α1-Adrenoceptor agonist methoxamine inhibits base excision repair via inhibition of apurinic/apyrimidinic endonuclease 1 (APE1)
Jazyk angličtina Země Polsko Médium electronic-print
Typ dokumentu časopisecké články
PubMed
37307375
DOI
10.2478/acph-2023-0012
PII: acph-2023-0012
Knihovny.cz E-zdroje
- Klíčová slova
- apurinic/apyrimidinic endonuclease APE1, base excision repair, methoxamine, α1-adrenoceptor agonist,
- MeSH
- adrenalin * MeSH
- adrenergní receptory MeSH
- endonukleasy MeSH
- lidé MeSH
- methoxamin MeSH
- oprava DNA * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adrenalin * MeSH
- adrenergní receptory MeSH
- endonukleasy MeSH
- methoxamin MeSH
Methoxamine (Mox) is a well-known α1-adrenoceptor agonist, clinically used as a longer-acting analogue of epinephrine. 1R,2S-Mox (NRL001) has been also undergoing clinical testing to increase the canal resting pressure in patients with bowel incontinence. Here we show, that Mox hydrochloride acts as an inhibitor of base excision repair (BER). The effect is mediated by the inhibition of apurinic/apyrimidinic endonuclease APE1. We link this observation to our previous report showing the biologically relevant effect of Mox on BER - prevention of converting oxidative DNA base damage to double-stranded breaks. We demonstrate that its effect is weaker, but still significant when compared to a known BER inhibitor methoxyamine (MX). We further determined Mox's relative IC 50 at 19 mmol L-1, demonstrating a significant effect of Mox on APE1 activity in clinically relevant concentrations.
Zobrazit více v PubMed
B. Rabinowitz, L. Chuck, M. Kligerman and W. Parmley, Positive inotropic effects of methoxamine: evidence for alpha-adrenergic receptors in ventricular myocardium, Am. J. Physiol.-Leg. Content 229 (3) (1975) 582–585; https://doi.org/10.1152/ajplegacy.1975.229.3.582
S. Sun, D. Sun, L. Yang, J. Han, R. Liu and L. Wang, Dose-dependent effects of intravenous methoxamine infusion during hip-joint replacement surgery on postoperative cognitive dysfunction and blood TNF-α level in elderly patients: a randomized controlled trial, BMC Anesthesiol. 17 (1) (2017) Article ID 75 (10 pages); https://doi.org/10.1186/s12871-017-0367-6
L. Wang, Effects of continuous intravenous infusion of methoxamine on the intraoperative hemodynamics of elderly patients undergoing total hip arthroplasty, Med. Sci. Monit. 20 (2014) 1969–1976; https://doi.org/10.12659/MSM.890760
J. P. Griffin and P. F. D’Arcy, A Manual of Adverse Drug Interactions , 5 th ed., Elsevier Science, New York 1997, pp. 236–275; https://doi.org/10.1016/B978-0-444-82406-6.X5000-X
F. Fu, T. Yu-Wen, C. Hong, C. C. Jiao, N. Ma and X.-Z. Chen, A randomised dose-response study of prophylactic methoxamine infusion for preventing spinal-induced hypotension during cesarean delivery, BMC Anesthesiol. 20 (1) (2020) 198–208; https://doi.org/10.1186/s12871-020-01119-2
C. P. Weiner and C. Buhimschi, Drugs for Pregnant and Lactating Women, 2 nd ed., W.B. Saunders, Philadelphia 2007, pp. 616–745; https://doi.org/10.1016/B978-1-4160-4013-2.00012-0
