Association of ACTN3 R577X Polymorphism with Elite Basketball Player Status and Training Responses

. 2023 May 29 ; 14 (6) : . [epub] 20230529

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37372374

The α-actinin-3 (ACTN3) gene rs1815739 (C/T, R577X) polymorphism is a variant frequently associated with athletic performance among different populations. However, there is limited research on the impact of this variant on athlete status and physical performance in basketball players. Therefore, the aim of this study was twofold: (1) to determine the association of ACTN3 rs1815739 polymorphism with changes in physical performance in response to six weeks of training in elite basketball players using 30 m sprint and Yo-Yo Intermittent Recovery Test Level 2 (IR 2) tests, and (2) to compare ACTN3 genotype and allelic frequencies between elite basketball players and controls. The study included a total of 363 individuals, comprising 101 elite basketball players and 262 sedentary individuals. Genomic DNA was isolated from oral epithelial cells or leukocytes, and genotyping was performed by real-time PCR using KASP genotyping method or by microarray analysis. We found that the frequency of the ACTN3 rs1815739 XX genotype was significantly lower in basketball players compared to controls (10.9 vs. 21.4%, p = 0.023), suggesting that RR/RX genotypes were more favorable for playing basketball. Statistically significant (p = 0.045) changes were observed in Yo-Yo IRT 2 performance measurement tests in basketball players with the RR genotype only. In conclusion, our findings suggest that the carriage of the ACTN3 rs1815739 R allele may confer an advantage in basketball.

Zobrazit více v PubMed

Bulgay C., Kasakolu A., Kazan H.H., Mijaica R., Zorba E., Akman O., Bayraktar I., Ekmekci R., Koncagul S., Ulucan K., et al. Exome-Wide Association Study of Competitive Performance in Elite Athletes. Genes. 2023;14:660. doi: 10.3390/genes14030660. PubMed DOI PMC

Ahmetov I.I., Druzhevskaya A.M., Lyubaeva E.V., Popov D.V., Vinogradova O.L., Williams A.G. The Dependence of Preferred Competitive Racing Distance on Muscle Fibre Type Composition and ACTN3 Genotype in Speed Skaters. Exp. Physiol. 2011;96:1302–1310. doi: 10.1113/expphysiol.2011.060293. PubMed DOI

Baumert P., Lake M.J., Stewart C.E., Drust B., Erskine R.M. Genetic Variation and Exercise-Induced Muscle Damage: Implications for Athletic Performance, Injury and Ageing. Eur. J. Appl. Physiol. 2016;116:1595–1625. doi: 10.1007/s00421-016-3411-1. PubMed DOI PMC

Ahmetov I.I., Hall E.C.R., Semenova E.A., Pranckevičienė E., Ginevičienė V. Advances in sports genomics. Adv. Clin. Chem. 2022;107:215–263. PubMed

Ahmetov I.I., Hakimullina A.M., Popov D.V., Lyubaeva E.V., Missina S.S., Vinogradova O.L., Williams A.G., Rogozkin V.A. Association of the VEGFR2 gene His472Gln polymorphism with endurance-related phenotypes. Eur. J. Appl. Physiol. 2009;107:95–103. doi: 10.1007/s00421-009-1105-7. PubMed DOI

Ahmetov I.I., Donnikov A.E., Trofimov D.Y. ACTN3 genotype is associated with testosterone levels of athletes. Biol. Sport. 2014;31:105–108. doi: 10.5604/20831862.1096046. PubMed DOI PMC

Guest N., Corey P., Vescovi J., El-Sohemy A. Caffeine, CYP1A2 Genotype, and Endurance Performance in Athletes. Med. Sci. Sport Exerc. 2018;50:1570–1578. doi: 10.1249/MSS.0000000000001596. PubMed DOI

Macıejewska A., Sawczuk M., Cieszczyk P., Mozhayskaya I.A., Ahmetov I.I. The PPARGC1A Gene Gly482Ser in Polish and Russian Athletes. J. Sport Sci. 2012;30:101–113. doi: 10.1080/02640414.2011.623709. PubMed DOI

Cerit M. İnsan Metabolizmasının Bilinmeyenleri. 1st ed. Spor Yayınevi ve Kitapevi; Ankara, Turkey: 2021.

