Microbial biochemical pathways of arsenic biotransformation and their application for bioremediation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
37326815
DOI
10.1007/s12223-023-01068-6
PII: 10.1007/s12223-023-01068-6
Knihovny.cz E-zdroje
- Klíčová slova
- Arsenic, Bacteria, Biochemical pathways, Bioremediation, Biosorption, Demethylation, Methylation, Microorganisms, Oxidation, Reduction,
- MeSH
- arsen * metabolismus MeSH
- Bacteria genetika metabolismus MeSH
- biodegradace MeSH
- biotransformace MeSH
- lidé MeSH
- oxidace-redukce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- arsen * MeSH
Arsenic is a ubiquitous toxic metalloid, the concentration of which is beyond WHO safe drinking water standards in many areas of the world, owing to many natural and anthropogenic activities. Long-term exposure to arsenic proves lethal for plants, humans, animals, and even microbial communities in the environment. Various sustainable strategies have been developed to mitigate the harmful effects of arsenic which include several chemical and physical methods, however, bioremediation has proved to be an eco-friendly and inexpensive technique with promising results. Many microbes and plant species are known for arsenic biotransformation and detoxification. Arsenic bioremediation involves different pathways such as uptake, accumulation, reduction, oxidation, methylation, and demethylation. Each of these pathways has a certain set of genes and proteins to carry out the mechanism of arsenic biotransformation. Based on these mechanisms, various studies have been conducted for arsenic detoxification and removal. Genes specific for these pathways have also been cloned in several microorganisms to enhance arsenic bioremediation. This review discusses different biochemical pathways and the associated genes which play important roles in arsenic redox reactions, resistance, methylation/demethylation, and accumulation. Based on these mechanisms, new methods can be developed for effective arsenic bioremediation.
Zobrazit více v PubMed
Abedi T, Mojiri A (2020) Arsenic Uptake and Accumulation Mechanisms in Rice Species Plants 9:129
Adeloju SB, Khan S, Patti AF (2021) Arsenic contamination of groundwater and its implications for drinking water quality and human health in under-developed countries and remote communities. Rev Appl Sci 11:1926
Agre P et al (2002) Aquaporin water channels from atomic structure to clinical medicine. J. Phys. 542:3–16. https://doi.org/10.1113/jphysiol.2002.020818 DOI
Ajees AA, Marapakala K, Packianathan C, Sankaran B, Rosen BP (2012) Structure of an As(III) S-adenosylmethionine methyltransferase: insights into the mechanism of arsenic biotransformation. Biochem 51:5476–5485. https://doi.org/10.1021/bi3004632 DOI
Alexander T, Gulledge E, Han F (2016) Arsenic occurrence, ecotoxicity and its potential remediation. J Biorem Biodegrad 7:e174
Ali H, Khan E (2017) Environmental chemistry in the twenty-first century. Environ Chem Lett 15:329–346 DOI
Anderson CR, Cook GM (2004) Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand. Curr Microbiol 48:341–347. https://doi.org/10.1007/s00284-003-4205-3 PubMed DOI
Andreasen R, Li Y, Rehman Y, Ahmed M, Meyer R, Sabri A (2018) Prospective role of indigenous Exiguobacterium profundum PT2 in arsenic biotransformation and biosorption by planktonic cultures and biofilms. J appl microbiol 124:431–443 PubMed DOI
Andreoni V, Zanchi R, Cavalca L, Corsini A, Romagnoli C, Canzi E (2012) Arsenite Oxidation in Ancylobacter dichloromethanicus As3–1b strain: detection of genes involved in arsenite oxidation and CO2 fixation. Curr Microbiol 65:212–218. https://doi.org/10.1007/s00284-012-0149-9 PubMed DOI
Andres J, Bertin PN (2016) The microbial genomics of arsenic. FEMS Microbiol Rev 40:299–322. https://doi.org/10.1093/femsre/fuv050 PubMed DOI
Asif A, Mohsin H, Rehman Y (2021) Chapter 9 - Purple nonsulfur bacteria: an important versatile tool in biotechnology. In: De Mandal S, Passari AK (eds) Recent advancement in microbial biotechnology. Academic Press, pp 309–337. https://doi.org/10.1016/B978-0-12-822098-6.00003-3
Ayangbenro AS, Babalola OO (2017) A New Strategy for Heavy Metal Polluted Environments: a Review of Microbial Biosorbents. Int. J. Environ. Res. Public Health 14:94 PubMed DOI PMC
Bahar MM, Megharaj M, Naidu R (2013) Kinetics of arsenite oxidation by Variovorax sp. MM-1 isolated from a soil and identification of arsenite oxidase gene. J Hazard Mater 262:997–1003. https://doi.org/10.1016/j.jhazmat.2012.11.064 PubMed DOI
Baker J, Wallschläger D (2016) The role of phosphorus in the metabolism of arsenate by a freshwater green alga, Chlorella Vulgaris. J Environ Sci 49:169–178. https://doi.org/10.1016/j.jes.2016.10.002 DOI
Banerjee S, Datta S, Chattyopadhyay D, Sarkar P (2011) Arsenic Accumulating and Transforming Bacteria Isolated from Contaminated Soil for Potential Use in Bioremediation. J Environ Sci Health 46:1736–1747. https://doi.org/10.1080/10934529.2011.623995 DOI
Banerjee A, Hazra A, Das S, Sengupta C (2020) Groundwater Inhabited Bacillus and Paenibacillus Strains Alleviate Arsenic-Induced Phytotoxicity of Rice Plant. Int J Phytorem 22:1048–1058 DOI
Batool K, tuz Zahra F, Rehman Y (2017) Arsenic-redox transformation and plant growth promotion by purple nonsulfur bacteria Rhodopseudomonas palustris CS2 and Rhodopseudomonas faecalis SS5. BioMed Res Int 2017:8. https://doi.org/10.1155/2017/6250327
Ben Fekih I et al (2018) Distribution of Arsenic Resistance Genes in Prokaryotes. Front Microbiol 9:2473–2473. https://doi.org/10.3389/fmicb.2018.02473 PubMed DOI PMC
Bermanec V et al. (2021) Novel arsenic hyper-resistant bacteria from an extreme environment, Crven Dol mine, Allchar, North Macedonia. J Hazard Mater 402:123437. https://doi.org/10.1016/j.jhazmat.2020.123437
Bhattacharjee H, Li J, Ksenzenko M, Rosen B (1995) Role of cysteinyl residues in metalloactivation of the oxyanion- translocating ArsA ATPase. J Biol Chem 270:11245–11250 PubMed DOI
