• This record comes from PubMed

GenUI: interactive and extensible open source software platform for de novo molecular generation and cheminformatics

. 2021 Sep 25 ; 13 (1) : 73. [epub] 20210925

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic

Document type Journal Article

Grant support
LM2018130 Ministerstvo Školství, Mládeže a Tělovýchovy
RVO 68378050-KAV-NPUI Ministerstvo Školství, Mládeže a Tělovýchovy

Links

PubMed 34563271
PubMed Central PMC8465716
DOI 10.1186/s13321-021-00550-y
PII: 10.1186/s13321-021-00550-y
Knihovny.cz E-resources

Many contemporary cheminformatics methods, including computer-aided de novo drug design, hold promise to significantly accelerate and reduce the cost of drug discovery. Thanks to this attractive outlook, the field has thrived and in the past few years has seen an especially significant growth, mainly due to the emergence of novel methods based on deep neural networks. This growth is also apparent in the development of novel de novo drug design methods with many new generative algorithms now available. However, widespread adoption of new generative techniques in the fields like medicinal chemistry or chemical biology is still lagging behind the most recent developments. Upon taking a closer look, this fact is not surprising since in order to successfully integrate the most recent de novo drug design methods in existing processes and pipelines, a close collaboration between diverse groups of experimental and theoretical scientists needs to be established. Therefore, to accelerate the adoption of both modern and traditional de novo molecular generators, we developed Generator User Interface (GenUI), a software platform that makes it possible to integrate molecular generators within a feature-rich graphical user interface that is easy to use by experts of diverse backgrounds. GenUI is implemented as a web service and its interfaces offer access to cheminformatics tools for data preprocessing, model building, molecule generation, and interactive chemical space visualization. Moreover, the platform is easy to extend with customizable frontend React.js components and backend Python extensions. GenUI is open source and a recently developed de novo molecular generator, DrugEx, was integrated as a proof of principle. In this work, we present the architecture and implementation details of GenUI and discuss how it can facilitate collaboration in the disparate communities interested in de novo molecular generation and computer-aided drug discovery.

See more in PubMed

Wang Y, Cheng T, Bryant SH. PubChem BioAssay: a decade’s development toward open high-throughput screening data sharing. SLAS DISCOVERY Adv Sci Drug Discov. 2017;22(6):655–666. doi: 10.1177/2472555216685069. PubMed DOI PMC

Tetko IV, Engkvist O, Koch U, Reymond J-L, Chen H. BIGCHEM: challenges and opportunities for big data analysis in chemistry. Mol Inf. 2016;35(11–12):615–621. doi: 10.1002/minf.201600073. PubMed DOI PMC

Rifaioglu AS, Atas H, Martin MJ, Cetin-Atalay R, Atalay V, Doğan T. Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases. Brief Bioinform. 2019;20(5):1878–1912. doi: 10.1093/bib/bby061. PubMed DOI PMC

Hoffmann T, Gastreich M. The next level in chemical space navigation: going far beyond enumerable compound libraries. Drug Discov Today. 2019;24(5):1148–1156. doi: 10.1016/j.drudis.2019.02.013. PubMed DOI

Tetko IV, Engkvist O, Chen H. Does ‘Big Data’ exist in medicinal chemistry, and if so, how can it be harnessed? Future Med Chem. 2016;8(15):1801–1806. doi: 10.4155/fmc-2016-0163. PubMed DOI

Davies M, Nowotka M, Papadatos G, Dedman N, Gaulton A, Atkinson F, Bellis L, Overington JP. ChEMBL web services: streamlining access to drug discovery data and utilities. Nucleic Acids Res. 2015;43(W1):W612–W620. doi: 10.1093/nar/gkv352. PubMed DOI PMC

Mendez D, Gaulton A, Bento AP, Chambers J, De Veij M, Félix E, Magariños María P, Mosquera Juan F, Mutowo P, Nowotka M, et al. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res. 2019;47(D1):D930–D940. doi: 10.1093/nar/gky1075. PubMed DOI PMC

Polishchuk PG, Madzhidov TI, Varnek A. Estimation of the size of drug-like chemical space based on GDB-17 data. J Comput Aided Mol Des. 2013;27(8):675–679. doi: 10.1007/s10822-013-9672-4. PubMed DOI

Drew KLM, Baiman H, Khwaounjoo P, Yu B, Reynisson J. Size estimation of chemical space: how big is it? J Pharm Pharmacol. 2012;64(4):490–495. doi: 10.1111/j.2042-7158.2011.01424.x. PubMed DOI

