Recombinant ferritins for multimodal nanomedicine
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
37263586
PubMed Central
PMC10236959
DOI
10.1080/14756366.2023.2219868
Knihovny.cz E-zdroje
- Klíčová slova
- Ferritin, nanocarrier, nanovaccine, nanozymes, recombinant protein,
- MeSH
- ferritiny * chemie metabolismus MeSH
- nanočástice * MeSH
- nanomedicína MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- ferritiny * MeSH
In all living organisms, ferritins are a group of proteins important for maintaining iron homeostasis. Increasing amount of studies has shown that recombinant ferritins can be widely used in multimodal nanomedicine, especially for anticancer treatment and vaccination. Recombinant particles prepared by fusing viral proteins and ferritin subunits produce a better immune response and higher antibody titres. Moreover, actively-targeted ferritin nanoparticles can recognise receptors and deliver natural or chemical drugs specifically to the tumour tissue. In addition, ferritin-linked or loaded with contrast agents or fluorescent dyes can be used as multimodal particles useful cancer theranostics. In this review, we fully summarised the unitisation of recombinant ferritins in multimodal nanomedicine. The research progress of using recombinant ferritins as nanovaccines, nanozymes, and bioengineered nanocarriers for targeted therapy and bioimaging is emphasised.
Biomedical Research Center University Hospital Hradec Kralove Hradec Kralove Czech Republic
College of Life Science Yangtze University Jingzhou China
Department of Chemistry and Biochemistry Mendel University in Brno Brno Czech Republic
Zobrazit více v PubMed
Zhang N, Yu XQ, Xie JX, Xu HM.. New insights into the role of ferritin in iron homeostasis and neurodegenerative diseases. Mol Neurobiol. 2021;58(6):2812–2823. PubMed
Zang JC, Chen H, Zhao GH, Wang FD, Ren FZ.. Ferritin cage for encapsulation and delivery of bioactive nutrients: from structure, property to applications. Crit Rev Food Sci Nutr. 2017;57(17):3673–3683. PubMed
Adameyko KI, Burakov AV, Finoshin AD, Mikhailov KV, Kravchuk OI, Kozlova OS, Gornostaev NG, Cherkasov AV, Erokhov PA, Indeykina MI, et al. . Conservative and atypical ferritins of sponges. IJMS. 2021;22(16):8635. PubMed PMC
Zhen ZP, Tang W, Todd T, Xie J.. Ferritins as nanoplatforms for imaging and drug delivery. Expert Opin Drug Deliv. 2014;11(12):1913–1922. PubMed PMC
Garcia-Casal MN, Pasricha SR, Martinez RX, Lopez-Perez L, Pena-Rosas JP, Cochrane Tobacco Addiction Group. Serum or plasma ferritin concentration as an index of iron deficiency and overload. Cochrane Database Syst Rev. 2021;2021(5):CD011817. PubMed PMC
Ueda N, Takasawa K.. Impact of inflammation on ferritin, hepcidin and the management of iron deficiency anemia in chronic kidney disease. Nutrients. 2018;10(9):1173. PubMed PMC
Mahroum N, Alghory A, Kiyak Z, Alwani A, Seida R, Alrais M, Shoenfeld Y.. Ferritin-from iron, through inflammation and autoimmunity, to COVID-19. Journal of Autoimmunity. 2022;126:102778. PubMed PMC
Sun Q, Yang F, Wang H, Cui F, Li Y, Li S, Ren Y, Lan W, Li M, Zhu W, et al. . Elevated serum ferritin level as a predictor of reduced survival in patients with sporadic amyotrophic lateral sclerosis in China: a retrospective study. Amyotroph Lateral Scler Frontotemporal Degener. 2019;20(3-4):186–191. PubMed