Bhattacharjee H, Rosen BP (1996) Spatial Proximity of Cys113, Cys172, and Cys422 in the metalloactivation domain of the ArsA ATPase. J Biol Chem 271:24465–24470. https://doi.org/10.1074/jbc.271.40.24465 PubMed DOI
Bhattacharjee H, Carbrey J, Rosen BP, Mukhopadhyay R (2004) Drug uptake and pharmacological modulation of drug sensitivity in leukemia by AQP9. Biochem Biophys Res Commun 322:836–841. https://doi.org/10.1016/j.bbrc.2004.08.002 PubMed DOI
Biswas R, Vivekanand V, Saha A, Sarkar A (2019) Arsenite oxidation by a facultative chemolithotrophic Delftia spp. BAs29 for its potential application in groundwater arsenic bioremediation. Int Biodeterior Biodegrad 136:55–62 DOI
Butcher BG, Deane SM, Rawlings DE (2000) The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli. Appl Environ Microbiol 66:1826–1833. https://doi.org/10.1128/AEM.66.5.1826-1833.2000 PubMed DOI PMC
Cai L, Liu G, Rensing C, Wang G (2009) Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils. BMC Microbiol 9:1–11 DOI
Cai X, Wang P, Li Z, Li Y, Yin N, Du H, Cui Y (2020) Mobilization and transformation of arsenic from ternary complex OM-Fe(III)-As(V) in the presence of As(V)-reducing bacteria. J Hazard Mater 381:120975. https://doi.org/10.1016/j.jhazmat.2019.120975
Caille N, Zhao FJ, McGrath SP (2005) Comparison of root absorption, translocation and tolerance of arsenic in the hyperaccumulator Pteris vittata and the nonhyperaccumulator Pteris tremula. New Phytol 165:755–761. https://doi.org/10.1111/j.1469-8137.2004.01239.x PubMed DOI
Cánovas D, Mukhopadhyay R, Rosen BP, De Lorenzo V (2003) Arsenate transport and reduction in the hyper-tolerant fungus Aspergillus sp. P37. Environ Microbiol 5:1087–1093 PubMed DOI
Casiot C et al (2003) Bacterial immobilization and oxidation of arsenic in acid mine drainage (Carnoulès creek, France). Water Res 37:2929–2936 PubMed DOI
Castrillo G et al (2013) WRKY6 transcription factor restricts arsenate uptake and transposon activation in Arabidopsis. Plant Cell 25:2944–2957. https://doi.org/10.1105/tpc.113.114009 PubMed DOI PMC
Challenger F (1945) Biological Methylation. Chem Rev 36:315–361 DOI
Chang JS, Kim Y-H, Kim K-W (2008) The ars genotype characterization of arsenic-resistant bacteria from arsenic-contaminated gold–silver mines in the Republic of Korea. Appl Microbiol Biotechnol 80:155–165. https://doi.org/10.1007/s00253-008-1524-0 PubMed DOI
Chen J, Rosen BP (2016) Organoarsenical Biotransformations by Shewanella Putrefaciens. Environ Sci Technol 50:7956–7963 PubMed DOI PMC
Chen J, Rosen BP (2020) The arsenic methylation cycle: how microbial communities adapted methylarsenicals for use as weapons in the continuing war for dominance. Front Environ Sci 8:43
Chen J, Qin J, Zhu Y-G, De lorenzo VC, Rosen BP (2013) Engineering the Soil Bacterium Pseudomonas Putida for Arsenic Methylation. Appl Environ Microbiol 79:4493–4495 PubMed DOI PMC
Chugh M, Kumar L, Bhardwaj D, Bharadvaja N (2022) Bioaccumulation and detoxification of heavy metals: an insight into the mechanism. Dev Wastewater Treat Res Processes. Elsevier, pp 243–264
Chung J, Li X, Rittmann BE (2006) Bio-reduction of arsenate using a hydrogen-based membrane biofilm reactor. Chemosphere 65:24–34 PubMed DOI
Corsini PM, Walker KT, Santini JM (2018) Expression of the arsenite oxidation regulatory operon in Rhizobium sp. str. NT-26 is under the control of two promoters that respond to different environmental cues. Microbiol Open 7:e00567
Cummings DE, Caccavo F, Fendorf S, Rosenzweig RF (1999) Arsenic mobilization by the dissimilatory Fe (III)-reducing bacterium Shewanella alga BrY. Environ Sci Technol 33:723–729 DOI
Das J, Sarkar P (2018) Remediation of arsenic in mung bean (Vigna radiata) with growth enhancement by unique arsenic-resistant bacterium Acinetobacter lwoffii. Sci Total Environ 624:1106–1118. https://doi.org/10.1016/j.scitotenv.2017.12.157 PubMed DOI
Dash HR, Mangwani N, Chakraborty J, Kumari S, Das S (2013) Marine bacteria: potential candidates for enhanced bioremediation. Appl Microbiol Biotechnol 97:561–571 PubMed DOI
Di X, Beesley L, Zhang Z, Zhi S, Jia Y, Ding Y (2019) Microbial arsenic methylation in soil and uptake and metabolism of methylated arsenic in plants: a review. Int J Environ Res Public Health 16:5012
Dixit G et al (2016) Reduced arsenic accumulation in rice (Oryza sativa L.) shoot involves sulfur mediated improved thiol metabolism, antioxidant system and altered arsenic transporters. Plant Physiol Biochem 99:86–96 PubMed DOI
Dolphen R, Thiravetyan P (2019) Reducing arsenic in rice grains by leonardite and arsenic–resistant endophytic bacteria. Chemosphere 223:448–454. https://doi.org/10.1016/j.chemosphere.2019.02.054 PubMed DOI
Drewniak L, Stasiuk R, Uhrynowski W, Sklodowska A (2015) Shewanella sp. O23S as a driving agent of a system utilizing dissimilatory arsenate-reducing bacteria responsible for self-cleaning of water contaminated with arsenic. Int J Mol Sci 16:14409–14427 PubMed DOI PMC
Duan G-L et al (2015) Inositol transporters AtINT2 and AtINT4 regulate arsenic accumulation in Arabidopsis seeds. Nat Plants 2:15202–15202. https://doi.org/10.1038/nplants.2015.202 PubMed DOI PMC
Duquesne K, Lieutaud A, Ratouchniak J, Muller D, Lett MC, Bonnefoy V (2008) Arsenite oxidation by a chemoautotrophic moderately acidophilic Thiomonas sp.: from the strain isolation to the gene study. Environ microbiol 10:228–237 PubMed
El-Araby EH, Salman KA, Mubarak F (2021) Human risk due to radon and heavy metals in soil. Iran J Public Health 50:1624 PubMed PMC
Escudero LV, Casamayor EO, Chong G, Pedrós-Alió C, Demergasso C (2013) Distribution of microbial arsenic reduction, oxidation and extrusion genes along a wide range of environmental arsenic concentrations PLOS ONE 8:e78890. https://doi.org/10.1371/journal.pone.0078890
Finnegan PM, Chen W (2012) Arsenic Toxicity: the Effects on Plant Metabolism. Front Physiol 3:182
