Effects of chronic core training on serum and erythrocyte oxidative stress parameters in amputee football players
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
37362427
PubMed Central
PMC10287970
DOI
10.3389/fphys.2023.1188843
PII: 1188843
Knihovny.cz E-resources
- Keywords
- amputee, amputee football, core exercise, total antioxidant status, total oxidant status,
- Publication type
- Journal Article MeSH
Objective: The positive impact of aerobic exercise on blood oxidative stress parameters is well documented. However, the effect of core exercises on these parameters in amputee football players (AF) remains unclear. Therefore, this study aims to investigate the impact of core exercises on blood oxidative stress parameters in this population. Methods: Experimental method was adopted in the study. Eleven elite AF players participated in the study. The participants were divided randomly into two groups a core exercise group (CEG) and a control group (CG). Blood measurements were taken before and after the 8-week core exercise program. Blood measurements included erythrocyte Total Oxidant Status (eTOS), erythrocyte Total Antioxidant Status (eTAS), erythrocyte oxidative stress index (eOSI), serum nitric oxide (sNO), serum Total Oxidant Status (sTOS), serum Total Antioxidant Status (sTAS), serum oxidative stress index (sOSI), serum total thiol (sTT), serum native thiol (sNT), and serum disulfide (sDS) parameters were studied. Results: According to the results of the study, a significant difference was found between the 0th and eighth week pre-aerobic training load (ATL) sTOS (p = .028) values of CEG values. A significant difference was found in sTOS (p = .028) and sOSI (p = .028) values after the 0th and eighth-week pre-ATL. A significant difference was found in the sTOS (p = .043) and sOSI values (p = .043) of CG at week 0th and eighth-week pre-ATL. Conclusion: Overall, the results suggest that core exercises had a positive effect on blood oxidative stress parameters in AF players by reducing blood total oxidant levels.
Department of Coaching Education Faculty of Sport Science Inonu University Malatya Türkiye
Department of Health Sciences Jan Dlugosz University Czestochowa Poland
Department of Medical Biochemistry Medical Faculty Inonu University Malatya Türkiye
See more in PubMed
Akman T., Kabadayı M., Cilhoroz B., Akyol P. (2013). Effect of jogging and core training after supramaximal exercise on recovery. Turk. J. Sport Exerc. 15, 73–77. 10.15314/tjse.40708 DOI
Alessio H. M., Goldfarb A. H., Cutler R. G. (1988). MDA content increases in fast- and slow-twitch skeletal muscle with intensity of exercise in a rat. Am. J. Physiol. 255, C874–C877. 10.1152/ajpcell.1988.255.6.C874 PubMed DOI
Arazi H., Eghbali E., Suzuki K. (2021). Creatine supplementation, physical exercise and oxidative stress markers: A review of the mechanisms and effectiveness. Nutrients 13, 869. 10.3390/nu13030869 PubMed DOI PMC
Bernardi M., Macaluso A., Sproviero E., Castellano V., Coratella D., Felici F., et al. (1999). Cost of walking and locomotor impairment. J. Electromyogr. Kinesiol. 9, 149–157. 10.1016/S1050-6411(98)00046-7 PubMed DOI
Bloomer R. J., Goldfarb A. H. (2004). Anaerobic exercise and oxidative stress: A review. Can. J. Appl. Physiol. 29, 245–263. 10.1139/h04-017 PubMed DOI
ÇakirAtabek H. (2011). Exercise and oxidative stress: The effect of resistance exercise: Review, Turkiye Klinikleri Journal of Sports Sciences, 3.
