Symbiotic status alters fungal eco-evolutionary offspring trajectories
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu dopisy
Grantová podpora
Feodor-Lynen Fellowship
Alexander von Humboldt-Stiftung
DP190103714
Australian Research Council
FT0100590
Australian Research Council
01LC1501A
Bundesministerium für Bildung und Forschung
HE6183
Deutsche Forschungsgemeinschaft
Deutscher Akademischer Austauschdienst
1623040
Division of Environmental Biology
1655759
Division of Environmental Biology
21-17749S
Grantová Agentura České Republiky
647038
H2020 European Research Council
694368
H2020 European Research Council
Universities Australia
PubMed
37330626
DOI
10.1111/ele.14271
Knihovny.cz E-zdroje
- Klíčová slova
- functional ecology, fungi, life-history, offspring size, symbiosis,
- MeSH
- ekosystém MeSH
- hmyz MeSH
- houby MeSH
- lidé MeSH
- mykorhiza * MeSH
- rostliny MeSH
- spory hub MeSH
- symbióza * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- dopisy MeSH
Despite host-fungal symbiotic interactions being ubiquitous in all ecosystems, understanding how symbiosis has shaped the ecology and evolution of fungal spores that are involved in dispersal and colonization of their hosts has been ignored in life-history studies. We assembled a spore morphology database covering over 26,000 species of free-living to symbiotic fungi of plants, insects and humans and found more than eight orders of variation in spore size. Evolutionary transitions in symbiotic status correlated with shifts in spore size, but the strength of this effect varied widely among phyla. Symbiotic status explained more variation than climatic variables in the current distribution of spore sizes of plant-associated fungi at a global scale while the dispersal potential of their spores is more restricted compared to free-living fungi. Our work advances life-history theory by highlighting how the interaction between symbiosis and offspring morphology shapes the reproductive and dispersal strategies among living forms.
AGHYLE Research Unit Institut Polytechnique UniLaSalle Mont Saint Aignan France
Berlin Brandenburg Institute of Advanced Biodiversity Research Berlin Germany
Biology Department Oberlin College and Conservatory Oberlin Ohio USA
College of Life Sciences Hebei University Baoding China
Department of Agricultural Sciences University of Helsinki Helsinki Finland
Department of Biological and Environmental Science University of Jyväskylä Jyvaskyla Finland
Department of Biology University of Miami Coral Gables Florida USA
Department of Ecology and Evolution University of Tennessee Knoxville Tennessee USA
Department of Environmental Studies Dartmouth College Hanover New Hampshire USA
Department of Music Art and Culture Studies University of Jyväskylä Jyvaskyla Finland
Departments of Botany and Bacteriology University of Wisconsin Madison Madison Wisconsin USA
Evogene Department of Biosciences University of Oslo Oslo Norway
Global Centre for Land Based Innovation Western Sydney University Penrith New South Wales Australia
Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
Institute of Biology Freie Universität Berlin Berlin Germany
Oceans and Atmosphere CSIRO Hobart Tasmania Australia
School of Resource Wisdom University of Jyväskylä Jyvaskyla Finland
Unidad Asociada CSIC UPO Universidad Pablo de Olavide Sevilla Spain
University of Chinese Academy of Sciences Beijing People's Republic of China
Zobrazit více v PubMed
Aguilar-Trigueros, C.A., Hempel, S., Powell, J.R., Cornwell, W.K. & Rillig, M.C. (2019) Bridging reproductive and microbial ecology: a case study in arbuscular mycorrhizal fungi. The ISME Journal, 13, 873-884.
Bässler, C., Heilmann-Clausen, J., Karasch, P., Brandl, R. & Halbwachs, H. (2014) Ectomycorrhizal fungi have larger fruit bodies than saprotrophic fungi. Fungal Ecology, 17, 205-212.
Bates, D., Mächler, M., Bolker, B. & Walker, S. (2015) Fitting linear mixed-effects models using {lme4}. Journal of Statistical Software, 67, 1-48.
Bielčik, M., Aguilar-Trigueros, C.A., Lakovic, M., Jeltsch, F. & Rillig, M.C. (2019) The role of active movement in fungal ecology and community assembly. Movement Ecology, 7, 36.