Focardi S, Pepi M, Ruta M, Marvasi M, Bernardini E, Gasperini S, Focardi S (2010) Arsenic precipitation by an anaerobic arsenic-respiring bacterial strain isolated from the polluted sediments of Orbetello Lagoon. Italy Letters in Applied Microbiology 51:578–585 PubMed DOI
Gahlout M, Prajapati H, Tandel N, Patel Y (2021) Biosorption: an eco-friendly technology for pollutant removal. In: Microbial rejuvenation of polluted environment. Springer, pp 207–227
Garbinski LD, Rosen BP, Chen J (2019) Pathways of arsenic uptake and efflux. Environ Int 126:585–597 PubMed DOI PMC
Gavrilescu M, Demnerová K, Aamand J, Agathos S, Fava F (2015) Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. New biotechnol 32:147–156 DOI
Ghimire KN, Inoue K, Yamaguchi H, Makino K, Miyajima T (2003) Adsorptive separation of arsenate and arsenite anions from aqueous medium by using orange waste. Water Res 37:4945–4953 PubMed DOI
Ghosh PK, Maiti TK, Pramanik K, Ghosh SK, Mitra S, De TK (2018) The role of arsenic resistant Bacillus aryabhattai MCC3374 in promotion of rice seedlings growth and alleviation of arsenic phytotoxicity. Chemosphere 211:407–419 PubMed DOI
Gihring TM, Banfield JF (2001) Arsenite oxidation and arsenate respiration by a new Thermus isolate. FEMS Microbiol Lett 204:335–340 PubMed DOI
Gihring TM, Druschel GK, McCleskey RB, Hamers RJ, Banfield JF (2001) Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: field and laboratory investigations. Environ Sci Technol 35:3857–3862. https://doi.org/10.1021/es010816f PubMed DOI
González-Chávez MdCA et al (2011) Arsenate induces the expression of fungal genes involved in As transport in arbuscular mycorrhiza. Fungal Biol 115:1197–1209. https://doi.org/10.1016/j.funbio.2011.08.005 PubMed DOI
Halttunen T, Finell M, Salminen S (2007) Arsenic removal by native and chemically modified lactic acid bacteria. Int J Food Microbiol 120:173–178. https://doi.org/10.1016/j.ijfoodmicro.2007.06.002 PubMed DOI
Hoeft SE, Lucas F, Hollibaugh JT, Oremland RS (2002) Characterization of microbial arsenate reduction in the anoxic bottom waters of Mono Lake. California Geomicrobiol J 19:23–40 DOI
Huang J-H (2014) Impact of microorganisms on arsenic biogeochemistry: a review Water. Air, & Soil Pollution 225:1848 DOI
Huang K, Chen C, Shen Q, Rosen BP, Zhao F-J (2015) Genetically engineering Bacillus subtilis with a heat-resistant arsenite methyltransferase for bioremediation of arsenic-contaminated organic waste. Appl Environ Microbiol 81:6718–6724 PubMed DOI PMC
Huang K, Chen C, Zhang J, Tang Z, Shen Q, Rosen BP, Zhao F-J (2016) Efficient arsenic methylation and volatilization mediated by a novel bacterium from an arsenic-contaminated paddy soil. Environ Sci Technol 50:6389–6396. https://doi.org/10.1021/acs.est.6b01974 PubMed DOI PMC
Ilyas S, Rehman A, Coelho AV, Sheehan D (2016) Proteomic analysis of an environmental isolate of Rhodotorula mucilaginosa after arsenic and cadmium challenge: identification of a protein expression signature for heavy metal exposure. J Proteomics 141:47–56. https://doi.org/10.1016/j.jprot.2016.04.012 PubMed DOI
Ilyas S, Rehman A, Varela AC, Sheehan D (2014) Redox proteomics changes in the fungal pathogen Trichosporon asahii on arsenic exposure: identification of protein responses to metal-induced oxidative stress in an environmentally-sampled isolate. PLOS ONE 9:e102340. https://doi.org/10.1371/journal.pone.0102340
Ilyas S, Rehman A, Ilyas Q (2017) Heavy metals induced oxidative stress in multi-metal tolerant yeast, Candida sp. PS33 and its capability to uptake heavy metals from wastewater. Pak J Zool 49
Islam M, Islam F, IWA WW (2010) Arsenic contamination in groundwater in Bangladesh: an environmental and social disaster IWA Water Wiki
Ito A, Miura J-I, Ishikawa N, Umita T (2012) Biological Oxidation of Arsenite in Synthetic Groundwater Using Immobilised Bacteria. Water Res 46:4825–4831 PubMed DOI
Jackson CR, Dugas SL, Harrison KG (2005) Enumeration and characterization of arsenate-resistant bacteria in arsenic free soils. Soil Biol Biochem 37:2319–2322 DOI
Jana A, Bhattacharya P, Swarnakar S, Majumdar S, Ghosh S (2015) Anabaena sp. mediated bio-oxidation of arsenite to arsenate in synthetic arsenic (III) solution: process optimization by response surface methodology. Chemosphere 138:682–690. https://doi.org/10.1016/j.chemosphere.2015.07.055 PubMed DOI
Jasrotia S, Kansal A, Kishore VVN (2014) Arsenic phyco-remediation by Cladophora algae and measurement of arsenic speciation and location of active absorption site using electron microscopy. Microchem J 114:197–202. https://doi.org/10.1016/j.microc.2014.01.005 DOI
Jasrotia S, Kansal A, Mehra A (2017) Performance of aquatic plant species for phytoremediation of arsenic-contaminated water. Appl Water Sci 7:889–896. https://doi.org/10.1007/s13201-015-0300-4 DOI
Ji G, Silver S (1992) Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258. Proc Natl Acad Sci 89:9474–9478 PubMed DOI PMC
Ji G, Garber EAE, Armes LG, Chen C-M, Fuchs JA, Silver S (1994) Arsenate reductase of Staphylococcus aureus plasmid pI258. Biochemistry 33:7294–7299. https://doi.org/10.1021/bi00189a034 PubMed DOI
Jiang W, Hou Q, Yang Z, Zhong C, Zheng G, Yang Z, Li J (2014) Evaluation of potential effects of soil available phosphorus on soil arsenic availability and paddy rice inorganic arsenic content. Environ Pollut 188:159–165. https://doi.org/10.1016/j.envpol.2014.02.014 PubMed DOI
Kalia K, Joshi DN (2009) Detoxification of arsenic. In: Handbook of toxicology of chemical warfare agents. Elsevier, 1083–1100
Kalita J, Pradhan AK, Shandilya ZM, Tanti B (2018) Arsenic stress responses and tolerance in rice: physiological, cellular and molecular approaches. Rice Sci 25:235–249 DOI
Kang Y-S, Heinemann J, Bothner B, Rensing C, McDermott TR (2012) Integrated co-regulation of bacterial arsenic and phosphorus metabolisms. Environ Microbiol 14:3097–3109. https://doi.org/10.1111/j.1462-2920.2012.02881.x PubMed DOI