Lopez-Leon S., Tuvblad C., Forero D.A. Sports Genetics: The PPARA Gene and Athletes’ High Ability in Endurance Sports. A Systematic Review and Meta-Analysis. Biol. Sport. 2016;33:3–6. PubMed PMC

Silventoinen K., Magnusson P.K.E., Tynelius P., Kaprio J., Rasmussen F. Heritability of Body Size and Muscle Strength in Young Adulthood: A Study of One Million Swedish Men. Genet. Epidemiol. 2008;32:341–349. doi: 10.1002/gepi.20308. PubMed DOI

Bouchard C., Daw E.W., Rice T., Pérusse L., Gagnon J., Province M.A., Leon A.S., Rao D.C., Skinner J.S., Wilmore J.H. Familial Resemblance for VO2max in the Sedentary State: The HERITAGE Family Study. Med. Sci. Sports Exerc. 1998;30:252–258. doi: 10.1097/00005768-199802000-00013. PubMed DOI

Peeters M.W., Thomis M.A., Loos R.J.F., Derom C.A., Fagard R., Claessens A.L., Vlietinck R.F., Beunen G.P. Heritability of Somatotype Components: A Multivariate Analysis. Int. J. Obes. 2007;31:1295–1301. doi: 10.1038/sj.ijo.0803575. PubMed DOI

Yıldırım D.S., Erdoğan M., Dalip M., Bulğay C., Cerit M. Evaluation of the Soldier’s Physical Fitness Test Results (Strength Endurance) In Relation to Genotype: Longitudinal Study. Egypt. J. Med. Hum. Genet. 2022;23:114. doi: 10.1186/s43042-022-00325-6. DOI

Beggs A.H., Byers T.J., Knoll J.H., Boyce F.M., Bruns G.A., Kunkel L.M. Cloning and Characterization of Two Human Skeletal Muscle Alpha-Actinin Genes Located on Chromosomes 1 and 11. J. Biol. Chem. 1992;267:9281–9288. doi: 10.1016/S0021-9258(19)50420-3. PubMed DOI

North K.N., Beggs A.H. Deficiency of a Skeletal Muscle Isoform of α-Actinin (α-Actinin-3) in Merosin-Positive Congenital Muscular Dystrophy. Neuromuscul. Disord. 1996;6:229–235. doi: 10.1016/0960-8966(96)00361-6. PubMed DOI

North K.N., Yang N. A Common Nonsense Mutation Results in α-Actinin-3 Deficiency in the General Population. Nat. Genet. 1999;21:353–354. doi: 10.1038/7675. PubMed DOI

Yang N., MacArthur D.G., Gulbin J.P., Hahn A.G., Beggs A.H., Easteal S., North K. ACTN3 Genotype Is Associated with Human Elite Athletic Performance. Am. J. Hum. Genet. 2003;73:627–631. doi: 10.1086/377590. PubMed DOI PMC

Yang N., Macarthur D.G., Wolde B., Onywera V.O., Boit M.K., Lau S.Y.M.A., Wilson R.H., Scott R.A., Pitsiladis Y.P., North K. The ACTN3 R577X Polymorphism in East and West African Athletes. Med. Sci. Sports Exerc. 2007;39:1985–1988. doi: 10.1249/mss.0b013e31814844c9. PubMed DOI

Mills M., Yang N., Weinberger R., Vander Woude D.L., Beggs A.H., Easteal S., North K. Differential Expression of the Actin-Binding Proteins, Alpha-Actinin-2 and -3, in Different Species: Implications for the Evolution of Functional Redundancy. Hum. Mol. Genet. 2001;10:1335–1346. doi: 10.1093/hmg/10.13.1335. PubMed DOI

Druzhevskaya A.M., Ahmetov I.I., Astratenkova I.V., Rogozkin V.A. Association of the ACTN3 R577X Polymorphism with Power Athlete Status in Russians. Eur. J. Appl. Physiol. 2008;103:631–634. doi: 10.1007/s00421-008-0763-1. PubMed DOI