Bürkner, P.-C. (2017) brms: An R Package for Bayesian Multilevel Models Using Stan. 2017, 80, 28.
Burnham, K.P. & Anderson, D.R. (2002) Edition 2. Model selection and multimodel inference: a practical information-theoretic approach. New York: Springer.
Calhim, S., Halme, P., Petersen, J.H., Laessoe, T., Bassler, C. & Heilmann-Clausen, J. (2018) Fungal spore diversity reflects substrate-specific deposition challenges. Scientific Reports, 8, 5356.
Chaloner, T.M., Gurr, S.J. & Bebber, D.P. (2020) Geometry and evolution of the ecological niche in plant-associated microbes. Nature Communications, 11, 2955.
Chomicki, G., Kiers, E.T. & Renner, S.S. (2020) The evolution of mutualistic dependence. Annual Review of Ecology, Evolution, and Systematics, 51, 409-432.
Davis Rabosky, A.R., Cox, C.L., Rabosky, D.L., Title, P.O., Holmes, I.A., Feldman, A. et al. (2016) Coral snakes predict the evolution of mimicry across New World snakes. Nature Communications, 7, 11484.
Edelsbrunner, H., Kirkpatrick, D. & Seidel, R. (1983) On the shape of a set of points in the plane. IEEE Transactions on Information Theory, 29, 551-559.
Falster, D.S., Moles, A.T. & Westoby, M. (2008) A general model for the scaling of offspring size and adult size. The American Naturalist, 172, 299-317.
Fones, H.N., Fisher, M.C. & Gurr, S.J. (2017) Emerging fungal threats to plants and animals challenge agriculture and ecosystem resilience. In: The Fungal Kingdom. Washington, DC: ASM Press, pp. 787-809.
Gareth Jones, E.B. (2006) Form and function of fungal spore appendages. Mycoscience, 47, 167-183.
Garrett, S.D. (1970) Pathogenic root-infecting fungi. Cambridge: Cambridge University Press.
Gibson, C.M. & Hunter, M.S. (2010) Extraordinarily widespread and fantastically complex: comparative biology of endosymbiotic bacterial and fungal mutualists of insects. Ecology Letters, 13, 223-234.
Golan, J. & Pringle, A. (2017) Long-distance dispersal of fungi. In: The Fungal Kingdom. Washington, DC: ASM Press, pp. 309-333.
Halbwachs, H. (2015) Gone with the wind-a review on basidiospores of lamellate agarics. Mycosphere, 6, 78-112.
Halbwachs, H., Heilmann-Clausen, J. & Bässler, C. (2017) Mean spore size and shape in ectomycorrhizal and saprotrophic assemblages show strong responses under resource constraints. Fungal Ecology, 26, 59-64.
Hawksworth, D.L. & Lücking, R. (2017) Fungal diversity revisited: 2.2 to 3.8 million species. Microbiology Spectrum, 5(4).
Hijmans, R.J., Williams, E., Vennes, C. & Hijmans, M.R.J. (2019) Package ‘geosphere’. Spherical Trigonometry, 1, 7.
Ho, L.S.T., Ane, C., Lachlan, R., Tarpinian, K., Feldman, R., Yu, Q. et al. (2016) Package ‘phylolm’. See http://cran.r-project.org/web/packages/phylolm/index.html (accessed February 2018)
Ingold, C.T. (2001) Range in size and form of basidiospores and ascospores. Mycologist, 4, 165-166.
James, T.Y., Stajich, J.E., Hittinger, C.T. & Rokas, A. (2020) Toward a fully resolved fungal tree of life. Annual Review of Microbiology, 74, 291-313.
Kauserud, H., Colman, J.E. & Ryvarden, L. (2008) Relationship between basidiospore size, shape and life history characteristics: a comparison of polypores. Fungal Ecology, 1, 19-23.
Kavanagh, P.H. & Burns, K.C. (2014) The repeated evolution of large seeds on islands. Proceedings of the Royal Society B: Biological Sciences, 281, 20140675.
Kemen, E. & Jones, J.D. (2012) Obligate biotroph parasitism: can we link genomes to lifestyles? Trends in Plant Science, 17, 448-457.
Kendrick, B. (2017) The fifth kingdom. Indianapolis: Hackett Publishing.