Karadjova IB, Slaveykova VI, Tsalev DL (2008) The biouptake and toxicity of arsenic species on the green microalga Chlorella salina in seawater. Aquat Toxicol 87:264–271. https://doi.org/10.1016/j.aquatox.2008.02.006 PubMed DOI
Kaur S, Rasool K, Ali A (2011) Role of arsenic and its resistance in nature. Can J Microbiol 57:769–774. https://doi.org/10.1139/w11-062%M21936668 PubMed DOI
Khoo KS, Chia WY, Chew KW, Show PL (2021) Microalgal-bacterial consortia as future prospect in wastewater bioremediation, environmental management and bioenergy production. Indian J Microbiol 61:262–269 PubMed DOI PMC
Knauer K, Hemond H (2000) Accumulation and reduction of arsenate by the freshwater green alga Chlorella sp. (Chlorophyta). J Phycol 36:506–509 PubMed DOI
Kudo K, Yamaguchi N, Makino T, Ohtsuka T, Kimura K, Dong DT, Amachi S (2013) Release of arsenic from soil by a novel dissimilatory arsenate-reducing bacterium, Anaeromyxobacter sp. strain PSR-1. Appl Environ Microbiol 79:4635–4642. https://doi.org/10.1128/AEM.00693-13 PubMed DOI PMC
Lebrun E, Brugna M, Baymann F, Muller D, Lièvremont D, Lett M-C, Nitschke W (2003) Arsenite oxidase, an ancient bioenergetic enzyme molecular. Biol Evol 20:686–693. https://doi.org/10.1093/molbev/msg071 DOI
Lehr CR, Polishchuk E, Radoja U, Cullen WR (2003) Demethylation of Methylarsenic Species by Mycobacterium Neoaurum. Appl Organomet Chem 17:831–834 DOI
Leiva ED et al (2014) Natural attenuation process via microbial oxidation of arsenic in a high Andean watershed. Sci Total Environ 466–467:490–502. https://doi.org/10.1016/j.scitotenv.2013.07.009 PubMed DOI
Leong YK, Chang J-S (2020) Bioremediation of heavy metals using microalgae: recent advances and mechanisms. Biores Technol 303:122886
Levy JL, Stauber JL, Adams MS, Maher WA, Kirby JK, Jolley DF (2005) Toxicity, biotransformation, and mode of action of arsenic in two freshwater microalgae (Chlorella sp. and Monoraphidium arcuatum). Environ Toxicol Chem Int J 24:2630–2639 DOI
Li N, Wang J, Song W-Y (2015) Arsenic uptake and translocation in plants. Plant Cell Physiol 57:4–13. https://doi.org/10.1093/pcp/pcv143 PubMed DOI
Li X, Qiao J, Li S, Häggblom MM, Li F, Hu M (2020) Bacterial communities and functional genes stimulated during anaerobic arsenite oxidation and nitrate reduction in a paddy soil. Environ Sci Technol 54:2172–2181. https://doi.org/10.1021/acs.est.9b04308 PubMed DOI
Liao VH-C et al (2011) Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan. J Contam Hydrol 123:20–29. https://doi.org/10.1016/j.jconhyd.2010.12.003 PubMed DOI
Lim KT, Shukor MY, Wasoh H (2014) Physical, chemical, and biological methods for the removal of arsenic compounds. Biomed Res Int 2014:503784–503784. https://doi.org/10.1155/2014/503784 PubMed DOI PMC
Liu Z, Sanchez MA, Jiang X, Boles E, Landfear SM, Rosen BP (2006) Mammalian glucose permease GLUT1 facilitates transport of arsenic trioxide and methylarsonous acid. Biochem Biophys Res Commun 351:424–430. https://doi.org/10.1016/j.bbrc.2006.10.054 PubMed DOI PMC
Liu L, Bilal M, Duan X, Iqbal HM (2019) Mitigation of environmental pollution by genetically engineered bacteria—current challenges and future perspectives. Sci Total Environ 667:444–454 PubMed DOI
Luo Z, Wang Z, Yan Y, Li J, Yan C, Xing B (2018) Titanium dioxide nanoparticles enhance inorganic arsenic bioavailability and methylation in two freshwater algae species. Environ Pollut 238:631–637 PubMed DOI
Luo C, Routh J, Luo D, Wei L, Liu Y (2021) Arsenic in the pearl river delta and its related waterbody. South China: Occurrence and Sources, a Review. Geosci Lett 8:12. https://doi.org/10.1186/s40562-021-00185-9
Macy JM, Santini JM, Pauling BV, O’Neill AH, Sly LI (2000) Two new arsenate/sulfate-reducing bacteria: mechanisms of arsenate reduction. Arch Microbiol 173:49–57. https://doi.org/10.1007/s002030050007 PubMed DOI
Maeda S, Kusadome K, Arima H, Ohki A, Naka K (1992) Biomethylation of Arsenic and Its Excretion by the Alga Chlorella Vulgaris Applied Organometallic Chemistry 6:407–413
Mallick I, Bhattacharyya C, Mukherji S, Dey D, Sarkar SC, Mukhopadhyay UK, Ghosh A (2018) Effective rhizoinoculation and biofilm formation by arsenic immobilizing halophilic plant growth promoting bacteria (PGPB) isolated from mangrove rhizosphere: a step towards arsenic rhizoremediation. Sci Total Environ 610–611:1239–1250. https://doi.org/10.1016/j.scitotenv.2017.07.234 PubMed DOI
Manoj SR, Karthik C, Kadirvelu K, Arulselvi PI, Shanmugasundaram T, Bruno B, Rajkumar M (2020) Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: a review. J Environ Manage 254 PubMed DOI
Martin P, DeMel S, Shi J, Gladysheva T, Gatti DL, Rosen BP, Edwards BF (2001) Insights into the structure, solvation, and mechanism of ArsC arsenate reductase, a novel arsenic detoxification enzyme. Struct 9:1071–1081 DOI
McDermott TR, Stolz JF, Oremland RS (2020) Arsenic and the Gastrointestinal Tract Microbiome. Environ Microbiol Rep 12:136–159 PubMed DOI
Mehdi SEH et al (2021) Sources, chemistry, bioremediation and social aspects of arsenic-contaminated waters: a review. Environ Chem Lett 19:3859–3886 DOI
Mesa V et al (2017) Use of endophytic and rhizosphere bacteria to improve phytoremediation of arsenic-contaminated industrial soils by autochthonous Betula celtiberica. Appl Environ Microbiol 83:e03411-03416
Messens J, Hayburn G, Desmyter A, Laus G, Wyns L (1999) The essential catalytic redox couple in arsenate reductase from Staphylococcus aureus Biochemistry 38:16857–16865. https://doi.org/10.1021/bi9911841 PubMed DOI
Metali F, Salim KA, Burslem DF (2012) Evidence of foliar aluminium accumulation in local, regional and global datasets of wild plants. New Phytol 193:637–649 PubMed DOI
Michalke K, Wickenheiser E, Mehring M, Hirner A, Hensel R (2000) Production of volatile derivatives of metal (loid) s by microflora involved in anaerobic digestion of sewage sludge. Appl Environ Microbiol 66:2791–2796 PubMed DOI PMC