Gossard TR, Trotti LM, Videnovic A, St Louis EK.. Restless legs syndrome: contemporary diagnosis and treatment. Neurotherapeutics. 2021;18(1):140–155. PubMed PMC
Devos D, Cabantchik ZI, Moreau C, Danel V, Mahoney-Sanchez L, Bouchaoui H, Gouel F, Rolland A-S, Duce JA, Devedjian J-C, et al. . Conservative iron chelation for neurodegenerative diseases such as Parkinson’s disease and amyotrophic lateral sclerosis. J Neural Transm. 2020;127(2):189–203. PubMed
Demchuk AM, Patel TR.. The biomedical and bioengineering potential of protein nanocompartments. Biotechnol Adv. 2020;41:107547. PubMed
Rodrigues MQ, Alves PM, Roldao A.. Functionalizing ferritin nanoparticles for vaccine development. Pharmaceutics. 2021;13(10):1621. PubMed PMC
Kim Y-I, Kim D, Yu K-M, Seo HD, Lee S-A, Casel MAB, Jang S-G, Kim S, Jung WRam, Lai C-J, et al. . Development of spike receptor-binding domain nanoparticles as a vaccine candidate against SARS-CoV-2 infection in ferrets. Mbio. 2021;12(2):e00230–21. PubMed PMC
Xu XL, Tian KW, Lou XF, Du YZ.. Potential of ferritin-based platforms for tumor immunotherapy. Molecules. 2022;27(9):2716. PubMed PMC
Shepherd BO, Chang D, Vasan S, Ake J, Modjarrad K.. HIV and SARS-CoV-2: tracing a path of vaccine research and development. Curr HIV/AIDS Rep. 2022;19(1):86–93. PubMed PMC
Pollet J, Chen WH, Strych U.. Recombinant protein vaccines, a proven approach against coronavirus pandemics. Adv Drug Deliv Rev. 2021;170:71–82. PubMed PMC
Palombarini F, Di Fabio E, Boffi A, Macone A, Bonamore A.. Ferritin nanocages for protein delivery to tumor cells. Molecules. 2020;25(4):825. PubMed PMC
Huang X, Chisholm J, Zhuang J, Xiao Y, Duncan G, Chen X, Suk JS, Hanes J.. Protein nanocages that penetrate airway mucus and tumor tissue. Proc Natl Acad Sci USA. 2017;114(32):E6595–E6602. PubMed PMC
Ghandehari H, Chan H-K, Harashima H, MacKay JA, Minko T, Schenke-Layland K, Shen Y, Vicent MJ.. Advanced drug delivery 2020-Parts 1,2 and 3 Preface. Adv Drug Deliv Rev. 2020;156:1–2. PubMed
Jiang B, Zhang R, Zhang J, Hou Y, Chen X, Zhou M, Tian X, Hao C, Fan K, Yan X, et al. . GRP78-targeted ferritin nanocaged ultra-high dose of doxorubicin for hepatocellular carcinoma therapy. Theranostics. 2019;9(8):2167–2182. PubMed PMC
Fan K, Xi J, Fan L, Wang P, Zhu C, Tang Y, Xu X, Liang M, Jiang B, Yan X, et al. . In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat Commun. 2018;9(1):1440. PubMed PMC
Sun XR, Hong YL, Gong YB, Zheng SS, Xie DH.. Bioengineered ferritin nanocarriers for cancer therapy. IJMS. 2021;22(13):7023. PubMed PMC
Houser KV, Chen GL, Carter C, Crank MC, Nguyen TA, Burgos Florez MC, Berkowitz NM, Mendoza F, Hendel CS, Gordon IJ, et al. . Safety and immunogenicity of a ferritin nanoparticle H2 influenza vaccine in healthy adults: a phase 1 trial. Nat Med. 2022;28(2):383–391. PubMed PMC
Powell AE, Zhang K, Sanyal M, Tang S, Weidenbacher PA, Li S, Pham TD, Pak JE, Chiu W, Kim PS, et al. . A single immunization with spike-functionalized ferritin vaccines elicits neutralizing antibody responses against SARS-CoV-2 in mice. ACS Cent Sci. 2021;7(1):183–199. PubMed PMC
Lai C-Y, To A, Wong TAS, et al. Recombinant protein subunit SARS-CoV-2 vaccines formulated with CoVaccine HT adjuvant induce broad, Th1 biased, humoral and cellular immune responses in mice. bioRxiv. 2021 PubMed PMC