Kivlin, S.N. (2020) Global mycorrhizal fungal range sizes vary within and among mycorrhizal guilds but are not correlated with dispersal traits. Journal of Biogeography, 47, 1994-2001.
Kokkoris, V., Stefani, F., Dalpe, Y., Dettman, J. & Corradi, N. (2020) Nuclear dynamics in the arbuscular mycorrhizal fungi. Trends in Plant Science, 25, 765-778.
Li, Y., Steenwyk, J.L., Chang, Y., Wang, Y., James, T.Y., Stajich, J.E. et al. (2021) A genome-scale phylogeny of the kingdom fungi. Current Biology, 31(8), 1653-1665.
Lutzoni, F., Nowak, M.D., Alfaro, M.E., Reeb, V., Miadlikowska, J., Krug, M. et al. (2018) Contemporaneous radiations of fungi and plants linked to symbiosis. Nature Communications, 9, 5451.
McLaughlin, D.J. & Spatafora, J.W. (2014) Systematics and evolution: part a. Berlin: Springer-Verlag.
Mengiste, T. (2012) Plant immunity to necrotrophs. Annual Review of Phytopathology, 50, 267-294.
Moles, A.T., Ackerly, D.D., Webb, C.O., Tweddle, J.C., Dickie, J.B. & Westoby, M. (2005) A brief history of seed size. Science, 307, 576-580.
Moles, A.T. & Westoby, M. (2004) Seedling survival and seed size: a synthesis of the literature. Journal of Ecology, 92, 372-383.
Moore, D., Robson, G.D. & Trinci, A.P. (2011) 21st century guidebook to fungi. Cambridge: Cambridge University Press.
Naranjo-Ortiz, M.A. & Gabaldon, T. (2019) Fungal evolution: major ecological adaptations and evolutionary transitions. Biological Reviews of the Cambridge Philosophical Society, 94, 1443-1476.
Neuheimer, A.B., Hartvig, M., Heuschele, J., Hylander, S., Kiørboe, T., Olsson, K.H. et al. (2015) Adult and offspring size in the ocean over 17 orders of magnitude follows two life history strategies. Ecology, 96, 3303-3311.
Norros, V., Karhu, E., Norden, J., Vahatalo, A.V. & Ovaskainen, O. (2015) Spore sensitivity to sunlight and freezing can restrict dispersal in wood-decay fungi. Ecology and Evolution, 5, 3312-3326.
Norros, V., Rannik, Ü., Hussein, T., Petäjä, T., Vesala, T. & Ovaskainen, O. (2014) Do small spores disperse further than large spores? Ecology, 95, 1612-1621.
Paradis, E. & Schliep, K. (2018) Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35, 526-528.
Poulin, R. (2011) Evolutionary ecology of parasites. Princeton: Princeton university press.
Purhonen, J., Ovaskainen, O., Halme, P., Komonen, A., Huhtinen, S., Kotiranta, H. et al. (2020) Morphological traits predict host-tree specialization in wood-inhabiting fungal communities. Fungal Ecology, 46, 100863.
Robert, V., Vu, D., Amor, A.B.H., van de Wiele, N., Brouwer, C., Jabas, B. et al. (2013) MycoBank gearing up for new horizons. IMA Fungus, 4, 371-379.
Rockett, T.R. & Kramer, C.L. (1974) Periodicity and Total spore production by Lignicolous basidiomycetes. Mycologia, 66, 817-829.
Roper, M. & Seminara, A. (2019) Mycofluidics: the fluid mechanics of fungal adaptation. Annual Review of Fluid Mechanics, 51, 511-538.
Stearns, S. (1992) The evolution of life histories, Oxford Univ. Press. Oxford. SteamsThe Evolution of Life histories1992.
Stoddard, M.C., Yong, E.H., Akkaynak, D., Sheard, C., Tobias, J.A. & Mahadevan, L. (2017) Avian egg shape: form, function, and evolution. Science, 356, 1249-1254.
Team, R.C. (2020) R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing Vienna.
Vincenty, T. (1975) Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Survey Review, 23, 88-93.
Wang, C. & Wang, S. (2017) Insect pathogenic fungi: genomics, molecular interactions, and genetic improvements. Annual Review of Entomology, 62, 73-90.