Min D, Wu J, Cheng L, Liu D-F, Lau T-C, Yu H-Q (2021) Dependence of arsenic resistance and reduction capacity of Aeromonas hydrophila on carbon substrate. J Hazard Mater 403:123611. https://doi.org/10.1016/j.jhazmat.2020.123611
Mohan D, Pittman CU Jr (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142:1–53 PubMed DOI
Mohsin H, Asif A, Rehman Y (2019) Anoxic growth optimization for metal respiration and photobiological hydrogen production by arsenic-resistant Rhodopseudomonas and Rhodobacter species. J Basic Microbiol 59:1208–1216 PubMed DOI
Mohsin H, Shafique M, Rehman Y (2021) Genes and biochemical pathways involved in microbial transformation of arsenic. In: Kumar N (ed) Arsenic toxicity: challenges and solutions. Springer Singapore. Singapore 391–413. https://doi.org/10.1007/978-981-33-6068-6_15
Mujawar SY, Shamim K, Vaigankar DC, Dubey SK (2019) Arsenite biotransformation and bioaccumulation by Klebsiella pneumoniae strain SSSW7 possessing arsenite oxidase (aioA) gene. BioMetals 32:65–76 PubMed DOI
Mukhopadhyay R, Shi J, Rosen BP (2000) Purification and characterization of Acr2p, the Saccharomyces cerevisiae arsenate reductase. J Biol Chem 275:21149–21157. https://doi.org/10.1074/jbc.M910401199 PubMed DOI
Mukhopadhyay R, Shi J, Rosen BP (2000) Purification and characterization of Acr2p, theSaccharomyces cerevisiae arsenate reductase. J Biol Chemi 275:21149–21157 DOI
Mukhopadhyay R, Bhattacharjee H, Rosen BP (2014) Aquaglyceroporins: generalized metalloid channels. Biochim Biophys Acta 1840:1583–1591. https://doi.org/10.1016/j.bbagen.2013.11.021 PubMed DOI
Mukhopadhyay R, Rosen BP (2002) Arsenate reductases in prokaryotes and eukaryotes. Environ Health Perspect 110:745–748 PubMed DOI PMC
Nadar VS, Kandavelu P, Sankaran B, Rosen BP, Yoshinaga M (2022b) The ArsI C-As lyase: elucidating the catalytic mechanism of degradation of organoarsenicals. J Inorg Biochem 232:111836
Nadar VS, Kandavelu P, Sankaran B, Rosen BP, Yoshinaga M (2022a) The ArsI C-As lyase: elucidating the catalytic mechanism of degradation of organoarsenicals. J Inorg Biochem 232:111836. https://doi.org/10.1016/j.jinorgbio.2022.111836
Nam I-H, Murugesan K, Ryu J, Kim JH (2019) Arsenic (As) removal using Talaromyces sp. KM-31 isolated from as-contaminated mine soil Minerals 9:568
Natarajan K (2008) Microbial aspects of acid mine drainage and its bioremediation. Transactions of Nonferrous Metals Society of China 18:1352–1360 DOI
Naureen A, Rehman A (2016) Arsenite oxidizing multiple metal resistant bacteria isolated from industrial effluent: their potential use in wastewater treatment. World J Microbiol Biotechnol 32:1–9 DOI
Navazas A, Thijs S, Feito I, Vangronsveld J, Peláez AI, Cuypers A, González A (2021) Arsenate-reducing bacteria affect As accumulation and tolerance in Salix atrocinerea. Sci Total Environ 769
Nguyen VK, Tran HT, Park Y, Yu J, Lee T (2017) Microbial arsenite oxidation with oxygen, nitrate, or an electrode as the sole electron acceptor. J Ind Microbiol Biotechnol 44:857–868. https://doi.org/10.1007/s10295-017-1910-7 PubMed DOI
Niazi NK et al (2017) Phosphate-Assisted Phytoremediation of Arsenic by Brassica Napus and Brassica Juncea: Morphological and Physiological Response International Journal of Phytoremediation 19:670–678 PubMed
Nookongbut P, Kantachote D, Megharaj M (2016) Arsenic contamination in areas surrounding mines and selection of potential As-resistant purple nonsulfur bacteria for use in bioremediation based on their detoxification mechanisms. Annals of Microbiology 66:1419–1429. https://doi.org/10.1007/s13213-016-1229-z DOI
Nookongbut P, Kantachote D, Krishnan K, Megharaj M (2017) Arsenic resistance genes of As-resistant purple nonsulfur bacteria isolated from As-contaminated sites for bioremediation application. J Basic Microbiol 57:316–324 PubMed DOI
Ohtsuka T et al (2013) Arsenic dissolution from Japanese paddy soil by a dissimilatory arsenate-reducing bacterium Geobacter sp. OR-1. Environ Sci Technol 47:6263–6271. https://doi.org/10.1021/es400231x PubMed DOI
Omoregie EO et al (2013) Arsenic bioremediation by biogenic iron oxides and sulfides. Appl Environ Microbiol 79:4325–4335. https://doi.org/10.1128/AEM.00683-13 PubMed DOI PMC
Onyia PC, Ozoko DC, Ifediegwu SI (2020) Phytoremediation of arsenic-contaminated soils by arsenic hyperaccumulating plants in selected areas of Enugu State, Southeastern. Nigeria Geol Ecol Landscape 1–12
Ordóñez E, Letek M, Valbuena N, Gil JA, Mateos LM (2005) Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032. Appl Environ Microbiol 71:6206–6215. https://doi.org/10.1128/AEM.71.10.6206-6215.2005 PubMed DOI PMC
Oremland RS et al (2000) Bacterial dissimilatory reduction of arsenate and sulfate in meromictic Mono Lake. California Geochim Cosmochim Acta 64:3073–3084. https://doi.org/10.1016/S0016-7037(00)00422-1 DOI
Oremland RS, Hoeft SE, Santini JM, Bano N, Hollibaugh RA, Hollibaugh JT (2002) Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Appl Environ Microbiol 68:4795–4802 PubMed DOI PMC
Panagiotaras D, Nikolopoulos D (2015) Arsenic occurrence and fate in the environment; a geochemical perspective. J Earth Sci Clim Change 6:1
Pandey N, Bhatt R (2016) Role of soil associated Exiguobacterium in reducing arsenic toxicity and promoting plant growth in Vigna radiata. Eur J Soil Biol 75:142–150 DOI
Pawlik-Skowrońska B, Pirszel J, Kalinowska R, Skowroński T (2004) Arsenic availability, toxicity and direct role of GSH and phytochelatins in As detoxification in the green alga Stichococcus bacillaris. Aquat Toxicol 70:201–212. https://doi.org/10.1016/j.aquatox.2004.09.003 PubMed DOI
Pipattanajaroenkul P, Chotpantarat S, Termsaithong T, Sonthiphand P (2021) Effects of arsenic and iron on the community and abundance of arsenite-oxidizing bacteria in an arsenic-affected groundwater aquifer. Curr Microbiol 78:1324–1334. https://doi.org/10.1007/s00284-021-02418-8 PubMed DOI