Walters WP, Stahl MT, Murcko MA. Virtual screening—an overview. Drug Discov Today. 1998;3(4):160–178. doi: 10.1016/S1359-6446(97)01163-X. DOI

Bohacek RS, McMartin C, Guida WC. The art and practice of structure-based drug design: a molecular modeling perspective. Med Res Rev. 1996;16(1):3–50. doi: 10.1002/(SICI)1098-1128(199601)16:1<3::AID-MED1>3.0.CO;2-6. PubMed DOI

Lenselink EB, ten Dijke N, Bongers B, Papadatos G, van Vlijmen HWT, Kowalczyk W, IJzerman AP, van Westen GJP. Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set. J Cheminform. 2017;9(1):45. doi: 10.1186/s13321-017-0232-0. PubMed DOI PMC

Liu X, IJzerman AP, van Westen GJP. Computational approaches for de novo drug design: past, present, and future. In: Cartwright H, editor. Artificial neural networks. New York: Springer; 2021. pp. 139–165. PubMed

Coley CW. Defining and exploring chemical spaces. Trends Chem. 2021;3(2):133–145. doi: 10.1016/j.trechm.2020.11.004. DOI

Opassi G, Gesù A, Massarotti A. The Hitchhiker’s guide to the chemical-biological galaxy. Drug Discov Today. 2018;23(3):565–574. doi: 10.1016/j.drudis.2018.01.007. PubMed DOI

Muratov EN, Bajorath J, Sheridan RP, Tetko IV, Filimonov D, Poroikov V, Oprea TI, Baskin II, Varnek A, Roitberg A, et al. QSAR without borders. Chem Soc Rev. 2020;49(11):3525–3564. doi: 10.1039/D0CS00098A. PubMed DOI PMC

Wang L, Ding J, Pan L, Cao D, Jiang H, Ding X. Artificial intelligence facilitates drug design in the big data era. Chemometr Intell Lab Syst. 2019;194:103850. doi: 10.1016/j.chemolab.2019.103850. DOI

Schneider G, Clark DE. Automated de novo drug design: are we nearly there yet? Angew Chem Int Ed Engl. 2019;58(32):10792–10803. doi: 10.1002/anie.201814681. PubMed DOI

Zhu H. Big data and artificial intelligence modeling for drug discovery. Annu Rev Pharmacol Toxicol. 2020;60(1):573–589. doi: 10.1146/annurev-pharmtox-010919-023324. PubMed DOI PMC

Le TC, Winkler DA. A bright future for evolutionary methods in drug design. ChemMedChem. 2015;10(8):1296–1300. doi: 10.1002/cmdc.201500161. PubMed DOI

Lavecchia A. Deep learning in drug discovery: opportunities, challenges and future prospects. Drug Discov Today. 2019;24(10):2017–2032. doi: 10.1016/j.drudis.2019.07.006. PubMed DOI

Schreiber SL, Kotz JD, Li M, Aubé J, Austin CP, Reed JC, Rosen H, White EL, Sklar LA, Lindsley CW, et al. Advancing biological understanding and therapeutics discovery with small-molecule probes. Cell. 2015;161(6):1252–1265. doi: 10.1016/j.cell.2015.05.023. PubMed DOI PMC

Bian Y, Xie X-Q. Generative chemistry: drug discovery with deep learning generative models. J Mol Model. 2021;27(3):71. doi: 10.1007/s00894-021-04674-8. PubMed DOI PMC

Zheng S, Lei Z, Ai H, Chen H, Deng D, Yang Y. Deep scaffold hopping with multi-modal transformer neural networks. Theor Comput Chem. 2020 doi: 10.26434/chemrxiv.13011767.v1. PubMed DOI PMC

Stojanović L, Popović M, Tijanić N, Rakočević G, Kalinić M. Improved scaffold hopping in ligand-based virtual screening using neural representation learning. J Chem Inf Model. 2020;60(10):4629–4639. doi: 10.1021/acs.jcim.0c00622. PubMed DOI

Baskin II. The power of deep learning to ligand-based novel drug discovery. Expert Opin Drug Discov. 2020;15(7):755–764. doi: 10.1080/17460441.2020.1745183. PubMed DOI

Elton DC, Boukouvalas Z, Fuge MD, Chung PW. Deep learning for molecular design—a review of the state of the art. Mol Syst Des Eng. 2019;4(4):828–849. doi: 10.1039/C9ME00039A. DOI