Callahan L. A., She Z. W., Nosek T. M. (2001). Superoxide, hydroxyl radical, and hydrogen peroxide effects on single-diaphragm fiber contractile apparatus. J. Appl. Physiol. 90, 45–54. 10.1152/jappl.2001.90.1.45 PubMed DOI
Chandrasekaran A., Idelchik M. D. P. S., Melendez J. A. (2017). Redox control of senescence and age-related disease. Redox Biol. 11, 91–102. 10.1016/j.redox.2016.11.005 PubMed DOI PMC
de Lima F. R., Marin D. P., Ferreira L. T., Sousa Filho C. P. B., Astorino T. A., Prestes J., et al. (2021). Effect of resistance training with total and partial blood flow restriction on biomarkers of oxidative stress and apoptosis in untrained men. Front. Physiol. 12, 720773. 10.3389/fphys.2021.720773 PubMed DOI PMC
Di Meo S., Napolitano G., Venditti P. (2019). Mediators of physical activity protection against ROS-linked skeletal muscle damage. Int. J. Mol. Sci. 20, 3024. 10.3390/ijms20123024 PubMed DOI PMC
Durkin J. L., Dowling J. J. (2003). Analysis of body segment parameter differences between four human populations and the estimation errors of four popular mathematical models. J. Biomech. Eng. 125, 515–522. 10.1115/1.1590359 PubMed DOI
Erel O. (2005). A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 38, 1103–1111. 10.1016/j.clinbiochem.2005.08.008 PubMed DOI
Fearon I. M., Faux S. P. (2009). Oxidative stress and cardiovascular disease: Novel tools give (free) radical insight. J. Mol. Cell. Cardiol. 47, 372–381. 10.1016/j.yjmcc.2009.05.013 PubMed DOI
Frost A. P., Norman Giest T., Ruta A. A., Snow T. K., Millard-Stafford M. (2017). Limitations of body mass index for counseling individuals with unilateral lower extremity amputation. Prosthetics Orthot. Int. 41, 186–193. 10.1177/0309364616650079 PubMed DOI
Gacitua T., Karachon L., Romero E., Parra P., Poblete C., Russell J., et al. (2018). Effects of resistance training on oxidative stress-related biomarkers in metabolic diseases: A review. Sport Sci. Health 14, 1–7. 10.1007/s11332-017-0402-5 DOI
Gailey R. S., Wenger M. A., Raya M., Kirk N., Erbs K., Spyropoulos P., et al. (1994). Energy expenditure of trans-tibial amputees during ambulation at self-selected pace. Prosthetics Orthot. Int. 18, 84–91. 10.3109/03093649409164389 PubMed DOI
Hadžović-Džuvo A., Valjevac A., Lepara O., Pjanić S., Hadžimuratović A., Mekić A. (2014). Oxidative stress status in elite athletes engaged in different sport disciplines. Bosn. J. basic Med. Sci. 14, 56–62. 10.17305/bjbms.2014.2262 PubMed DOI PMC
Hasegawa N., Fujie S., Horii N., Miyamoto-Mikami E., Tsuji K., Uchida M., et al. (2018). Effects of different exercise modes on arterial stiffness and nitric oxide synthesis. Med. Sci. Sports Exerc. 50, 1177–1185. 10.1249/MSS.0000000000001567 PubMed DOI
Ito D., Ito O., Mori N., Cao P., Suda C., Muroya Y., et al. (2013). Exercise training upregulates nitric oxide synthases in the kidney of rats with chronic heart failure. Clin. Exp. Pharmacol. Physiol. 40, 617–625. 10.1111/1440-1681.12130 PubMed DOI
Ji L. L. (1995). Exercise and oxidative stress: Role of the cellular antioxidant systems. Exerc. Sport Sci. Rev. 23, 135–166. 10.1249/00003677-199500230-00007 PubMed DOI
Jürgenson J., Serg M., Kampus P., Kals J., Zagura M., Viru M., et al. (2019). Oxidative stress parameters and its associations with arterial stiffness in competitive powerlifting athletes after 12-week supervised strength training. J. strength Cond. Res. 33, 1816–1822. 10.1519/JSC.0000000000003067 PubMed DOI
Kalvandi F., Azarbayjani M. A., Azizbeigi R., Azizbeigi K. (2022). Elastic resistance training is more effective than vitamin D3 supplementation in reducing oxidative stress and strengthen antioxidant enzymes in healthy men. Eur. J. Clin. Nutr. 76, 610–615. 10.1038/s41430-021-01000-6 PubMed DOI PMC
Kang H. (2021). Sample size determination and power analysis using the G*Power software. J. Educ. Eval. Health Prof. 18, 17. 10.3352/jeehp.2021.18.17 PubMed DOI PMC
Karvonen J., Vuorimaa T. (1988). Heart rate and exercise intensity during sports activities. Practical application. Sports Med. 5, 303–311. 10.2165/00007256-198805050-00002 PubMed DOI
Kawamura T., Fujii R., Li X., Higashida K., Muraoka I. (2018). Effects of exhaustive exercises, with different intensities, on oxidative stress markers in rat plasma and skeletal muscle. Sci. Sports 33, 169–175. 10.1016/j.scispo.2017.08.008 DOI
Kayacan Y., Çetinkaya A., Yazar H., Makaracı Y. (2021). Oxidative stress response to different exercise intensity with an automated assay: Thiol/disulphide homeostasis. Arch. Physiol. Biochem. 127, 504–508. 10.1080/13813455.2019.1651868 PubMed DOI
Keppel G. (1991). Design and analysis: A researcher’s handbook. Hoboken, NJ, USA., Prentice-Hall, Inc.
