DrugEx: Deep Learning Models and Tools for Exploration of Drug-Like Chemical Space

. 2023 Jun 26 ; 63 (12) : 3629-3636. [epub] 20230605

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37272707

The discovery of novel molecules with desirable properties is a classic challenge in medicinal chemistry. With the recent advancements of machine learning, there has been a surge of de novo drug design tools. However, few resources exist that are user-friendly as well as easily customizable. In this application note, we present the new versatile open-source software package DrugEx for multiobjective reinforcement learning. This package contains the consolidated and redesigned scripts from the prior DrugEx papers including multiple generator architectures, a variety of scoring tools, and multiobjective optimization methods. It has a flexible application programming interface and can readily be used via the command line interface or the graphical user interface GenUI. The DrugEx package is publicly available at https://github.com/CDDLeiden/DrugEx.

Zobrazit více v PubMed

Wouters O. J.; McKee M.; Luyten J. Estimated Research and Development Investment Needed to Bring a New Medicine to Market, 2009–2018. Journal of the American Medical Association 2020, 323, 844–853. 10.1001/jama.2020.1166. PubMed DOI PMC

Kirkpatrick P.; Ellis C. Chemical space. Nature 2004, 432, 823.10.1038/432823a. DOI

Anstine D. M.; Isayev O. Generative Models as an Emerging Paradigm in the Chemical Sciences. Journal of American Chemical Society 2023, 145, 8736–8750. 10.1021/jacs.2c13467. PubMed DOI PMC

Perron Q.; Mirguet O.; Tajmouati H.; Skiredj A.; Rojas A.; Gohier A.; Ducrot P.; Bourguignon M.-P.; Sansilvestri-Morel P.; Do Huu N.; Gellibert F.; Gaston-Mathé Y. Deep generative models for ligand-based de novo design applied to multi-parametric optimization. Journal of Compututational Chemistry 2022, 43, 692–703. 10.1002/jcc.26826. PubMed DOI

Grisoni F. Chemical language models for de novo drug design: Challenges and opportunities. Current Opinion in Structural Biology-. 2023, 79, 102527.10.1016/j.sbi.2023.102527. PubMed DOI

Liu X.; IJzerman A. P.; van Westen G. J. P. In Artificial Neural Networks; Methods in Molecular Biology series; Cartwright H., Ed.; Springer US: New York, 2021; Vol. 2190; pp 139–165. 10.1007/978-1-0716-0826-5_6. PubMed DOI

Luukkonen S.; van den Maagdenberg H. W.; Emmerich M. T.; van Westen G. J. Artificial Intelligence in Multi-objective Drug Design. Currurent Opinion in Structural Biology 2023, 79, 102537.10.1016/j.sbi.2023.102537. PubMed DOI

Mouchlis V. D.; Afantitis A.; Serra A.; Fratello M.; Papadiamantis A. G.; Aidinis V.; Lynch I.; Greco D.; Melagraki G. Advances in De Novo Drug Design: From Conventional to Machine Learning Methods. International Journal of Molecular Sciences 2021, 22, 1676.10.3390/ijms22041676. PubMed DOI PMC

Fromer J. C.; Coley C. W. Computer-aided multi-objective optimization in small molecule discovery. Patterns 2023, 4, 100678.10.1016/j.patter.2023.100678. PubMed DOI PMC

Liu X.; Ye K.; van Vlijmen H. W. T.; IJzerman A. P.; van Westen G. J. P. An exploration strategy improves the diversity of de novo ligands using deep reinforcement learning: a case for the adenosine A2A receptor. Journal of Cheminformatics 2019, 11, 35.10.1186/s13321-019-0355-6. PubMed DOI PMC

Liu X.; Ye K.; van Vlijmen H. W. T.; Emmerich M. T. M.; IJzerman A. P.; van Westen G. J. P. DrugEx v2: de novo design of drug molecules by Pareto-based multi-objective reinforcement learning in polypharmacology. Journal of Cheminformatics 2021, 13, 85.10.1186/s13321-021-00561-9. PubMed DOI PMC

Liu X.; Ye K.; van Vlijmen H. W. T.; IJzerman A. P.; van Westen G. J. P. DrugEx v3: scaffold-constrained drug design with graph transformer-based reinforcement learning. Journal of Cheminformatics 2023, 15, 24.10.1186/s13321-023-00694-z. PubMed DOI PMC

Vaswani A.; Shazeer N.; Parmar N.; Uszkoreit J.; Jones L.; Gomez A. N.; Kaiser L.; Polosukhin I.. Attention is All You Need. Advances in Neural Information Processing Systems 30, 2017; pp 6000–6010.

Radford A.; Narasimhan K.; Salimans T.; Sutskever I.. et al.Improving language understanding by generative pre-training. Preprint, 2018.