Swanson KA, Rainho-Tomko JN, Williams ZP, Lanza L, Peredelchuk M, Kishko M, Pavot V, Alamares-Sapuay J, Adhikarla H, Gupta S, et al. . A respiratory syncytial virus (RSV) F protein nanoparticle vaccine focuses antibody responses to a conserved neutralization domain. Sci Immunol. 2020;5(47):eaba6466. PubMed
Kanekiyo M, Bu W, Joyce MG, Meng G, Whittle JRR, Baxa U, Yamamoto T, Narpala S, Todd J-P, Rao SS, et al. . Rational design of an epstein-barr virus vaccine targeting the receptor-binding site. Cell. 2015;162(5):1090–1100. PubMed PMC
Kanekiyo M, Wei C-J, Yassine HM, McTamney PM, Boyington JC, Whittle JRR, Rao SS, Kong W-P, Wang L, Nabel GJ, et al. . Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature. 2013;499(7456):102–106. PubMed PMC
Georgiev IS, Joyce MG, Chen RE, Leung K, McKee K, Druz A, Van Galen JG, Kanekiyo M, Tsybovsky Y, Yang ES, et al. . Two-component ferritin nanoparticles for multimerization of diverse trimeric antigens. ACS Infect Dis. 2018;4(5):788–796. PubMed PMC
von Hoven G, Rivas AJ, Neukirch C, Klein S, Hamm C, Qin Q, Meyenburg M, Füser S, Saftig P, Hellmann N, et al. . Dissecting the role of ADAM10 as a mediator of Staphylococcus aureus alpha-toxin action. Biochem J. 2016;473(13):1929–1940. PubMed
Wei J, Cheng X, Zhang Y, Gao C, Wang Y, Peng Q, Luo P, Yang L, Zou Q, Zeng H, et al. . Identification and application of a neutralizing epitope within alpha-hemolysin using human serum antibodies elicited by vaccination. Mol Immunol. 2021;135:45–52. PubMed
Wang W, Zhou X, Bian Y, Wang S, Chai Q, Guo Z, Wang Z, Zhu P, Peng H, Yan X, et al. . Dual-targeting nanoparticle vaccine elicits a therapeutic antibody response against chronic hepatitis B. Nat Nanotechnol. 2020;15(5):406–416. PubMed PMC
Qu Z, Guo Y, Li M, Cao C, Wang J, Gao M.. Recombinant ferritin nanoparticles can induce dendritic cell maturation through TLR4/NF-kappaB pathway. Biotechnol Lett. 2020;42(12):2489–2500. PubMed
Wang Z, Xu L, Yu H, Lv P, Lei Z, Zeng Y, Liu G, Cheng T.. Ferritin nanocage-based antigen delivery nanoplatforms: epitope engineering for peptide vaccine design. Biomater Sci. 2019;7(5):1794–1800. PubMed
Zhang B, Chao CW, Tsybovsky Y, Abiona OM, Hutchinson GB, Moliva JI, Olia AS, Pegu A, Phung E, Stewart-Jones GBE, et al. . A platform incorporating trimeric antigens into self-assembling nanoparticles reveals SARS-CoV-2-spike nanoparticles to elicit substantially higher neutralizing responses than spike alone. Sci Rep. 2020;10(1):18149. PubMed PMC
Souza PFN, Amaral JL, Bezerra LP, Lopes FES, Freire VN, Oliveira JTA, Freitas CDT.. ACE2-derived peptides interact with the RBD domain of SARS-CoV-2 spike glycoprotein, disrupting the interaction with the human ACE2 receptor. J Biomol Struct Dyn. 2022;40(12):5493–5506. PubMed PMC
Kalathiya U, Padariya M, Fahraeus R, Chakraborti S, Hupp TR.. Multivalent display of SARS-CoV-2 Spike (RBD Domain) of COVID-19 to nanomaterial, protein ferritin nanocages. Biomolecules. 2021;11(2):297. PubMed PMC
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D.. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2):281–292.e6. PubMed PMC
Wang B, Li S, Qiao Y, Fu Y, Nie J, Jiang S, Yao X, Pan Y, Zhao L, Wu C, et al. . Self-assembling ferritin nanoparticles coupled with linear sequences from canine distemper virus haemagglutinin protein elicit robust immune responses. J Nanobiotechnol. 2022;20(1):32. PubMed PMC