Eynon N., Duarte J.A., Oliveira J., Sagiv M., Yamin C., Meckel Y., Sagiv M., Goldhammer E. ACTN3 R577X Polymorphism and Israeli Top-Level Athletes. Int. J. Sports Med. 2009;30:245–252. doi: 10.1055/s-0029-1220731. PubMed DOI

Papadimitriou I., Papadopoulos C., Kouvatsi A., Triantaphyllidis C. The ACTN3 Gene in Elite Greek Track and Field Athletes. Int. J. Sports Med. 2008;29:352–355. doi: 10.1055/s-2007-965339. PubMed DOI

Clarkson P.M., Devaney J.M., Gordish-Dressman H., Thompson P.D., Hubal M.J., Urso M., Price T.B., Angelopoulos T.J., Gordon P.M., Moyna N.M., et al. ACTN3 Genotype Is Associated with Increases in Muscle Strength in Response to Resistance Training in Women. J. Appl. Physiol. 2005;99:154–163. doi: 10.1152/japplphysiol.01139.2004. PubMed DOI

Walsh S., Liu D., Metter E.J., Ferrucci L., Roth S.M. ACTN3 Genotype Is Associated with Muscle Phenotypes in Women across the Adult Age Span. J. Appl. Physiol. 2008;105:1486–1491. doi: 10.1152/japplphysiol.90856.2008. PubMed DOI PMC

Wolfarth B., Bray M.S., Hagberg J.M., Perusse L., Rauramaa R., Rivera M.A., Roth S.M., Rankinen T., Bouchard C. The Human Gene Map for Performance and Health-Related Fitness Phenotypes: The 2004 Update. Med. Sci. Sports Exerc. 2005;37:881–903. PubMed

Papadimitriou I.D., Lucia A., Pitsiladis Y.P., Pushkarev V.P., Dyatlov D.A., Orekhov E.F., Artioli G.G., Guilherme J.P.L.F., Lancha A.H., Jr., Ginevičienė V., et al. ACTN3 R577X and ACE I/D Gene Variants Influence Performance in Elite Sprinters: A Multi-Cohort Study. BMC Genom. 2016;17:285. doi: 10.1186/s12864-016-2462-3. PubMed DOI PMC

Romero-Blanco C., Artiga-González M.J., Gómez-Cabello A., Vila-Maldonado S., Casajús J.A., Ara I., Aznar S. Strength and Endurance Training in Older Women in Relation to ACTN3 R577X and ACE I/D Polymorphisms. Int. J. Environ. Res. Public Health. 2020;17:1236. doi: 10.3390/ijerph17041236. PubMed DOI PMC

Leger L.A., Lambert J. A Maximal Multistage 20-m Shuttle Run Test to Predict O2 Max. Eur. J. Appl. Physiol. Occup. Physiol. 1982;49:1–12. doi: 10.1007/BF00428958. PubMed DOI

McInnes S.E., Carlson J.S., Jones C.J., McKenna M.J. The Physiological Load Imposed on Basketball Players during Competition. J. Sports Sci. 1995;13:387–397. doi: 10.1080/02640419508732254. PubMed DOI

He C., Holme J., Anthony J. SNP Genotyping: The KASP Assay. Methods Mol. Biol. 2014;1145:75–86. doi: 10.1007/978-1-4939-0446-4_7. PubMed DOI

Coelho D., Pimenta I., Rosse C., Veneroso L., Becker M.R., Carvalho G., Pussieldi E., Silami-Garcia E. The Alpha-Actinin-3 R577X Polymorphism and Physical Performance in Soccer Players Skin Temperature Changes of under-20 Soccer Players. J. Sports Med. Phys. Fit. 2015;56:241–248. doi: 10.13140/RG.2.1.2552.6241. PubMed DOI

Guilherme P.L.F., Bosnyák E., Semenova E.A., Szmodis M., Kostryukova S., Borisov O.V., Larin A.K., Andryushchenko L.B., Akimov E.B., Paulo S. The MCT1 Gene Glu490Asp Polymorphism (rs1049434) Is Associated with Endurance Athlete Status, Lower Blood Lactate Accumulation and Higher Maximum Oxygen Uptake. Biol. Sport. 2021;38:465–474. doi: 10.5114/biolsport.2021.101638. PubMed DOI PMC