J. A. D. Simpson, D. Bush, H. J. Gruss, A. Jacobs, C. Pediconi and J. H. Scholefield, A randomised, controlled, crossover study to investigate the safety and response of 1R,2S-methoxamine hydrochlo-ride (NRL001) on anal function in healthy volunteers, Colorectal Dis. 16 (1) (2014) 5–15; https://doi.org/10.1111/codi.12541
M. Krutá, L. Bálek, R. Hejnová, Z. Dobšáková, L. Eiselleová, K. Matulka, T. Bárta, P. Fojtík, J. Fajkus, A. Hampl, P. Dvořák and V. Rotrekl, Decrease in abundance of apurinic/apyrimidinic endonuclease causes failure of base excision repair in culture-adapted human embryonic stem cells, Stem Cells 31 (4) (2013) 693–702; https://doi.org/10.1002/stem.1312
M. Krutá, M. Šeneklová, J. Raška, A. Salykin, L. Zerzánková, M. Pešl, E. Bártová, M. Franek, A. Baumeisterová, S. Košková, K. J. Neelsen, A. Hampl, P. Dvořák and V. Rotrekl, Mutation frequency dynamics in HPRT locus in culture-adapted human embryonic stem cells and induced pluripotent stem cells correspond to their differentiated counterparts, Stem Cells Dev. 23 (20) (2014) 2443–2454; https://doi.org/10.1089/scd.2013.0611
N. Puebla-Osorio, D. B. Lacey, F. W. Alt and C. Zhu, Early embryonic lethality due to targeted inactivation of DNA ligase III, Mol. Cell. Biol. 26 (10) (2006) 3935–3941; https://doi.org/10.1128/MCB.26.10.3935-3941.2006
D. C. Cabelof, J. J. Raffoul, S. Yanamadala, C. Ganir, Z. Guo and A. R. Heydari, Attenuation of DNA polymerase β-dependent base excision repair and increased DMS-induced mutagenicity in aged mice, Mutat. Res. Mol. Mech. Mutagen. 500 (1–2) (2002) 135–145; https://doi.org/10.1016/S0027-5107(02)00003-9
G. W. Intano, E. J. Cho, C. A. McMahan and C. A. Walter, Age-related base excision repair activity in mouse brain and liver nuclear extracts, J. Gerontol. A. Biol. Sci. Med. Sci. 58 (3) (2003) B205–B211; https://doi.org/10.1093/gerona/58.3.B205
G. W. Intano, C. A. McMahan, J. R. McCarrey, R. B. Walter, A. E. McKenna, Y. Matsumoto, M. A. MacInnes, D. J. Chen and C. A. Walter, Base excision repair is limited by different proteins in male germ cell nuclear extracts prepared from young and old mice, Mol. Cell. Biol. 22 (7) (2002) 2410–2418; https://doi.org/10.1128/MCB.22.7.2410-2418.2002
J. R. Sanchez, T. L. Reddick, M. Perez, V. E. Centonze, S. Mitra, T. Izumi, C. A. McMahan and C. A. Walter, Increased human AP endonuclease 1 level confers protection against the paternal age effect in mice, Mutat. Res. Mol. Mech. Mutagen. 779 (2015) 124–133; https://doi.org/10.1016/j.mrfmmm.2015.06.008
A. Kohutova, J. Raška, M. Kruta, M. Seneklova, T. Barta, P. Fojtik, T. Jurakova, C. A. Walter, A. Hampl, P. Dvorak and V. Rotrekl, Ligase 3-mediated end-joining maintains genome stability of human embryonic stem cells, FASEB J. 33 (6) (2019) 6778–6788; https://doi.org/10.1096/fj.201801877RR
L. Haracska, Roles of yeast DNA polymerases delta and zeta and of Rev1 in the bypass of abasic sites, Genes Dev. 15 (8) (2001) 945–954; https://doi.org/10.1101/gad.882301
L. Haracska, M. T. Washington, S. Prakash and L. Prakash, Inefficient bypass of an abasic site by DNA polymerase η, J. Biol. Chem. 276 (9) (2001) 6861–6866; https://doi.org/10.1074/jbc.M008021200