Korsager Larsen M., Matchkov V. V. (2016). Hypertension and physical exercise: The role of oxidative stress. Med. Kaunas. 52, 19–27. 10.1016/j.medici.2016.01.005 PubMed DOI
Koz M., Erbaş D., Bilgihan A., Aricioğlu A. (1992). Effects of acute swimming exercise on muscle and erythrocyte malondialdehyde, serum myoglobin, and plasma ascorbic acid concentrations. Can. J. Physiol. Pharmacol. 70, 1392–1395. 10.1139/y92-195 PubMed DOI
Lin C. H., Wang P. W., Pan T. L., Bazylak G., Liu E. K. W., Wei F. C. (2010). Proteomic profiling of oxidative stress in human victims of traffic-related injuries after lower limb revascularization and indication for secondary amputation. J. Pharm. Biomed. Anal. 51, 784–794. 10.1016/j.jpba.2009.07.028 PubMed DOI
Lorenzon Dos Santos J., Quadros A. S., Weschenfelder C., Garofallo S. B., Marcadenti A. (2020). Oxidative stress biomarkers, nut-related antioxidants, and cardiovascular disease. Nutrients 12, 682. 10.3390/nu12030682 PubMed DOI PMC
Magherini F., Fiaschi T., Marzocchini R., Mannelli M., Gamberi T., Modesti P. A., et al. (2019). Oxidative stress in exercise training: The involvement of inflammation and peripheral signals. Free Radic. Res. 53, 1155–1165. 10.1080/10715762.2019.1697438 PubMed DOI
Mao L., Lu X., Yu C., Yin K. (2022). Physiological and neural changes with rehabilitation training in a 53-year amputee: A case study. Brain Sci. 12, 832. 10.3390/brainsci12070832 PubMed DOI PMC
Mardia K. V. (1974). Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies. Sankhyā Indian J. Stat. Ser. B, 115–128.