Xu Y, Lin K, Wang S, Wang L, Cai C, Song C, Lai L, Pei J. Deep learning for molecular generation. Future Med Chem. 2019;11(6):567–597. doi: 10.4155/fmc-2018-0358. PubMed DOI

Jørgensen PB, Schmidt MN, Winther O. Deep generative models for molecular science. Mol Inform. 2018;37(1–2):1700133. doi: 10.1002/minf.201700133. PubMed DOI

Gantzer P, Creton B, Nieto-Draghi C. Inverse-QSPR for de novo design: a review. Mol Inform. 2020;39(4):e1900087. doi: 10.1002/minf.201900087. PubMed DOI

Yoshikawa N, Terayama K, Sumita M, Homma T, Oono K, Tsuda K. Population-based de novo molecule generation, using grammatical evolution. Chem Lett. 2018;47(11):1431–1434. doi: 10.1246/cl.180665. DOI

Jensen JH. A graph-based genetic algorithm and generative model/Monte Carlo tree search for the exploration of chemical space. Chem Sci. 2019;10(12):3567–3572. doi: 10.1039/C8SC05372C. PubMed DOI PMC

Spiegel JO, Durrant JD. AutoGrow4: an open-source genetic algorithm for de novo drug design and lead optimization. J Cheminform. 2020;12(1):25. doi: 10.1186/s13321-020-00429-4. PubMed DOI PMC

Leguy J, Cauchy T, Glavatskikh M, Duval B, Da Mota B. EvoMol: a flexible and interpretable evolutionary algorithm for unbiased de novo molecular generation. J Cheminform. 2020;12(1):55. doi: 10.1186/s13321-020-00458-z. PubMed DOI PMC

Hoksza D, Skoda P, Voršilák M, Svozil D. Molpher: a software framework for systematic chemical space exploration. J Cheminform. 2014;6(1):7. doi: 10.1186/1758-2946-6-7. PubMed DOI PMC

Schneider G, Fechner U. Computer-based de novo design of drug-like molecules. Nat Rev Drug Discov. 2005;4(8):649–663. doi: 10.1038/nrd1799. PubMed DOI

Li X, Xu Y, Yao H, Lin K. Chemical space exploration based on recurrent neural networks: applications in discovering kinase inhibitors. J Cheminform. 2020;12(1):42. doi: 10.1186/s13321-020-00446-3. PubMed DOI PMC

Grisoni F, Neuhaus CS, Hishinuma M, Gabernet G, Hiss JA, Kotera M, Schneider G. De novo design of anticancer peptides by ensemble artificial neural networks. J Mol Model. 2019;25(5):112. doi: 10.1007/s00894-019-4007-6. PubMed DOI

Wu J, Ma Y, Zhou H, Zhou L, Du S, Sun Y, Li W, Dong W, Wang R. Identification of protein tyrosine phosphatase 1B (PTP1B) inhibitors through de novo evoluton, synthesis, biological evaluation and molecular dynamics simulation. Biochem Biophys Res Commun. 2020;526(1):273–280. doi: 10.1016/j.bbrc.2020.03.075. PubMed DOI

Polykovskiy D, Zhebrak A, Vetrov D, Ivanenkov Y, Aladinskiy V, Mamoshina P, Bozdaganyan M, Aliper A, Zhavoronkov A, Kadurin A. Entangled conditional adversarial autoencoder for de novo drug discovery. Mol Pharm. 2018;15(10):4398–4405. doi: 10.1021/acs.molpharmaceut.8b00839. PubMed DOI

Merk D, Friedrich L, Grisoni F, Schneider G. De novo design of bioactive small molecules by artificial intelligence. Mol Inf. 2018;37(1–2):1700153. doi: 10.1002/minf.201700153. PubMed DOI PMC

Putin E, Asadulaev A, Vanhaelen Q, Ivanenkov Y, Aladinskaya AV, Aliper A, Zhavoronkov A. Adversarial threshold neural computer for molecular de novo design. Mol Pharm. 2018;15(10):4386–4397. doi: 10.1021/acs.molpharmaceut.7b01137. PubMed DOI

Sumita M, Yang X, Ishihara S, Tamura R, Tsuda K. Hunting for organic molecules with artificial intelligence: molecules optimized for desired excitation energies. ACS Cent Sci. 2018;4(9):1126–1133. doi: 10.1021/acscentsci.8b00213. PubMed DOI PMC

Zhavoronkov A, Ivanenkov YA, Aliper A, Veselov MS, Aladinskiy VA, Aladinskaya AV, Terentiev VA, Polykovskiy DA, Kuznetsov MD, Asadulaev A, et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat Biotechnol. 2019;37(9):1038–1040. doi: 10.1038/s41587-019-0224-x. PubMed DOI