K. Sugasawa, J. M. Y. Ng, C. Masutani, S. Iwai, P. J. van der Spek, A. P. M. Eker, F. Hanaoka, D. Bootsma and J. H. J. Hoeijmakers, Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair, Mol. Cell 2 (2) (1998) 223–232; https://doi.org/10.1016/S1097-2765(00)80132-X
S. Kumar, S. Talluri, J. Pal, X. Yuan, R. Lu, P. Nanjappa, M. K. Samur, N. C. Munshi and M. A. Shammas, Role of apurinic/apyrimidinic nucleases in the regulation of homologous recombination in myeloma: mechanisms and translational significance, Blood Cancer J. 8 (10) (2018) 92–102; https://doi.org/10.1038/s41408-018-0129-9
M. Liuzzi and M. Talpaert-Borlé, A new approach to the study of the base-excision repair pathway using methoxyamine, J. Biol. Chem. 260 (9) (1985) 5252–5258; https://doi.org/10.1016/S0021-9258(18) 89014-7
C. A. Schneider, W. S. Rasband and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods 9 (7) (2012) 671–675; https://doi.org/10.1038/nmeth.2089
B. M. Brenerman, J. L. Illuzzi and D. M. Wilson, Base excision repair capacity in informing healthspan, Carcinogenesis 35 (12) (2014) 2643–2652; https://doi.org/10.1093/carcin/bgu225
D. M. Wilson and L. H. Thompson, Life without DNA repair, Proc. Natl. Acad. Sci. 94 (24) (1997) 12754–12757; https://doi.org/10.1073/pnas.94.24.12754
M. Li, X. Yang, X. Lu, N. Dai, S. Zhang, Y. Cheng, L. Zhang, Y. Yang, Y. Liu, Z. Yang, D. Wang and D. M. Wilson, APE1 deficiency promotes cellular senescence and premature aging features, Nucleic Acids Res. 46 (11) (2018) 5664–5677; https://doi.org/10.1093/nar/gky326
K. L. Limpose, K. S. Trego, Z. Li, S. W. Leung, A. H. Sarker, J. A. Shah, S. S. Ramalingam, E. M. Werner, W. S. Dynan, P. K. Cooper, A. H. Corbett and P. W. Doetsch, Overexpression of the base excision repair NTHL1 glycosylase causes genomic instability and early cellular hallmarks of cancer, Nucleic Acids Res. 46 (9) (2018) 4515–4532. https://doi.org/10.1093/nar/gky162
S. Vlahopoulos, M. Adamaki, N. Khoury, V. Zoumpourlis and I. Boldogh, Roles of DNA repair enzyme OGG1 in innate immunity and its significance for lung cancer, Pharmacol. Ther. 194 (2019) 59–72; https://doi.org/10.1016/j.pharmthera.2018.09.004
M. Goto, K. Shinmura, H. Igarashi, M. Kobayashi, H. Konno, H. Yamada, M. Iwaizumi, S. Kageyama, T. Tsuneyoshi, S. Tsugane and H. Sugimura, Altered expression of the human base excision repair gene NTH1 in gastric cancer, Carcinogenesis 30 (8) (2009) 1345–1352; https://doi.org/10.1093/carcin/bgp108
X. Xiao, Y. Yang, Y. Ren, D. Zou, K. Zhang and Y. Wu, rs1760944 polymorphism in the APE1 region is associated with risk and prognosis of osteosarcoma in the chinese han population, Sci. Rep. 7 (1) (2017) 9331–9341; https://doi.org/10.1038/s41598-017-09750-9
M. Li, D. Wang, S. Zhang, L. He and N. Dai, Identification of APE1 as a chemotherapeutic prognostic marker for non-small cell lung cancer patients, J. Clin. Oncol. 34 (15) (2016) Article ID e23065; https://doi.org/10.1200/JCO.2016.34.15_suppl.e23065
J. J. Raffoul, A. R. Heydari and G. G. Hillman, DNA repair and cancer therapy: Targeting APE1/Ref-1 using dietary agents, J. Oncol. 2012 (2012) 1–11; https://doi.org/10.1155/2012/370481
