface Sci. 2019;537:20–27. PubMed

Foglizzo V, Marchio S.. Nanoparticles as physically- and biochemically-tuned drug formulations for cancers therapy. Cancers. 2022;14(10):2473. PubMed PMC

Kang C, Sun Y, Zhu J, Li W, Zhang A, Kuang T, Xie J, Yang Z.. Delivery of nanoparticles for treatment of brain tumor. Curr Drug Metab. 2016;17(8):745–754. PubMed

Bhushan B, Kumar SU, Matai I, Sachdev A, Dubey P, Gopinath P.. Ferritin nanocages: a novel platform for biomedical applications. J Biomed Nanotechnol. 2014;10(10):2950–2976. PubMed

Alkhateeb AA, Connor JR.. The significance of ferritin in cancer: anti-oxidation, inflammation and tumorigenesis. Biochim Biophys Acta. 2013;1836(2):245–254. PubMed

Li L, Fang CJ, Ryan JC, Niemi EC, Lebrón JA, Björkman PJ, Arase H, Torti FM, Torti SV, Nakamura MC, et al. . Binding and uptake of H-ferritin are mediated by human transferrin receptor-1. Proc Natl Acad Sci U S A. 2010;107(8):3505–3510. PubMed PMC

Chen H, Tan X, Han X, Ma L, Dai H, Fu Y, Zhang Y.. Ferritin nanocage based delivery vehicles: from single-, co- to compartmentalized- encapsulation of bioactive or nutraceutical compounds. Biotechnol Adv. 2022;61:108037. PubMed

Waller LP, Deshpande V, Pyrsopoulos N.. Hepatocellular carcinoma: a comprehensive review. World J Hepatol. 2015;7(26):2648–2663. PubMed PMC

Yao X, Liu H, Zhang X, Zhang L, Li X, Wang C, Sun S.. Cell Surface GRP78 Accelerated Breast Cancer Cell Proliferation and Migration by Activating STAT3. Plos One. 2015;10(5):e0125634. PubMed PMC

Liang M, Fan K, Zhou M, Duan D, Zheng J, Yang D, Feng J, Yan X.. H-ferritin-nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. Proc Natl Acad Sci U S A. 2014;111(41):14900–14905. PubMed PMC

Macone A, Masciarelli S, Palombarini F, Quaglio D, Boffi A, Trabuco MC, Baiocco P, Fazi F, Bonamore A.. Ferritin nanovehicle for targeted delivery of cytochrome C to cancer cells. Sci Rep. 2019;9(1):11749. PubMed PMC

Wang C, Wang X, Zhang W, Ma D, Li F, Jia R, Shi M, Wang Y, Ma G, Wei W, et al. . Shielding Ferritin with a Biomineralized Shell Enables Efficient Modulation of Tumor Microenvironment and Targeted Delivery of Diverse Therapeutic Agents. Adv Mater . 2022;34(5):2107150. PubMed

Kurtzberg LS, Roth S, Krumbholz R, Crawford J, Bormann C, Dunham S, Yao M, Rouleau C, Bagley RG, Yu X-J, et al. . Genz-644282, a Novel Non-Camptothecin Topoisomerase I Inhibitor for Cancer Treatment. Clin Cancer Res. 2011;17(9):2777–2787. PubMed

Falvo E, Arcovito A, Conti G, Cipolla G, Pitea M, Morea V, Damiani V, Sala G, Fracasso G, Ceci P, et al. . Engineered Human Nanoferritin Bearing the Drug Genz-644282 for Cancer Therapy. Pharmaceutics. 2020;12(10):992. PubMed PMC

Bio M, Mahabubur KM, Lim I, Rajaputra P, Hurst RE, You Y.. Singlet oxygen-activatable Paclitaxel prodrugs via intermolecular activation for combined PDT and chemotherapy. Bioorg Med Chem Lett. 2019;29(12):1537–1540. PubMed

Li R, Ma Y, Dong Y, Zhao Z, You C, Huang S, Li X, Wang F, Zhang Y.. Novel Paclitaxel-Loaded Nanoparticles Based on Human H Chain Ferritin for Tumor-Targeted Delivery. ACS Biomater Sci Eng. 2019;5(12):6645–6654. PubMed