Attarilar S, Yang J, Ebrahimi M, Wang Q, Liu J, Tang Y, Yang J.. The toxicity phenomenon and the related occurrence in metal and metal oxide nanoparticles: a brief review from the biomedical perspective. Front Bioeng Biotechnol. 2020;8:822. PubMed PMC
Kelly HG, Tan H-X, Juno JA, Esterbauer R, Ju Y, Jiang W, Wimmer VC, Duckworth BC, Groom JR, Caruso F, et al. . Self-assembling influenza nanoparticle vaccines drive extended germinal center activity and memory B cell maturation. Jci Insight. 2020;5(10):e136653. PubMed PMC
Zhang XD, Chen XK, Zhao YL.. Nanozymes: versatile platforms for cancer diagnosis and therapy. Nano-Micro Lett. 2022;14(1):95. PubMed PMC
Liang MM, Yan XY.. Nanozymes: from new concepts, mechanisms, and standards to applications. Acc Chem Res. 2019;52(8):2190–2200. PubMed
Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, et al. . Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2(9):577–583. PubMed
Zhu XH, Du JX, Zhu D, Ren SZ, Chen K, Zhu HL.. Recent Research on Methods to Improve Tumor Hypoxia Environment. Oxid Med Cell Longevity . 2020;2020:1–18. PubMed PMC
Candelaria PV, Leoh LS, Penichet ML, Daniels-Wells TR.. Antibodies Targeting the Transferrin Receptor 1 (TfR1) as direct anti-cancer agents. Front Immunol. 2021;12:607692. PubMed PMC
Hestericova M, Heinisch T, Lenz M, Ward TR.. Ferritin encapsulation of artificial metalloenzymes: engineering a tertiary coordination sphere for an artificial transfer hydrogenase. Dalton Trans. 2018;47(32):10837–10841. PubMed
Zhang L, Laug L, Münchgesang W, Pippel E, Gösele U, Brandsch M, Knez M.. Reducing stress on cells with apoferritin-encapsulated platinum nanoparticles. Nano Lett. 2010;10(1):219–223. PubMed
Wang T, He J, Duan D, Jiang B, Wang P, Fan K, Liang M, Yan X.. Bioengineered magnetoferritin nanozymes for pathological identification of high-risk and ruptured atherosclerotic plaques in humans. Nano Res. 2019;12(4):863–868.
Kasyutich O, Ilari A, Fiorillo A, Tatchev D, Hoell A, Ceci P.. Silver ion incorporation and nanoparticle formation inside the cavity of pyrococcus furiosus ferritin: structural and size-distribution analyses. J Am Chem Soc. 2010;132(10):3621–3627. PubMed
Peskova M, Ilkovics L, Hynek D, Dostalova S, Sanchez-Carnerero EM, Remes M, Heger Z, Pekarik V.. Detergent-modified catalytic and enzymomimetic activity of silver and palladium nanoparticles biotemplated by Pyrococcus furiosus ferritin. J Colloid Interface Sci. 2019;537:20–27. PubMed
Foglizzo V, Marchio S.. Nanoparticles as physically- and biochemically-tuned drug formulations for cancers therapy. Cancers. 2022;14(10):2473. PubMed PMC
Kang C, Sun Y, Zhu J, Li W, Zhang A, Kuang T, Xie J, Yang Z.. Delivery of nanoparticles for treatment of brain tumor. Curr Drug Metab. 2016;17(8):745–754. PubMed
Bhushan B, Kumar SU, Matai I, Sachdev A, Dubey P, Gopinath P.. Ferritin nanocages: a novel platform for biomedical applications. J Biomed Nanotechnol. 2014;10(10):2950–2976. PubMed
Alkhateeb AA, Connor JR.. The significance of ferritin in cancer: anti-oxidation, inflammation and tumorigenesis. Biochim Biophys Acta. 2013;1836(2):245–254. PubMed
Li L, Fang CJ, Ryan JC, Niemi EC, Lebrón JA, Björkman PJ, Arase H, Torti FM, Torti SV, Nakamura MC, et al. . Binding and uptake of H-ferritin are mediated by human transferrin receptor-1. Proc Natl Acad Sci U S A. 2010;107(8):3505–3510. PubMed PMC