V. Singh-Gupta, H. Zhang, S. Banerjee, D. Kong, J. J. Raffoul, F. H. Sarkar and G. G. Hillman, Radiation-induced HIF-1α cell survival pathway is inhibited by soy isoflavones in prostate cancer cells, Int. J. Cancer 124 (7) (2009) 1675–1684; https://doi.org/10.1002/ijc.24015
Z. Wang, W. Xu, Z. Lin, C. Li, Y. Wang, L. Yang, G. Liu, Reduced apurinic/apyrimidinic endonuclease activity enhances the antitumor activity of oxymatrine in lung cancer cells, Int. J. Oncol. 49 (6) (2016) 2331–2340; https://doi.org/10.3892/ijo.2016.3734
K. A. Ziel, C. C. Campbell, G. L. Wilson and M. N. Gillespie, Ref-1/Ape is critical for formation of the hypoxia-inducible transcriptional complex on the hypoxic response element of the rat pulmonary artery endothelial cell VEGF gene, FASEB J. 18 (9) (2004) 986–988; https://doi.org/10.1096/fj.03-1160fje
X. Gu, Y. Cun, M. Li, Y. Qing, F. Jin, Z. Zhong, N. Dai, C. Qian, J. Sui and D. Wang, Human apurinic/apyrimidinic endonuclease siRNA inhibits the angiogenesis induced by X-ray irradiation in lung cancer cells, Int. J. Med. Sci. 10 (7) (2013) 870–882; https://doi.org/10.7150/ijms.5727
P. Sawides, Y. Xu, L. Liu, J. A. Bokar, P. Silverman, A. Dowlati and S. L. Gerson, Pharmacokinetic profile of the base-excision repair inhibitor methoxyamine-HCl (TRC102; MX) given as an one-hour intravenous infusion with temozolomide (TMZ) in the first-in-human phase I clinical trial, J. Clin. Oncol. 28 (15) (2010) Article ID e13662; https://doi.org/10.1200/jco.2010.28.15_suppl.e13662
S. Madlener, T. Strobel, S. Vose, O. Saydam, B. D. Price, B. Demple and N. Saydam, Essential role for mammalian apurinic/apyrimidinic (AP) endonuclease Ape1/Ref-1 in telomere maintenance, Proc. Natl. Acad. Sci. 110 (44) (2013) 17844–17849; https://doi.org/10.1073/pnas.1304784110
E. Huang, D. Qu, Y. Zhang, K. Venderova, M. E. Haque, M. W. C. Rousseaux, R. S. Slack, J. M. Woulfe and D. S. Park, The role of Cdk5-mediated apurinic/apyrimidinic endonuclease 1 phosphorylation in neuronal death, Nat. Cell Biol. 12 (6) (2010) 563–571; https://doi.org/10.1038/ncb2058
V. Davydov, L. A. Hansen and D. A. Shackelford, Is DNA repair compromised in Alzheimer’s disease?, Neurobiol. Aging 24 (7) (2003) 953–968; https://doi.org/10.1016/S0197-4580(02)00229-4
A. K. Mantha, M. Dhiman, G. Taglialatela, R. J. Perez-Polo and S. Mitra, Proteomic study of amyloid beta (25–35) peptide exposure to neuronal cells: Impact on APE1/Ref-1’s protein-protein interaction, J. Neurosci. Res. 90 (6) (2012) 1230–1239; https://doi.org/10.1002/jnr.23018
Z. Tan, L. Shi and S. S. Schreiber, Differential expression of redox factor-1 associated with beta-amyloid-mediated neurotoxicity, Open Neurosci. J. 3 (2009) 26–34; https://doi.org/10.2174/1874082000903010026
A. Y. Shaikh and L. J. Martin, DNA base-excision repair enzyme apurinic/apyrimidinic endonuclease/redox factor-1 is increased and competent in the brain and spinal cord of individuals with amyotrophic lateral sclerosis, NeuroMolecular Med. 2 (1) (2002) 47–60; https://doi.org/10.1007/s12017-002-0038-7
P. J. Nisar, H.-J. Gruss, D. Bush, N. Barras, A. G. Acheson and J. H. Scholefield, Intra-anal and rectal application of L-erythro methoxamine gel increases anal resting pressure in healthy volunteers, Br. J. Surg. 92 (12) (2005) 1539–1545; https://doi.org/10.1002/bjs.5171