Ma Y, Li R, Dong Y, You C, Huang S, Li X, Wang F, Zhang Y.. tLyP-1 peptide functionalized human H chain ferritin for targeted delivery of paclitaxel. Int J Nanomedicine. 2021;16:789–802. PubMed PMC

Pandolfi L, Bellini M, Vanna R, Morasso C, Zago A, Carcano S, Avvakumova S, Bertolini JA, Rizzuto MA, Colombo M, et al. . H-ferritin enriches the curcumin uptake and improves the therapeutic efficacy in triple negative breast cancer cells. Biomacromolecules. 2017;18(10):3318–3330. PubMed

Kuruppu AI, Zhang L, Collins H, Turyanska L, Thomas NR, Bradshaw TD.. An Apoferritin-based Drug Delivery System for the Tyrosine Kinase Inhibitor Gefitinib. Adv Healthc Mater. 2015;4(18):2816–2821. PubMed

Inoue I, Chiba M, Ito K, Okamatsu Y, Suga Y, Kitahara Y, Nakahara Y, Endo Y, Takahashi K, Tagami U, et al. . One-step construction of ferritin encapsulation drugs for cancer chemotherapy. Nanoscale. 2021;13(3):1875–1883. PubMed

Jiang B, Chen X, Sun G, Chen X, Yin Y, Jin Y, Mi Q, Ma L, Yang Y, Yan X, et al. . A natural drug entry channel in the ferritin nanocage. Nano Today. 2020; 35:100948.

Zhang BL, Tang GH, He JY, Yan XY, Fan KL.. Ferritin nanocage: a promising and designable multi-module platform for constructing dynamic nanoassembly-based drug nanocarrier. Adv Drug Delivery Rev . 2021;176:113892. PubMed

Chen S, Liu Y, Zhu L, Meng D, Zhang L, Wang Q, Hu J, Wang D, Wang Z, Zhou Z, et al. . Chaotrope-controlled fabrication of ferritin-salvianolic acid B- epigallocatechin gallate three-layer nanoparticle by the flexibility of ferritin channels. J Agric Food Chem. 2021;69(41):12314–12322. PubMed

Jiang B, Fang L, Wu KM, Yan XY, Fan KL.. Ferritins as natural and artificial nanozymes for theranostics. Theranostics. 2020;10(2):687–706. PubMed PMC

Li Y, Liu G, Ma J, Lin J, Lin H, Su G, Chen D, Ye S, Chen X, Zhu X, et al. . Chemotherapeutic drug-photothermal agent co-self-assembling nanoparticles for near-infrared fluorescence and photoacoustic dual-modal imaging-guided chemo-photothermal synergistic therapy. J Control Release. 2017;258:95–107. PubMed

Wang Z, Huang P, Jacobson O, Wang Z, Liu Y, Lin L, Lin J, Lu N, Zhang H, Tian R.. Biomineralization-inspired synthesis of copper sulfide-ferritin nanocages as cancer theranostics. Acs Nano 2016;10(3):3453–3460. PubMed PMC

Li H, Zhang W, Ding L, Li XW, Wu Y, Tang JH.. Prussian blue-modified ferritin nanoparticles for effective tumor chemo-photothermal combination therapy via enhancing reactive oxygen species production. J Biomater Appl. 2019;33(9):1202–1213. PubMed

Zhang J, Zeng Y, Su M, Yu M, Zhang Y, Cheng H, Zheng H, Liu J, Wang X, Lei Z, et al. . Multifunctional Ferritin Nanoparticles as Theranostics for Imaging-Guided Tumor Phototherapy. J Biomed Nanotechnol. 2019;15(7):1546–1555. PubMed

Zhen ZP, Tang W, Zhang WZ, Xie J.. Folic acid conjugated ferritins as photosensitizer carriers for photodynamic therapy. Nanoscale. 2015;7(23):10330–10333. PubMed PMC

Lam JKW, Chow MYT, Zhang Y, Leung SWS.. siRNA Versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids. 2015;4:e252. PubMed PMC

Li L, Muñoz-Culla M, Carmona U, Lopez MP, Yang F, Trigueros C, Otaegui D, Zhang L, Knez M.. Ferritin-mediated siRNA delivery and gene silencing in human tumor and primary cells. Biomaterials. 2016;98:143–151. PubMed

Chen H, Ma L, Dai H, Fu Y, Han X, Zhang Y.. The construction of self-protective ferritin nanocage to cross dynamic gastrointestinal barriers with improved delivery efficiency. Food Chem . 2022;397:133680. PubMed

Zhou Z, Sun G, Liu Y, Gao Y, Xu J, Meng D, Strappe P, Blanchard C, Yang R.. A Novel Approach to Prepare Protein-proanthocyanidins Nano-complexes by the Reversible Assembly of Ferritin Cage. FSTR. 2017;23(2):329–337.