Chen H, Tan X, Han X, Ma L, Dai H, Fu Y, Zhang Y.. Ferritin nanocage based delivery vehicles: from single-, co- to compartmentalized- encapsulation of bioactive or nutraceutical compounds. Biotechnol Adv. 2022;61:108037. PubMed
Waller LP, Deshpande V, Pyrsopoulos N.. Hepatocellular carcinoma: a comprehensive review. World J Hepatol. 2015;7(26):2648–2663. PubMed PMC
Yao X, Liu H, Zhang X, Zhang L, Li X, Wang C, Sun S.. Cell Surface GRP78 Accelerated Breast Cancer Cell Proliferation and Migration by Activating STAT3. Plos One. 2015;10(5):e0125634. PubMed PMC
Liang M, Fan K, Zhou M, Duan D, Zheng J, Yang D, Feng J, Yan X.. H-ferritin-nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. Proc Natl Acad Sci U S A. 2014;111(41):14900–14905. PubMed PMC
Macone A, Masciarelli S, Palombarini F, Quaglio D, Boffi A, Trabuco MC, Baiocco P, Fazi F, Bonamore A.. Ferritin nanovehicle for targeted delivery of cytochrome C to cancer cells. Sci Rep. 2019;9(1):11749. PubMed PMC
Wang C, Wang X, Zhang W, Ma D, Li F, Jia R, Shi M, Wang Y, Ma G, Wei W, et al. . Shielding Ferritin with a Biomineralized Shell Enables Efficient Modulation of Tumor Microenvironment and Targeted Delivery of Diverse Therapeutic Agents. Adv Mater . 2022;34(5):2107150. PubMed
Kurtzberg LS, Roth S, Krumbholz R, Crawford J, Bormann C, Dunham S, Yao M, Rouleau C, Bagley RG, Yu X-J, et al. . Genz-644282, a Novel Non-Camptothecin Topoisomerase I Inhibitor for Cancer Treatment. Clin Cancer Res. 2011;17(9):2777–2787. PubMed
Falvo E, Arcovito A, Conti G, Cipolla G, Pitea M, Morea V, Damiani V, Sala G, Fracasso G, Ceci P, et al. . Engineered Human Nanoferritin Bearing the Drug Genz-644282 for Cancer Therapy. Pharmaceutics. 2020;12(10):992. PubMed PMC
Bio M, Mahabubur KM, Lim I, Rajaputra P, Hurst RE, You Y.. Singlet oxygen-activatable Paclitaxel prodrugs via intermolecular activation for combined PDT and chemotherapy. Bioorg Med Chem Lett. 2019;29(12):1537–1540. PubMed
Li R, Ma Y, Dong Y, Zhao Z, You C, Huang S, Li X, Wang F, Zhang Y.. Novel Paclitaxel-Loaded Nanoparticles Based on Human H Chain Ferritin for Tumor-Targeted Delivery. ACS Biomater Sci Eng. 2019;5(12):6645–6654. PubMed
Ma Y, Li R, Dong Y, You C, Huang S, Li X, Wang F, Zhang Y.. tLyP-1 peptide functionalized human H chain ferritin for targeted delivery of paclitaxel. Int J Nanomedicine. 2021;16:789–802. PubMed PMC
Pandolfi L, Bellini M, Vanna R, Morasso C, Zago A, Carcano S, Avvakumova S, Bertolini JA, Rizzuto MA, Colombo M, et al. . H-ferritin enriches the curcumin uptake and improves the therapeutic efficacy in triple negative breast cancer cells. Biomacromolecules. 2017;18(10):3318–3330. PubMed
Kuruppu AI, Zhang L, Collins H, Turyanska L, Thomas NR, Bradshaw TD.. An Apoferritin-based Drug Delivery System for the Tyrosine Kinase Inhibitor Gefitinib. Adv Healthc Mater. 2015;4(18):2816–2821. PubMed
Inoue I, Chiba M, Ito K, Okamatsu Y, Suga Y, Kitahara Y, Nakahara Y, Endo Y, Takahashi K, Tagami U, et al. . One-step construction of ferritin encapsulation drugs for cancer chemotherapy. Nanoscale. 2021;13(3):1875–1883. PubMed
Jiang B, Chen X, Sun G, Chen X, Yin Y, Jin Y, Mi Q, Ma L, Yang Y, Yan X, et al. . A natural drug entry channel in the ferritin nanocage. Nano Today. 2020; 35:100948.
