Influence of Storing Composite Filling Materials in a Low-pH Artificial Saliva on Their Mechanical Properties-An In Vitro Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37367292
PubMed Central
PMC10299096
DOI
10.3390/jfb14060328
PII: jfb14060328
Knihovny.cz E-zdroje
- Klíčová slova
- artificial saliva, crushing resistance, dental restorative composite, flexural strength, low pH,
- Publikační typ
- časopisecké články MeSH
Restorative composites are subjected to various influences in the oral cavity environment, such as high or low temperatures, the mechanical force generated during mastication, colonization of various microorganisms, and low pH, which may result from ingested food and the influence of microbial flora. This study aimed to investigate the effect of a recently developed commercial artificial saliva (pH = 4, highly acidic) on 17 commercially available restorative materials. After polymerization, the samples were stored in an artificial solution for 3 and 60 days and subjected to crushing resistance and flexural strength tests. The surface additions of the materials were examined in terms of the shapes and sizes of the fillers and elemental composition. When stored in an acidic environment, the resistance of the composite materials was reduced by 2-12%. Larger compressive and flexural strength resistance values were observed for composites that could be bonded to microfilled materials (invented before 2000). This may result from the filler structure taking an irregular form, which results in a faster hydrolysis of silane bonds. All composite materials meet the standard requirements when stored for a long period in an acidic environment. However, storage of the materials in an acid environment has a destructive impact on the materials' properties.
Department of Engineering Manchester Metropolitan University Manchester M1 5GD UK
Department of Prosthodontics School of Dentistry The University of Jordan Amman 11942 Jordan
Zobrazit více v PubMed
Mjör I.A., Dahl J.E., Moorhead J.E. Age of restorations at replacement in permanent teeth in general dental practice. Acta Odontol. Scand. 2000;58:97–101. doi: 10.1080/000163500429208. PubMed DOI
Scribante A., Gallo S., Scarantino S., Dagna A., Poggio C., Colombo M. Exposure of Biomimetic Composite Materials to Acidic Challenges: Influence on Flexural Resistance and Elastic Modulus. Biomimetics. 2020;5:56. doi: 10.3390/biomimetics5040056. PubMed DOI PMC
Zubrzycki J., Klepka T., Marchewka M., Zubrzycki R. Tests of Dental Properties of Composite Materials Containing Nanohybrid Filler. Materials. 2023;16:348. doi: 10.3390/ma16010348. PubMed DOI PMC
Junior S.R., Zanchi C.H., de Carvalho R., Demarco F.F. Flexural strength and modulus of elasticity of different types of resin-based composites. Braz. Oral Res. 2007;21:16–21. doi: 10.1590/S1806-83242007000100003. PubMed DOI
AlHabdan A., AlShamrani A., AlHumaidan R., AlFehaid A., Eisa S. Color Matching of Universal Shade Resin-Based Composite with Natural Teeth and Its Stability before and after In-Office Bleaching. Int. J. Biomater. 2022;2022:8420890. doi: 10.1155/2022/8420890. PubMed DOI PMC
Sun C., Xu D., Hou C., Zhang H., Li Y., Zhang Q., Wang H., Zhu M. Core-shell structured SiO2@ZrO2@SiO2 filler for radiopacity and ultra-low shrinkage dental composite resins. J. Mech. Behav. Biomed. Mater. 2021;121:104593. doi: 10.1016/j.jmbbm.2021.104593. PubMed DOI
Lucsanszky I.J., Ruse N.D. Fracture Toughness, Flexural Strength, and Flexural Modulus of New CAD/CAM Resin Composite Blocks. J. Prosthodont. 2020;29:34–41. doi: 10.1111/jopr.13123. PubMed DOI
Al Badr R.M., Hassan H.A. Effect of immersion in different media on the mechanical properties of dental composite resins. Int. J. Appl. Dent. Sci. 2017;3:81–88.
Korkut B., Dokumacigil G., Murat N., Atali P., Tarcin B., Gocmen G. Effect of Polymerization on the Color of Resin Composites. Oper. Dent. 2022;47:514–526. doi: 10.2341/20-155-L. PubMed DOI
Beun S., Glorieux T., Devaux J., Vreven J., Leloup G. Characterization of nanofilled compared to universal and microfilled composites. Dent. Mater. 2007;23:51–59. doi: 10.1016/j.dental.2005.12.003. PubMed DOI
Alrefaie T., Abdou A., Almasabi W., Qi F., Nakamoto A., Nakajima M., Otsuki M., Shimada Y. Effect of Water Storage and Bleaching on Light Transmission Properties and Translucency of Nanofilled Flowable Composite. Materials. 2022;16:10. doi: 10.3390/ma16010010. PubMed DOI PMC
Yip H.H., Wong R.W., Hägg U. Complications of orthodontic treatment: Are soft drinks a risk factor? World J. Orthod. 2009;10:33–40. PubMed
Scribante A., Bollardi M., Chiesa M., Poggio C., Colombo M. Flexural Properties and Elastic Modulus of Different Esthetic Restorative Materials: Evaluation after Exposure to Acidic Drink. BioMed. Res. Int. 2019;2019:5109481. doi: 10.1155/2019/5109481. PubMed DOI PMC
de Paula A., de Fúcio S., Alonso R., Ambrosano G., Puppin-Rontani R. Influence of Chemical Degradation on the Surface Properties of Nano Restorative Materials. Oper. Dent. 2014;39:E109–E117. doi: 10.2341/12-340. PubMed DOI
Szalewski L., Wójcik D., Bogucki M., Szkutnik J., Różyło-Kalinowska I. The Influence of Popular Beverages on Mechanical Properties of Composite Resins. Materials. 2021;14:3097. doi: 10.3390/ma14113097. PubMed DOI PMC
Gornig D.C., Maletz R., Ottl P., Warkentin M. Influence of artificial aging: Mechanical and physicochemical properties of dental composites under static and dynamic compression. Clin. Oral Investig. 2022;26:1491–1504. doi: 10.1007/s00784-021-04122-0. PubMed DOI PMC
Hao Y., Huang X., Zhou X., Li M., Ren B., Peng X., Cheng L. Influence of Dental Prosthesis and Restorative Materials Interface on Oral Biofilms. Int. J. Mol. Sci. 2018;19:3157. doi: 10.3390/ijms19103157. PubMed DOI PMC
Popoff D.A.V., Santa-Rosa T.T.D.A., Paula A.C.F.D., Biondi C.M.F., Domingos M.A., Oliveira S.A.D. Bulimia: Oral manifestations and dental care. RGO. Rev. Gaúcha Odontol. (Online) 2010;58:381–385.