Pous N, Casentini B, Rossetti S, Fazi S, Puig S, Aulenta F (2015) Anaerobic arsenite oxidation with an electrode serving as the sole electron acceptor: a novel approach to the bioremediation of arsenic-polluted groundwater. J Hazard Mater 283:617–622 PubMed DOI
Poynton CY, Huang JW, Blaylock MJ, Kochian LV, Elless MP (2004) Mechanisms of arsenic hyperaccumulation in Pteris species: root As influx and translocation. Planta 219:1080–1088. https://doi.org/10.1007/s00425-004-1304-8 PubMed DOI
Price AH et al (2013) Alternate wetting and drying irrigation for rice in Bangladesh: Is it sustainable and has plant breeding something to offer. Food and Energy Secur 2:120–129 DOI
Qiao J-t, Li X-m, Li F-b (2018) Roles of different active metal-reducing bacteria in arsenic release from arsenic-contaminated paddy soil amended with biochar. J Hazard Mater 344:958–967. https://doi.org/10.1016/j.jhazmat.2017.11.025 PubMed DOI
Rahman MA, Hasegawa H (2011) Aquatic Arsenic: Phytoremediation Using Floating Macrophytes Chemosphere 83:633–646 PubMed
Rajendran S et al. (2022) A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils. Chemosphere 287:132369. https://doi.org/10.1016/j.chemosphere.2021.132369
Relations CoF (2023) Ecological disasters 1912–2020. https://doi.org/https://www.cfr.org/timeline/ecological-disasters . Accessed 23 Mar 2023
Rhine ED, Phelps CD, Young L (2006) Anaerobic arsenite oxidation by novel denitrifying isolates. Environ Microbiol 8:899–908 PubMed DOI
Rosen BP (1999) Families of Arsenic Transporters Trends Microbiol 7:207–212. https://doi.org/10.1016/s0966-842x(99)01494-8 PubMed DOI
Rosenberg H, Gerdes RG, Chegwidden K (1977) Two systems for the uptake of phosphate in Escherichia coli. J Bacteriol 131:505–511. https://doi.org/10.1128/jb.131.2.505-511.1977 PubMed DOI PMC
Saleem H (2019) ul Ain Kokab Q, Rehman Y. Arsenic Respiration and Detoxification by Purple Non-Sulphur Bacteria under Anaerobic Conditions C R Biol 342:101–107. https://doi.org/10.1016/j.crvi.2019.02.001 PubMed DOI
Sanders OI, Rensing C, Kuroda M, Mitra B, Rosen BP (1997) Antimonite is accumulated by the glycerol facilitator GlpF in Escherichia coli. J Bacteriol 179:3365–3367. https://doi.org/10.1128/jb.179.10.3365-3367.1997 PubMed DOI PMC
Santini JM, Sly LI, Schnagl RD, Macy JM (2000) A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Appl environ microbiol 66:92–97 PubMed DOI PMC
Sarkar A, Kazy SK, Sar P (2013) Characterization of arsenic resistant bacteria from arsenic rich groundwater of West Bengal. India Ecotoxicology 22:363–376. https://doi.org/10.1007/s10646-012-1031-z PubMed DOI
Saunders JA, Lee M-K, Dhakal P, Ghandehari SS, Wilson T, Billor MZ, Uddin A (2018) Bioremediation of Arsenic-Contaminated Groundwater by Sequestration of Arsenic in Biogenic Pyrite Applied Geochemistry 96:233–243
Selvakumar R et al (2011) As(V) removal using carbonized yeast cells containing silver nanoparticles. Water Res 45:583–592. https://doi.org/10.1016/j.watres.2010.09.034 PubMed DOI
Shah MP (2020) Microbial bioremediation & biodegradation. Springer
Shakoor MB et al (2016) Remediation of arsenic-contaminated water using agricultural wastes as biosorbents. Crit Rev Environ Sci Technol 46:467–499 DOI
Shankar S, Shanker U, Shikha, (2014) Arsenic contamination of groundwater: a review of sources, prevalence, health risks, and strategies for mitigation. Sci World J 2014:304524–304524. https://doi.org/10.1155/2014/304524 DOI
Shen MW, Shah D, Chen W, Da Silva N (2012) Enhanced arsenate uptake in Saccharomyces cerevisiae overexpressing the Pho84 phosphate transporter. Biotechnol prog 28:654–661 PubMed DOI
Sher S, Sultan S, Rehman A (2021) Characterization of multiple metal resistant Bacillus licheniformis and its potential use in arsenic contaminated industrial wastewater Applied Water. Science 11:69. https://doi.org/10.1007/s13201-021-01407-3 DOI
Sher S, Rehman A (2019) Use of heavy metals resistant bacteria—a strategy for arsenic bioremediation. Appl microbiol biotechnol 103:6007–6021 PubMed DOI
Shi J, Vlamis-Gardikas A, Åslund F, Holmgren A, Rosen BP (1999) Reactivity of glutaredoxins 1, 2, and 3 from Escherichia coli shows that glutaredoxin 2 is the primary hydrogen donor to ArsC-catalyzed arsenate reduction. J Biol Chem 274:36039–36042. https://doi.org/10.1074/jbc.274.51.36039 PubMed DOI
Shi K, Fan X, Qiao Z, Han Y, McDermott TR, Wang Q, Wang G (2017) Arsenite oxidation regulator AioR regulates bacterial chemotaxis towards arsenite in Agrobacterium tumefaciens GW4. Sci Rep 7:43252. https://doi.org/10.1038/srep43252
Shivaji S, Suresh K, Chaturvedi P, Dube S, Sengupta S (2005) Bacillus arsenicus sp. nov., an arsenic-resistant bacterium isolated from a siderite concretion in West Bengal. India International Journal of Systematic and Evolutionary Microbiology 55:1123–1127 PubMed DOI
Shrestha R (2012) Arsenic contamination of groundwater in Nepal: Good public health intention gone bad Inquiries Journal 4
Shukla J et al. (2022) Endophytic fungus Serendipita indica reduces arsenic mobilization from root to fruit in colonized tomato plant. Environ Pollut 298:118830. https://doi.org/10.1016/j.envpol.2022.118830
Silver S, Phung LT (2005) Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microbiol 71:599–608 PubMed DOI PMC
Sonthiphand P et al. (2021) Microbial community structure in aquifers associated with arsenic: analysis of 16S rRNA and arsenite oxidase genes PeerJ 9:e10653
Spagnoletti FN, Balestrasse K, Lavado RS, Giacometti R (2016) Arbuscular mycorrhiza detoxifying response against arsenic and pathogenic fungus in soybean. Ecotoxicol Environ Saf 133:47–56 PubMed DOI
Srivastava S, Dwivedi AK (2015) Biological Wastes the Tool for Biosorption of Arsenic Journal of Bioremediation and Biodegradation 7:1–3
Srivastava S et al (2013) Influence of inoculation of arsenic-resistant Staphylococcus arlettae on growth and arsenic uptake in Brassica juncea (L.) Czern. Var. R-46. J Hazard Mater 262:1039–1047. https://doi.org/10.1016/j.jhazmat.2012.08.019 PubMed DOI