Sparkes A, Aubrey W, Byrne E, Clare A, Khan MN, Liakata M, Markham M, Rowland J, Soldatova LN, Whelan KE, et al. Towards robot scientists for autonomous scientific discovery. Autom Exp. 2010;2:1. doi: 10.1186/1759-4499-2-1. PubMed DOI PMC

Coley CW, Eyke NS, Jensen KF. Autonomous discovery in the chemical sciences part i: progress. Angew Chem Int Ed. 2020;59(51):22858–22893. doi: 10.1002/anie.201909987. PubMed DOI

Coley CW, Eyke NS, Jensen KF. Autonomous discovery in the chemical sciences part II: outlook. Angew Chem Int Ed. 2020;59(52):23414–23436. doi: 10.1002/anie.201909989. PubMed DOI

Grisoni F, Huisman BJH, Button AL, Moret M, Atz K, Merk D, Schneider G. Combining generative artificial intelligence and on-chip synthesis for de novo drug design. Sci Adv. 2021;7(24):eabg3338. doi: 10.1126/sciadv.abg3338. PubMed DOI PMC

Henson AB, Gromski PS, Cronin L. Designing algorithms to aid discovery by chemical robots. ACS Cent Sci. 2018;4(7):793–804. doi: 10.1021/acscentsci.8b00176. PubMed DOI PMC

Dimitrov T, Kreisbeck C, Becker JS, Aspuru-Guzik A, Saikin SK. Autonomous molecular design: then and now. ACS Appl Mater Interfaces. 2019;11(28):24825–24836. doi: 10.1021/acsami.9b01226. PubMed DOI

Schneider G. Automating drug discovery. Nat Rev Drug Discov. 2018;17(2):97–113. doi: 10.1038/nrd.2017.232. PubMed DOI

Willems H, De Cesco S, Svensson F. Computational chemistry on a budget: supporting drug discovery with limited resources. J Med Chem. 2020;63(18):10158–10169. doi: 10.1021/acs.jmedchem.9b02126. PubMed DOI

Chu Y, He X. MoleGear: a java-based platform for evolutionary de novo molecular design. Molecules. 2019;24(7):1444. doi: 10.3390/molecules24071444. PubMed DOI PMC

Douguet D. e-LEA3D: a computational-aided drug design web server. Nucleic Acids Res. 2010;38(suppl_2):W615–W621. doi: 10.1093/nar/gkq322. PubMed DOI PMC

Pastor M, Gómez-Tamayo JC, Sanz F. Flame: an open source framework for model development, hosting, and usage in production environments. J Cheminform. 2021;13(1):31. doi: 10.1186/s13321-021-00509-z. PubMed DOI PMC

Green DVS, Pickett S, Luscombe C, Senger S, Marcus D, Meslamani J, Brett D, Powell A, Masson J. BRADSHAW: a system for automated molecular design. J Comput Aided Mol Des. 2020;34(7):747–765. doi: 10.1007/s10822-019-00234-8. PubMed DOI PMC

Ivanenkov YA, Zhebrak A, Bezrukov D, Zagribelnyy B, Aladinskiy V, Polykovskiy D, Putin E, Kamya P, Aliper A, Zhavoronkov A (2021) Chemistry42: an AI-based platform for de novo molecular design. arXiv preprint arXiv:210109050 PubMed PMC

Zhumagambetov R, Kazbek D, Shakipov M, Maksut D, Peshkov VA, Fazli S. cheML.io: an online database of ML-generated molecules. RSC Adv. 2020;10(73):45189–45198. doi: 10.1039/D0RA07820D. PubMed DOI PMC

Griffen EJ, Dossetter AG, Leach AG. Chemists: AI is here; unite to get the benefits. J Med Chem. 2020;63(16):8695–8704. doi: 10.1021/acs.jmedchem.0c00163. PubMed DOI

Liu X, Ye K, van Vlijmen HWT, IJzerman AP, van Westen GJP. An exploration strategy improves the diversity of de novo ligands using deep reinforcement learning: a case for the adenosine A2A receptor. J Cheminform. 2019;11(1):35. doi: 10.1186/s13321-019-0355-6. PubMed DOI PMC

MIT License. https://opensource.org/licenses/MIT. Accessed 12 Mar 2021

GenUI Frontend Application. By Šícho M. https://github.com/martin-sicho/genui-gui. Accessed 12 Mar 2021

GenUI Backend Application. https://github.com/martin-sicho/genui. Accessed 03 May 2020

Merkel D. Docker: lightweight Linux containers for consistent development and deployment. Linux J. 2014;2014(239):2.