Figueiral M.H., Azul A.M., Fonseca P., Pinto E., Branco F.M. Influence of saliva on prosthetic stomatitis. Rev. Port. Estomatol. Med. Dent. E’Cir. Maxilofac. 2006;47:197–202.
Sá J.D., Vieira F., Aroso C.M., Cardoso M., Mendes J.M., Silva A.S. The influence of saliva pH on the fracture resistance of three complete denture base acrylic resins. Int. J. Dent. 2020;2020:8941876. PubMed PMC
International Organization for Standardization . Dentistry-Polymer-Based Restorative Materials. ISO; Geneva, Switzerland: 2019.
Al-Shekhli A.A.R. Compressive Strength Evaluation of Giomer and Compomer Storage in Different Media. J. Int. Dent. Med. Res. 2020;13:23–28.
Aliping-McKenzie M., Linden R.W.A., Nicholson J.W. The effect of Coca-Cola and fruit juices on the surface hardness of glass-ionomers and ‘compomers’. J. Oral Rehabil. 2004;31:1046–1052. doi: 10.1111/j.1365-2842.2004.01348.x. PubMed DOI
Bettencourt A.F., Neves C.B., de Almeida M.S., Pinheiro L.M., e Oliveira S.A., Lopes L.P., Castro M.F. Biodegradation of acrylic based resins: A review. Dent. Mater. 2010;26:e171–e180. doi: 10.1016/j.dental.2010.01.006. PubMed DOI
Mohammadi E., Pishevar L., Boroujeni P.M. Effect of food simulating liquids on the flexural strength of a methacrylate and silorane-based composite. PLoS ONE. 2017;12:e0188829. doi: 10.1371/journal.pone.0188829. PubMed DOI PMC
Koin P., Kilislioglu A., Zhou M., Drummond J., Hanley L. Analysis of the Degradation of a Model Dental Composite. J. Dent. Res. 2008;87:661–665. doi: 10.1177/154405910808700712. PubMed DOI PMC
McKinney J., Wu W. Chemical Softening and Wear of Dental Composites. J. Dent. Res. 1985;64:1326–1331. doi: 10.1177/00220345850640111601. PubMed DOI
Goracci C., Cadenaro M., Fontanive L., Giangrosso G., Juloski J., Vichi A., Ferrari M. Polymerization efficiency and flexural strength of low-stress restorative composites. Dent. Mater. 2014;30:688–694. doi: 10.1016/j.dental.2014.03.006. PubMed DOI
Saratti C.M., Rocca G.T., Durual S., Lohbauer U., Ferracane J.L., Scherrer S.S. Fractography of clinical failures of indirect resin composite endocrown and overlay restorations. Dent. Mater. 2021;37:e341–e359. doi: 10.1016/j.dental.2021.02.002. PubMed DOI
Hwang S., Chung S.H., Lee J.-T., Kim Y.-T., Kim Y.J., Oh S., Yeo I.-S.L. Influence of Acid, Ethanol, and Anthocyanin Pigment on the Optical and Mechanical Properties of a Nanohybrid Dental Composite Resin. Materials. 2018;11:1234. doi: 10.3390/ma11071234. PubMed DOI PMC
Ranjitkar S., Kaidonis J.A., Smales R.J. Gastroesophageal Reflux Disease and Tooth Erosion. Int. J. Dent. 2012;2012:479850. doi: 10.1155/2012/479850. PubMed DOI PMC
Seirawan M.Y., Doumani M., Seirawan M.K., Habib A., Dayoub M. Compressive strength of three different restorative materials (in vitro study) Int. J. Oral Care Res. 2019;7:4.
Ille C., Moacă E.A., Pop D., Goguță L., Opriș C., Pîrvulescu I.L., Faur A., Jivănescu A. Compressive strength evaluation of thin occlusal veneers from different CAD/CAM materials, before and after acidic saliva exposure. Odontology. 2023;111:360–374. doi: 10.1007/s10266-022-00741-5. PubMed DOI PMC