Srivastava S et al (2018) Chlorella vulgaris and Pseudomonas putida interaction modulates phosphate trafficking for reduced arsenic uptake in rice (Oryza sativa L.). J hazard mater 351:177–187 PubMed DOI
Su S, Zeng X, Bai L, Li L, Duan R (2011) Arsenic biotransformation by arsenic-resistant fungi Trichoderma asperellum SM-12F1, Penicillium janthinellum SM-12F4, and Fusarium oxysporum CZ-8F1. Sci Total Environ 409:5057–5062. https://doi.org/10.1016/j.scitotenv.2011.08.039 PubMed DOI
Sun W, Sierra-Alvarez R, Hsu I, Rowlette P, Field JA (2010) Anoxic oxidation of arsenite linked to chemolithotrophic denitrification in continuous bioreactors. Biotechnol Bioeng 105:909–917 PubMed PMC
Suresh K, Reddy G, Sengupta S, Shivaji S (2004) Deinococcus indicus sp. nov., an arsenic-resistant bacterium from an aquifer in West Bengal. India International Journal of Systematic and Evolutionary Microbiology 54:457–461 PubMed DOI
Takeuchi M, Kawahata H, Gupta LP, Kita N, Morishita Y, Ono Y, Komai T (2007) Arsenic resistance and removal by marine and non-marine bacteria. J Biotechnol 127:434–442. https://doi.org/10.1016/j.jbiotec.2006.07.018 PubMed DOI
Tani Y, Miyata N, Ohashi M, Ohnuki T, Seyama H, Iwahori K, Soma M (2004) Interaction of inorganic arsenic with biogenic manganese oxide produced by a Mn-oxidizing fungus, strain KR21–2. Environ Sci Technol 38:6618–6624. https://doi.org/10.1021/es049226i PubMed DOI
Thul S, Nigam B, Tiwari S, Pandey RA (2019) Arsenite-oxidation performance of microbes from abandoned iron ore. Indian J Biotechnol 18:34–41
Tian H, Wang J, Li J, Wang Y, Mallavarapu M, He W (2019) Six new families of aerobic arsenate reducing bacteria: Leclercia, Raoultella, Kosakonia, Lelliottia, Yokenella, and Kluyvera. Geomicrobiol J 36:339–347 DOI
Tripathi P, Khare P, Barnawal D, Shanker K, Srivastava PK, Tripathi RD, Kalra A (2020) Bioremediation of arsenic by soil methylating fungi: role of Humicola sp. strain 2WS1 in amelioration of arsenic phytotoxicity in Bacopa monnieri L. Sci Total Environ 716:136758
Tu S, Ma LQ, Fayiga AO, Zillioux EJ (2004) Phytoremediation of arsenic-contaminated groundwater by the arsenic hyperaccumulating fern Pteris vittata L. Int J Phytorem 6:35–47 DOI
Tuffin IM, Hector SB, Deane SM, Rawlings DE (2006) Resistance determinants of a highly arsenic-resistant strain of Leptospirillum ferriphilum isolated from a commercial biooxidation tank. Appl Environ Microbiol 72:2247–2253. https://doi.org/10.1128/AEM.72.3.2247-2253.2006 PubMed DOI PMC
Uhrynowski W, Debiec K, Sklodowska A, Drewniak L (2017) The role of dissimilatory arsenate reducing bacteria in the biogeochemical cycle of arsenic based on the physiological and functional analysis of Aeromonas sp. O23A. Sci The Total Environ 598:680–689. https://doi.org/10.1016/j.scitotenv.2017.04.137 DOI
Upadhyay AK, Singh NK, Singh R, Rai UN (2016) Amelioration of arsenic toxicity in rice: comparative effect of inoculation of Chlorella vulgaris and Nannochloropsis sp. on growth, biochemical changes and arsenic uptake. Ecotoxicol Environ Saf 124:68–73. https://doi.org/10.1016/j.ecoenv.2015.10.002 PubMed DOI
Upadhyaya G, Jackson J, Clancy TM, Hyun SP, Brown J, Hayes KF, Raskin L (2010) Simultaneous removal of nitrate and arsenic from drinking water sources utilizing a fixed-bed bioreactor system. Water Res 44:4958–4969 PubMed DOI
Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208 PubMed DOI
vanden Hoven RN, Santini JM, (2004) Arsenite oxidation by the heterotroph Hydrogenophaga sp. str. NT-14: the arsenite oxidase and its physiological electron acceptor Biochimica et Biophysica Acta (BBA). Bioenerg 1656:148–155. https://doi.org/10.1016/j.bbabio.2004.03.001 DOI
Verma S, Verma PK, Chakrabarty D (2019) Arsenic bio-volatilization by engineered yeast promotes rice growth and reduces arsenic accumulation in grains International. J Environ Res 13:475–485
Viacava K et al (2020) Variability in arsenic methylation efficiency across aerobic and anaerobic microorganisms. Environ Sci Technol 54:14343–14351. https://doi.org/10.1021/acs.est.0c03908 PubMed DOI
Vidal FV, Vidal VMV (1980) Arsenic metabolism in marine bacteria and yeast. Mar Biol 60:1–7. https://doi.org/10.1007/BF00395600 DOI
Visoottiviseth P, Panviroj N (2001) Selection of fungi capable of removing toxic arsenic compounds from liquid medium Sci. Asia 27:83–92
Visoottiviseth P, Francesconi K, Sridokchan W (2002) The Potential of Thai Indigenous Plant Species for the Phytoremediation of Arsenic Contaminated Land Environmental Pollution 118:453–461 PubMed
Vithanage M, Dabrowska BB, Mukherjee AB, Sandhi A, Bhattacharya P (2012) Arsenic Uptake by Plants and Possible Phytoremediation Applications: a Brief Overview Environmental Chemistry Letters 10:217–224
Wang Y (2016) Liu X-h, Si Y-b, Wang R-f. Release and Transformation of Arsenic from as-Bearing Iron Minerals by Fe-Reducing Bacteria Chemical Engineering Journal 295:29–38. https://doi.org/10.1016/j.cej.2016.03.027 DOI
Wang Y, Zhang C, Yu X, Ge Y (2020) Arsenite oxidation by Dunaliella salina is affected by external phosphate concentration. Bull Environ Contam Toxicol 105:868–873. https://doi.org/10.1007/s00128-020-03045-y PubMed DOI
Wang H, Cui S, Ma L, Wang Z, Wang H (2021) Variations of arsenic forms and the role of arsenate reductase in three hydrophytes exposed to different arsenic species. Ecotoxicol Environ Saf 221 PubMed DOI
Warelow TP et al. (2013) The respiratory arsenite oxidase: structure and the role of residues surrounding the rieske cluster. PLoS One 8:e72535. https://doi.org/10.1371/journal.pone.0072535
Weithmann N et al (2019) Arsenic Metabolism in Technical Biogas Plants: Possible Consequences for Resident Microbiota and Downstream Units AMB Express 9:190. https://doi.org/10.1186/s13568-019-0902-6 PubMed DOI
WHO (2018) Arsenic. https://doi.org/https://www.who.int/news-room/fact-sheets/detail/arsenic . Accessed May 27, 2021.