Zhang BL, Tang GH, He JY, Yan XY, Fan KL.. Ferritin nanocage: a promising and designable multi-module platform for constructing dynamic nanoassembly-based drug nanocarrier. Adv Drug Delivery Rev . 2021;176:113892. PubMed
Chen S, Liu Y, Zhu L, Meng D, Zhang L, Wang Q, Hu J, Wang D, Wang Z, Zhou Z, et al. . Chaotrope-controlled fabrication of ferritin-salvianolic acid B- epigallocatechin gallate three-layer nanoparticle by the flexibility of ferritin channels. J Agric Food Chem. 2021;69(41):12314–12322. PubMed
Jiang B, Fang L, Wu KM, Yan XY, Fan KL.. Ferritins as natural and artificial nanozymes for theranostics. Theranostics. 2020;10(2):687–706. PubMed PMC
Li Y, Liu G, Ma J, Lin J, Lin H, Su G, Chen D, Ye S, Chen X, Zhu X, et al. . Chemotherapeutic drug-photothermal agent co-self-assembling nanoparticles for near-infrared fluorescence and photoacoustic dual-modal imaging-guided chemo-photothermal synergistic therapy. J Control Release. 2017;258:95–107. PubMed
Wang Z, Huang P, Jacobson O, Wang Z, Liu Y, Lin L, Lin J, Lu N, Zhang H, Tian R.. Biomineralization-inspired synthesis of copper sulfide-ferritin nanocages as cancer theranostics. Acs Nano 2016;10(3):3453–3460. PubMed PMC
Li H, Zhang W, Ding L, Li XW, Wu Y, Tang JH.. Prussian blue-modified ferritin nanoparticles for effective tumor chemo-photothermal combination therapy via enhancing reactive oxygen species production. J Biomater Appl. 2019;33(9):1202–1213. PubMed
Zhang J, Zeng Y, Su M, Yu M, Zhang Y, Cheng H, Zheng H, Liu J, Wang X, Lei Z, et al. . Multifunctional Ferritin Nanoparticles as Theranostics for Imaging-Guided Tumor Phototherapy. J Biomed Nanotechnol. 2019;15(7):1546–1555. PubMed
Zhen ZP, Tang W, Zhang WZ, Xie J.. Folic acid conjugated ferritins as photosensitizer carriers for photodynamic therapy. Nanoscale. 2015;7(23):10330–10333. PubMed PMC
Lam JKW, Chow MYT, Zhang Y, Leung SWS.. siRNA Versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids. 2015;4:e252. PubMed PMC
Li L, Muñoz-Culla M, Carmona U, Lopez MP, Yang F, Trigueros C, Otaegui D, Zhang L, Knez M.. Ferritin-mediated siRNA delivery and gene silencing in human tumor and primary cells. Biomaterials. 2016;98:143–151. PubMed
Chen H, Ma L, Dai H, Fu Y, Han X, Zhang Y.. The construction of self-protective ferritin nanocage to cross dynamic gastrointestinal barriers with improved delivery efficiency. Food Chem . 2022;397:133680. PubMed
Zhou Z, Sun G, Liu Y, Gao Y, Xu J, Meng D, Strappe P, Blanchard C, Yang R.. A Novel Approach to Prepare Protein-proanthocyanidins Nano-complexes by the Reversible Assembly of Ferritin Cage. FSTR. 2017;23(2):329–337.