Margaritis I., Palazzetti S., Rousseau A.-S., Richard M.-J., Favier A. (2003). Antioxidant supplementation and tapering exercise improve exercise-induced antioxidant response. J. Am. Coll. Nutr. 22, 147–156. 10.1080/07315724.2003.10719288 PubMed DOI
Martinović J., Dopsaj V., Kotur-Stevuljević J., Dopsaj M., Vujović A., Stefanović A., et al. (2011). Oxidative stress biomarker monitoring in elite women volleyball athletes during a 6-week training period. J. strength Cond. Res. 25, 1360–1367. 10.1519/JSC.0b013e3181d85a7f PubMed DOI
Moncada S., Higgs E. A. (2006). The discovery of nitric oxide and its role in vascular biology. Br. J. Pharmacol. 147 (l), S193–S201. 10.1038/sj.bjp.0706458 PubMed DOI PMC
Osterkamp L. K. (1995). Current perspective on assessment of human body proportions of relevance to amputees. J. Am. Diet. Assoc. 95, 215–218. 10.1016/S0002-8223(95)00050-X PubMed DOI
Ozbek E., Turkoz Y., Gokdeniz R., Davarci M., Ozugurlu F. (2000). Increased nitric oxide production in the spermatic vein of patients with varicocele. Eur. Urol. 37, 172–175. 10.1159/000020135 PubMed DOI
Park S.-Y., Kwak Y.-S. (2016). Impact of aerobic and anaerobic exercise training on oxidative stress and antioxidant defense in athletes. J. Exerc. Rehabil. 12, 113–117. 10.12965/jer.1632598.299 PubMed DOI PMC
Pedersen B. K., Saltin B. (2015). Exercise as medicine - evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand. J. Med. Sci. Sports 25 (3), 1–72. 10.1111/sms.12581 PubMed DOI
Peivandi Yazdi A., Bameshki A., Salehi M., Kazemzadeh G., Sharifian Razavi M., Rahmani S., et al. (2018). The effect of spinal and general anesthesia on serum lipid peroxides and total antioxidant capacity in diabetic patients with lower limb amputation surgery. Arch. bone Jt. Surg. 6, 312–317. Available at: http://www.ncbi.nlm.nih.gov/pubmed/30175179. PubMed PMC
Pitocco D., Zaccardi F., Di Stasio E., Romitelli F., Santini S. A., Zuppi C., et al. (2010). Oxidative stress, nitric oxide, and diabetes. Rev. Diabet. Stud. 7, 15–25. 10.1900/RDS.2010.7.15 PubMed DOI PMC
Powers S. K., Nelson W. B., Hudson M. B. (2011). Exercise-induced oxidative stress in humans: Cause and consequences. Free Radic. Biol. Med. 51, 942–950. 10.1016/j.freeradbiomed.2010.12.009 PubMed DOI
Prasertsri P., Boonla O. (2021). Upper and lower limb resistance training program versus high-intensity interval training on oxidative stress markers in University athletes. J. Exerc. Rehabil. 17, 198–206. 10.12965/jer.2142184.092 PubMed DOI PMC
Qi Y., Wang S., Luo Y., Huang W., Chen L., Zhang Y., et al. (2020). Exercise-induced nitric oxide contributes to spatial memory and hippocampal capillaries in rats. Int. J. Sports Med. 41, 951–961. 10.1055/a-1195-2737 PubMed DOI
Radak Z., Powers S. K. (2020). Introduction to special topic on exercise and oxidative stress. J. Sport Heal. Sci. 9, 385. 10.1016/j.jshs.2020.04.005 PubMed DOI PMC
Radak Z., Zhao Z., Koltai E., Ohno H., Atalay M. (2013). Oxygen consumption and usage during physical exercise: The balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid. Redox Signal. 18, 1208–1246. 10.1089/ars.2011.4498 PubMed DOI PMC
Simim M. A. M., Silva B. V. C., Marocolo Júnior M., Mendes E. L., Mello M. T. de, Mota G. R. da. (2013). Anthropometric profile and physical performance characteristic of the Brazilian amputee football (soccer) team. Mot. Rev. Educ. Física 19, 641–648. 10.1590/S1980-65742013000300016 DOI
Suzuki K., Tominaga T., Ruhee R. T., Ma S. (2020). Characterization and modulation of systemic inflammatory response to exhaustive exercise in relation to oxidative stress, Antioxidants, 9. 10.3390/antiox9050401 PubMed DOI PMC
Thirupathi A., Wang M., Lin J. K., Fekete G., István B., Baker J. S., et al. (2021). Effect of different exercise modalities on oxidative stress: A systematic review. Biomed. Res. Int. 2021, 1947928–1948010. 10.1155/2021/1947928 PubMed DOI PMC
Tönnies E., Trushina E. (2017). Oxidative stress, synaptic dysfunction, and alzheimer’s disease. J. Alzheimers. Dis. 57, 1105–1121. 10.3233/JAD-161088 PubMed DOI PMC
Waters R. L., Mulroy S. (1999). The energy expenditure of normal and pathologic gait. Gait Posture 9, 207–231. 10.1016/S0966-6362(99)00009-0 PubMed DOI