Wu J-Y, Lay C-H, Chia SR, Chew KW, Show PL, Hsieh P-H, Chen C-C (2021a) Economic potential of bioremediation using immobilized microalgae-based microbial fuel cells. Clean Technol Environ Policy 23:2251–2264. https://doi.org/10.1007/s10098-021-02131-x DOI
Wu Q, Du J, Zhuang G, Jing C (2013) Bacillus sp. SXB and Pantoea sp. IMH, aerobic As (V)-reducing bacteria isolated from arsenic-contaminated soil. J appl microbiol 114:713–721 PubMed DOI
Wu J (2005) A comparative study of arsenic methylation in a plant, yeast and bacterium
Wu G et al. (2017) Thioarsenate formation coupled with anaerobic arsenite oxidation by a sulfate-reducing bacterium Isolated from a Hot Spring. Front Microbiol 8. https://doi.org/10.3389/fmicb.2017.01336
Wu F-Y et al (2021b) Anaerobic As(III) Oxidation coupled with nitrate reduction and attenuation of dissolved arsenic by Noviherbaspirillum species ACS. Earth and Space Chem 5:2115–2123. https://doi.org/10.1021/acsearthspacechem.1c00155 DOI
Wysocki R, Chéry CC, Wawrzycka D, van Hulle M, Cornelis R, Thevelein JM, Tamás MJ (2001) The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Mol Microbiol 40:1391–1401. https://doi.org/10.1046/j.1365-2958.2001.02485.x PubMed DOI
Xu W et al (2015) Arabidopsis NIP3;1 plays an important role in arsenic uptake and root-to-shoot translocation under arsenite stress conditions. Mol Plant 8:722–733. https://doi.org/10.1016/j.molp.2015.01.005 PubMed DOI
Yamaguchi N, Ohkura T, Takahashi Y, Maejima Y, Arao T (2014) Arsenic distribution and speciation near rice roots influenced by iron plaques and redox conditions of the soil matrix. Environ Sci Technol 48:1549–1556 PubMed DOI
Yamamura S, Amachi S (2014) Microbiology of inorganic arsenic: from metabolism to bioremediation. J Biosci Bioeng 118:1–9 PubMed DOI
Yan Y, Ye J, Xue X-M, Zhu Y-G (2015) Arsenic demethylation by a C·As lyase in Cyanobacterium Nostoc sp. PCC 7120. Environ Sci Technol 49:14350–14358. https://doi.org/10.1021/acs.est.5b03357 PubMed DOI
Yan M et al. (2020) Dissolved organic matter differentially influences arsenic methylation and volatilization in paddy soils. J Hazard Mater 388:121795. https://doi.org/10.1016/j.jhazmat.2019.121795
Yang H-C, Cheng J, Finan TM, Rosen BP, Bhattacharjee H (2005) Novel pathway for arsenic detoxification in the legume symbiont Sinorhizobium meliloti. J Bacteriol 187:6991–6997. https://doi.org/10.1128/JB.187.20.6991-6997.2005 PubMed DOI PMC
Yang JB, Salam AAA, Rosen BP (2011) Genetic mapping of the interface between the ArsD metallochaperone and the ArsA ATPase. Mol Microbiol 79:872–881. https://doi.org/10.1111/j.1365-2958.2010.07494.x PubMed DOI
Yin X-X, Wang LH, Bai R, Huang H, Sun G-X (2012) Accumulation and transformation of arsenic in the blue-green alga Synechocysis sp. PCC6803 Water. Air, & Soil Pollution 223:1183–1190. https://doi.org/10.1007/s11270-011-0936-0 DOI
Yoshinaga M, Cai Y, Rosen BP (2011) Demethylation of methylarsonic acid by a microbial community. Environ Microbiol 13:1205–1215. https://doi.org/10.1111/j.1462-2920.2010.02420.x PubMed DOI PMC
Zargar K, Hoeft S, Oremland R, Saltikow CW (2010) Identification of a novel arsenite oxidase gene, arxA, in the haloalkaliphilic, arsenite-oxidizing bacterium Alkalilimnicola ehrlichii strain MLHE-1. J Bacteriol 192:3755–3762. https://doi.org/10.1128/JB.00244-10 PubMed DOI PMC
Zhang J, Zhou W, Liu B, He J, Shen Q, Zhao F-J (2015) Anaerobic arsenite oxidation by an autotrophic arsenite-oxidizing bacterium from an arsenic-contaminated paddy soil. Environ Sci Technol 49:5956–5964. https://doi.org/10.1021/es506097c PubMed DOI
Zhang J, Zhao S, Xu Y, Zhou W, Huang K, Tang Z, Zhao F-J (2017) Nitrate stimulates anaerobic microbial arsenite oxidation in paddy soils. Environ Sci Technol 51:4377–4386. https://doi.org/10.1021/acs.est.6b06255 PubMed DOI
Zhang J, Cao T, Tang Z, Shen Q, Rosen BP, Zhao F-J (2015) Arsenic methylation and volatilization by arsenite S-adenosylmethionine methyltransferase in Pseudomonas alcaligenes NBRC14159. Appl environ microbiol 81:2852–2860 PubMed DOI PMC
Zhang W et al. (2022) Arsenic bioaccumulation and biotransformation in aquatic organisms. Environ Int107221
Zheng Y (2020) Global Solutions to a Silent Poison Science 368:818–819 PubMed
Zhu Y-G, Rosen BP (2009) Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: from imagination to reality? Curr Opin Biotechnol 20:220–224 PubMed DOI PMC