Yang R, Tian J, Liu YQ, Yang ZY, Wu DD, Zhou ZK.. Thermally Induced Encapsulation of Food Nutrients into Phytoferritin through the Flexible Channels without Additives. J Agric Food Chem. 2017;65(46):9950–9955. PubMed
Wang Z, Zhao Y, Zhang S, Chen X, Sun G, Zhang B, Jiang B, Yang Y, Yan X, Fan K, et al. . Re-engineering the inner surface of ferritin nanocage enables dual drug payloads for synergistic tumor therapy. Theranostics. 2022;12(4):1800–1815. PubMed PMC
Mansourizadeh F, Alberti D, Bitonto V, Tripepi M, Sepehri H, Khoee S, Geninatti Crich S.. Efficient synergistic combination effect of Quercetin with Curcumin on breast cancer cell apoptosis through their loading into Apo ferritin cavity. Colloids Surf B Biointerfaces. 2020;191:110982. PubMed
Chen H, Dai H, Zhu H, Ma L, Fu Y, Feng X, Sun Y, Zhang Y.. Construction of dual-compartmental micro-droplet via shrimp ferritin nanocages stabilized Pickering emulsions for co-encapsulation of hydrophobic/hydrophilic bioactive compounds. Food Hydrocolloids. 2022;126:107443.
Pang J, Feng X, Liang Q, Zheng X, Duan Y, Zhang X, Zhang J, Chen Y, Fan K, Gao L, et al. . Ferritin-nanocaged ATP traverses the blood-testis barrier and enhances sperm motility in an asthenozoospermia model. Acs Nano. 2022;16(3):4175–4185. PubMed
Kim JW, Lee KK, Park KW, Kim M, Lee CS.. Genetically modified ferritin nanoparticles with bone-targeting peptides for bone imaging. IJMS. 2021;22(9):4854. PubMed PMC
Yao HC, Zhao WW, Zhang SG, Guo XF, Li Y, Du B.. Dual-functional carbon dot-labeled heavy-chain ferritin for self-targeting bio-imaging and chemo-photodynamic therapy. J Mater Chem B. 2018;6(19):3107–3115. PubMed
Antonelli A, Sfara C, Battistelli S, Canonico B, Arcangeletti M, Manuali E, Salamida S, Papa S, Magnani M.. New strategies to prolong the in vivo life span of iron-based contrast agents for MRI. Plos One. 2013;8(10):e78542. PubMed PMC
Valero E, Fiorini S, Tambalo S, Busquier H, Callejas-Fernández J, Marzola P, Gálvez N, Domínguez-Vera JM.. In vivo long-term magnetic resonance imaging activity of ferritin-based magnetic nanoparticles versus a standard contrast agent. J Med Chem. 2014;57(13):5686–5692. PubMed
Mittleman DM. Twenty years of terahertz imaging Invited. Opt Express. 2018;26(8):9417–9431. PubMed
Yang Z, Tang D, Hu J, Tang M, Zhang M, Cui H‐L, Wang L, Chang C, Fan C, Li J, et al. . Near-field nanoscopic terahertz imaging of single proteins. Small. 2021;17(3):2005814. PubMed
Huang XL, Xue Y, Wu JL, Zhan Q, Zhao JM.. MRI tracking of SPIO- and Fth1-labeled bone marrow mesenchymal stromal cell transplantation for treatment of stroke. Contrast Media Mol Imaging . 2019;2019:1–10. PubMed PMC
Lv CY, Yin SH, Zhang XQ, Hu JW, Zhang T, Zhao GH.. 16-Mer ferritin-like protein templated gold nanoclusters for bioimaging detection of methylmercury in the brain of living mice. Anal Chim Acta. 2020;1127:149–155. PubMed