P. J. Nisar, H.-J. Gruss, D. Bush, A. G. Acheson and J. H. Scholefield, Intra-anal application of l-erythro methoxamine gel increases anal resting pressure in patients with incontinence, Br. J. Surg. 94 (9) (2007) 1155–1161; https://doi.org/10.1002/bjs.5821
S. Rayment, T. Eames, J. Simpson, M. Dashwood, Y. Henry, H. Gruss, A. Acheson, J. Scholefield and V. Wilson, Investigation of the distribution and function of α-adrenoceptors in the sheep isolated internal anal sphincter: α-Adrenoceptor function in sheep anal sphincter, Br. J. Pharmacol. 160 (7) (2010) 1727–1740; https://doi.org/10.1111/j.1476-5381.2010.00842.x
L. Siproudhis, W. Graf, A. Emmanuel, D. Walker, R. N. K. Shing, C. Pediconi, J. Pilot, S. Wexner and J. Scholefield, Libertas: a phase II placebo-controlled study of NRL001 in patients with faecal incontinence showed an unexpected and sustained placebo response, Int. J. Colorectal Dis. 31 (6) (2016) 1205–1216; https://doi.org/10.1007/s00384-016-2585-7
R. Lamboy-Caraballo, C. Ortiz-Sanchez, A. Acevedo-Santiago, J. Matta, A. N. A. Monteiro and G. N. Armaiz-Pena, Norepinephrine-induced DNA damage in ovarian cancer cells, Int. J. Mol. Sci. 21 (6) (2020) 2250–2264; https://doi.org/10.3390/ijms21062250
D. Topalović, D. Dekanski, B. Spremo-Potparević, N. Djelić, V. Bajić and L. Živković, Assessment of adrenaline-induced DNA damage in whole blood cells with the comet assay, Arch. Ind. Hyg. Toxicol. 69 (4) (2018) 304–308; https://doi.org/10.2478/aiht-2018-69-3154
F. Sun, X.-P. Ding, S.-M. An, Y.-B. Tang, X.-J. Yang, L. Teng, C. Zhang, Y. Shen, H.-Z. Chen and L. Zhu, Adrenergic DNA damage of embryonic pluripotent cells via β2 receptor signalling, Sci. Rep. 5 (2015) 15950–15962; https://doi.org/10.1038/srep15950
M. R. Hara, J. J. Kovacs, E. J. Whalen, S. Rajagopal, R. T. Strachan, W. Grant, A. J. Towers, B. Williams, C. M. Lam, K. Xiao, S. K. Shenoy, S. G. Gregory, S. Ahn, D. R. Duckett and R. J. Lefkowitz, A stress response pathway regulates DNA damage through β2-adrenoreceptors and β-arrestin-1, Nature 477 (7364) (2011) 349–353; https://doi.org/10.1038/nature10368
P. Fortini, S. Rosa, A. Zijno, A. Calcagnile, M. Bignami and E. Dogliotti, Methoxyamine modification of abasic sites protects CHO cells from the cytotoxic and mutagenic effects of oxygen alkylation, Carcinogenesis 13 (1) (1992) 87–93; https://doi.org/10.1093/carcin/13.1.87
S. Rosa, P. Fortini, P. Karran, M. Bignami and E. Dogliotti, Processing in vitro of an abasic site reacted with methoxyamine: a new assay for the detection of abasic sites formed in vivo , Nucleic Acids Res. 19 (20) (1991) 5569–5574; https://doi.org/10.1093/nar/19.20.5569
M. Talpaert-Borle and M. Liuzzi, Reaction of apurinic/apyrimidinic sites with [14C]methoxyamine, Biochim. Biophys. Acta BBA – Gene Struct. Expr. 740 (4) (1983) 410–416; https://doi.org/10.1016/0167-4781(83)90089-1
R. J. Lewis, Sax’s Dangerous Properties of Industrial Materials , 10th ed., Wiley-Interscience, New York 2000, pp. 4770–4770; https://doi.org/10.1002/0471701343