Olivecrona M.; Blaschke T.; Engkvist O.; Chen H. Molecular de-novo design through deep reinforcement learning. Journal of Cheminformatics 2017, 9, 48.10.1186/s13321-017-0235-x. PubMed DOI PMC

Arús-Pous J.; Patronov A.; Bjerrum E. J.; Tyrchan C.; Reymond J.-L.; Chen H.; Engkvist O. SMILES-based deep generative scaffold decorator for de-novo drug design. Journal of Cheminformatics 2020, 12, 38.10.1186/s13321-020-00441-8. PubMed DOI PMC

Yang Y.; Zheng S.; Su S.; Zhao C.; Xu J.; Chen H. SyntaLinker: automatic fragment linking with deep conditional transformer neural networks. Chemical Science 2020, 11, 8312–8322. 10.1039/D0SC03126G. PubMed DOI PMC

Hochreiter S.; Schmidhuber J. Long Short-Term Memory. Neural Computation 1997, 9, 1735–1780. 10.1162/neco.1997.9.8.1735. PubMed DOI

Cho K.; van Merriënboer B.; Bahdanau D.; Bengio Y.. On the Properties of Neural Machine Translation: Encoder–Decoder Approaches. Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, Doha, Qatar, 2014; pp 103–111. 10.3115/v1/W14-4012. DOI

Degen J.; Wegscheid-Gerlach C.; Zaliani A.; Rarey M. On the Art of Compiling and Using ‘Drug-Like’ Chemical Fragment Spaces. ChemMedChem. 2008, 3, 1503–1507. 10.1002/cmdc.200800178. PubMed DOI

Lewell X. Q.; Judd D. B.; Watson S. P.; Hann M. M. Journal of Chemical Information & Computer Science 1998, 38, 511–522. 10.1021/ci970429i. PubMed DOI

Gaulton A.; Hersey A.; Nowotka M.; Bento A. P.; Chambers J.; Mendez D.; Mutowo P.; Atkinson F.; Bellis L. J.; Cibrián-Uhalte E.; Davies M.; Dedman N.; Karlsson A.; Magariños M. P.; Overington J. P.; Papadatos G.; Smit I.; Leach A. R. The ChEMBL database in 2017. Nucleic Acids Research 2017, 45, D945–D954. 10.1093/nar/gkw1074. PubMed DOI PMC

Béquignon O. J. M.; Bongers B. J.; Jespers W.; IJzerman A. P.; van der Water B.; van Westen G. J. P. Papyrus: a large-scale curated dataset aimed at bioactivity predictions. Journal of Cheminformatics 2023, 15, 3.10.1186/s13321-022-00672-x. PubMed DOI PMC

Béquignon O. J. M.DrugEx RNN-GRU pretrained model (ChEMBL31), 2023. 10.5281/zenodo.7550739. DOI

Béquignon O. J. M.DrugEx RNN-GRU pretrained model (Papyrus 05.5), 2023. 10.5281/zenodo.7550792. DOI

Liu X.DrugEx v2 pretrained model (ChEMBL27), 2022. 10.5281/zenodo.7096837. DOI

Béquignon O. J. M.DrugEx v2 pretrained model (ChEMBL31), 2022. 10.5281/zenodo.7378916. DOI

Schoenmaker L.; Béquignon O. J. M.. DrugEx v2 pretrained model (Papyrus 05.5), 2022. 10.5281/zenodo.7378923. DOI

Šícho M.DrugEx pretrained model (SMILES-based; Papyrus 05.5), 2023. 10.5281/zenodo.7635064. DOI

Béquignon O. J. M.DrugEx pretrained model (SMILES-based; RECAP; Papyrus 05.5), 2023. 10.5281/zenodo.7622774. DOI

Liu X.DrugEx v3 pretrained model (graph-based; ChEMBL27), 2022. 10.5281/zenodo.7096823. DOI

Béquignon O. J. M.DrugEx v3 pretrained model (graph-based; Papyrus 05.5), 2022. 10.5281/zenodo.7085421. DOI

Béquignon O. J. M.DrugEx pretrained model (graph-based; RECAP; Papyrus 05.5), 2023. 10.5281/zenodo.7622738. DOI

Sutton R. S.; McAllester D.; Singh S.; Mansour Y.. Policy Gradient Methods for Reinforcement Learning with Function Approximation. Advances in Neural Information Processing Systems 12, 1999.

Pedregosa F.; Varoquaux G.; Gramfort A.; Michel V.; Thirion B.; Grisel O.; Blondel M.; Prettenhofer P.; Weiss R.; Dubourg V.; Vanderplas J.; Passos A.; Cournapeau D.; Brucher M.; Perrot M.; Duchesnay E. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 2011, 12, 2825–2830.

Paszke A.; Gross S.; Massa F.; Lerer A.; Bradbury J.; Chanan G.; Killeen T.; Lin Z.; Gimelshein N.; Antiga L.; Desmaison A.; Kopf A.; Yang E.; DeVito Z.; Raison M.; Tejani A.; Chilamkurthy S.; Steiner B.; Fang L.; Bai J.; Chintala S.. Advances in Neural Information Processing Systems 32; Curran Associates, Inc., 2019; pp 8024–8035.

Deb K.; Jain H. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints. IEEE Transactions on Evolutionary Computation 2014, 18, 577–601. 10.1109/TEVC.2013.2281535. DOI

Šícho M.; Liu X.; Svozil D.; van Westen G. J. P. GenUI: interactive and extensible open source software platform for de novo molecular generation and cheminformatics. Journal of Cheminformatics 2021, 13, 73.10.1186/s13321-021-00550-y. PubMed DOI PMC

Django Web Framework. Django Software Foundation. https://djangoproject.com.

RDKit: Open-source cheminformatics. RDKit. https://www.rdkit.org.

Krenn M.; Häse F.; Nigam A.; Friederich P.; Aspuru-Guzik A. Self-referencing embedded strings (SELFIES): A 100% robust molecular string representation. Machine Learning: Science and Technology 2020, 1, 045024.10.1088/2632-2153/aba947. DOI

Šícho M.; Luukkonen S.; van den Maagdenberg H. W.; Schoenmaker L.; Béquignon O. J. M.; van Westen G. J. P.. Sampling timings of DrugEx pretrained models, 2023. 10.5281/zenodo.7928362. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...