Cito J, Ferme V, Gall HC. Web engineering 2016. Cham: Springer International Publishing; 2016. Using docker containers to improve reproducibility in software and web engineering research; pp. 609–612.

Docker. https://github.com/docker/docker-ce. Accessed 03 May 2020

GenUI Docker Files. By Šícho M. https://github.com/martin-sicho/genui-docker. Accessed 03 May 2020

React: A JavaScript library for building user interfaces. By Facebook I. https://reactjs.org/. Accessed 16 Dec 2020

Vibe: a beautiful react.js dashboard build with Bootstrap 4. By Salas J. https://github.com/NiceDash/Vibe. Accessed 03 May 2020

Tétreault-Pinard ÉO (2019) Plotly JavaScript open source graphing library

Chart.js: simple yet flexible JavaScript charting for designers & developers. https://www.chartjs.org/. Accessed 03 May 2020

ChemSpace JS. https://openscreen.cz/software/chemspace/home/. Accessed 03 May 2020

Schaduangrat N, Lampa S, Simeon S, Gleeson MP, Spjuth O, Nantasenamat C. Towards reproducible computational drug discovery. J Cheminform. 2020;12(1):9. doi: 10.1186/s13321-020-0408-x. PubMed DOI PMC

van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008;9:2579–2605.

Poličar PG, Stražar M, Zupan B (2019) openTSNE: a modular Python library for t-SNE dimensionality reduction and embedding. bioRxiv, p 731877

GenUI Python Documentation. https://martin-sicho.github.io/genui/docs/index.html. Accessed 12 Mar 2021

Foundation DS (2019) Django (Version 2.2)

Encode OSS L (2019) Django REST Framework

Debian-based images containing PostgreSQL with the RDKit cartridge. https://hub.docker.com/r/informaticsmatters/rdkit-cartridge-debian. Accessed 03 May 2020

RDKit: open-source cheminformatics toolkit. By http://www.rdkit.org/. Accessed 03 May 2020

Django RDKit. https://github.com/rdkit/django-rdkit. Accessed 03 May 2020

Bento AP, Hersey A, Félix E, Landrum G, Gaulton A, Atkinson F, Bellis LJ, De Veij M, Leach AR. An open source chemical structure curation pipeline using RDKit. J Cheminform. 2020;12(1):51. doi: 10.1186/s13321-020-00456-1. PubMed DOI PMC

CELERY: Distributed Task Queue. https://github.com/celery/celery. Accessed 03 May 2020

Redis: in-memory data structure store. By https://github.com/redis/redis. Accessed 03 May 2020

Hunt A, Thomas D. The pragmatic programmer: from journeyman to master. Boston: Addison-Wesley Longman Publishing Co. Inc; 2000.

Celery: get started. https://docs.celeryproject.org/en/stable/getting-started/introduction.html#get-started. Accessed 16 Dec 2020

Docker Hub. https://hub.docker.com/. Accessed 16 Dec 2020

Redis: Docker official images. By https://hub.docker.com/_/redis. Accessed 03 May 2020

NGINX web server. By https://github.com/nginx/nginx. Accessed 03 May 2020

NGINX: official Docker images. By https://hub.docker.com/_/nginx. Accessed 03 May 2020

Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, et al. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 2019;47(D1):D1102–D1109. doi: 10.1093/nar/gky1033. PubMed DOI PMC

Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG. ZINC: a free tool to discover chemistry for biology. J Chem Inf Model. 2012;52(7):1757–1768. doi: 10.1021/ci3001277. PubMed DOI PMC

Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z, Woolsey J. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006;34(suppl_1):D668–D672. doi: 10.1093/nar/gkj067. PubMed DOI PMC

Gilson MK, Liu T, Baitaluk M, Nicola G, Hwang L, Chong J. BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res. 2016;44(D1):D1045–D1053. doi: 10.1093/nar/gkv1072. PubMed DOI PMC

Skuta C, Popr M, Muller T, Jindrich J, Kahle M, Sedlak D, Svozil D, Bartunek P. Probes & drugs portal: an interactive, open data resource for chemical biology. Nat Methods. 2017;14(8):759–760. doi: 10.1038/nmeth.4365. PubMed DOI

IBM RXN for Chemistry. https://rxn.res.ibm.com/. Accessed 12 Mar 2021

PostEra Manifold. https://postera.ai/manifold/. Accessed 12 Mar 2021

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...