Yang R, Tian J, Liu YQ, Yang ZY, Wu DD, Zhou ZK.. Thermally Induced Encapsulation of Food Nutrients into Phytoferritin through the Flexible Channels without Additives. J Agric Food Chem. 2017;65(46):9950–9955. PubMed

Wang Z, Zhao Y, Zhang S, Chen X, Sun G, Zhang B, Jiang B, Yang Y, Yan X, Fan K, et al. . Re-engineering the inner surface of ferritin nanocage enables dual drug payloads for synergistic tumor therapy. Theranostics. 2022;12(4):1800–1815. PubMed PMC

Mansourizadeh F, Alberti D, Bitonto V, Tripepi M, Sepehri H, Khoee S, Geninatti Crich S.. Efficient synergistic combination effect of Quercetin with Curcumin on breast cancer cell apoptosis through their loading into Apo ferritin cavity. Colloids Surf B Biointerfaces. 2020;191:110982. PubMed

Chen H, Dai H, Zhu H, Ma L, Fu Y, Feng X, Sun Y, Zhang Y.. Construction of dual-compartmental micro-droplet via shrimp ferritin nanocages stabilized Pickering emulsions for co-encapsulation of hydrophobic/hydrophilic bioactive compounds. Food Hydrocolloids. 2022;126:107443.

Pang J, Feng X, Liang Q, Zheng X, Duan Y, Zhang X, Zhang J, Chen Y, Fan K, Gao L, et al. . Ferritin-nanocaged ATP traverses the blood-testis barrier and enhances sperm motility in an asthenozoospermia model. Acs Nano. 2022;16(3):4175–4185. PubMed

Kim JW, Lee KK, Park KW, Kim M, Lee CS.. Genetically modified ferritin nanoparticles with bone-targeting peptides for bone imaging. IJMS. 2021;22(9):4854. PubMed PMC

Yao HC, Zhao WW, Zhang SG, Guo XF, Li Y, Du B.. Dual-functional carbon dot-labeled heavy-chain ferritin for self-targeting bio-imaging and chemo-photodynamic therapy. J Mater Chem B. 2018;6(19):3107–3115. PubMed

Antonelli A, Sfara C, Battistelli S, Canonico B, Arcangeletti M, Manuali E, Salamida S, Papa S, Magnani M.. New strategies to prolong the in vivo life span of iron-based contrast agents for MRI. Plos One. 2013;8(10):e78542. PubMed PMC

Valero E, Fiorini S, Tambalo S, Busquier H, Callejas-Fernández J, Marzola P, Gálvez N, Domínguez-Vera JM.. In vivo long-term magnetic resonance imaging activity of ferritin-based magnetic nanoparticles versus a standard contrast agent. J Med Chem. 2014;57(13):5686–5692. PubMed

Mittleman DM. Twenty years of terahertz imaging Invited. Opt Express. 2018;26(8):9417–9431. PubMed

Yang Z, Tang D, Hu J, Tang M, Zhang M, Cui H‐L, Wang L, Chang C, Fan C, Li J, et al. . Near-field nanoscopic terahertz imaging of single proteins. Small. 2021;17(3):2005814. PubMed

Huang XL, Xue Y, Wu JL, Zhan Q, Zhao JM.. MRI tracking of SPIO- and Fth1-labeled bone marrow mesenchymal stromal cell transplantation for treatment of stroke. Contrast Media Mol Imaging . 2019;2019:1–10. PubMed PMC

Lv CY, Yin SH, Zhang XQ, Hu JW, Zhang T, Zhao GH.. 16-Mer ferritin-like protein templated gold nanoclusters for bioimaging detection of methylmercury in the brain of living mice. Anal Chim Acta. 2020;1127:149–155. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...