Hamada T., Sale D.G., Macdougall J.D., Tarnopolsky M.A. Postactivation potentiation, fiber type, and twitch contraction time in human knee extensor muscles. J. Appl. Physiol. 2000;88:2131–2137. doi: 10.1152/jappl.2000.88.6.2131. PubMed DOI

Lewis M.I., Fournier M., Wang H., Storer T.W., Casaburi R., Kopple J.D. Effect of Endurance and/or Strength Training on Muscle Fiber Size, Oxidative Capacity, and Capillarity in Hemodialysis Patients. J. Appl. Physiol. 2015;119:865–871. doi: 10.1152/japplphysiol.01084.2014. PubMed DOI PMC

McAuley A.B.T., Hughes D.C., Tsaprouni L.G., Varley I., Suraci B., Roos T.R., Herbert A.J., Kelly A.L. Genetic Association Research in Football: A Systematic Review. Eur. J. Sport Sci. 2021;21:714–752. doi: 10.1080/17461391.2020.1776401. PubMed DOI

Pickering C., Suraci B., Semenova E.A., Boulygina E.A., Kostryukova E.S., Kulemin N.A., Borisov O.V., Khabibova S.A., Larin A.K., Pavlenko A.V., et al. A Genome-Wide Association Study of Sprint Performance in Elite Youth Football Players. J. Strength Cond. Res. 2019;33:2344–2351. doi: 10.1519/JSC.0000000000003259. PubMed DOI

Eynon N., Ruiz J.R., Yvert T., Santiago C., Gomez-Gallego F., Lucia A., Birk R. The C Allele in NOS3-786 T/C Polymorphism Is Associated with Elite Soccer Player’s Status. Int. J. Sports Med. 2012;33:521–524. doi: 10.1055/s-0032-1306337. PubMed DOI

Massidda M., Corrias L., Ibba G., Scorcu M., Vona G., Calò C.M. Genetic Markers and Explosive Leg-Muscle Strength in Elite Italian Soccer Players. J. Sports Med. Phys. Fit. 2012;52:328–334. PubMed

Dinç N., Yücel S.B., Taneli F., Sayın M.V. The Effect of the MTHFR C677T Mutation on Athletic Performance and the Homocysteine Level of Soccer Players and Sedentary Individuals. J. Hum. Kinet. 2016;51:61–69. doi: 10.1515/hukin-2015-0171. PubMed DOI PMC

Lulińska-Kuklik E., Rahim M., Domańska-Senderowska D., Ficek K., Michałowska-Sawczyn M., Moska W., Kaczmarczyk M., Brzeziański M., Brzeziańska-Lasota E., Cięszczyk P., et al. Interactions Between COL5A1 Gene and Risk of the Anterior Cruciate Ligament Rupture. J. Hum. Kinet. 2018;62:65–71. doi: 10.1515/hukin-2017-0177. PubMed DOI PMC

MacArthur D.G., North K.N. A Gene for Speed? The Evolution and Function of A-actinin-3. Bioessays. 2004;26:786–795. doi: 10.1002/bies.20061. PubMed DOI

Vincent B., De Bock K., Ramaekers M., Van den Eede E., Van Leemputte M., Hespel P., Thomis M.A. ACTN3 (R577X) Genotype Is Associated with Fiber Type Distribution. Physiol Genom. 2007;32:58–63. doi: 10.1152/physiolgenomics.00173.2007. PubMed DOI

Yang N., Garton F., North K. α-Actinin-3 and Performance. Genet. Sports. 2009;54:88–101. PubMed

Cięszczyk P., Eider J., Ostanek M., Arczewska A., Leońska-Duniec A., Sawczyn S., Ficek K., Krupecki K. Association of the ACTN3 R577X Polymorphism in Polish Power-Orientated Athletes. J. Hum. Kinet. 2011;28:55–61. doi: 10.2478/v10078-011-0022-0. PubMed DOI PMC

Kikuchi N., Miyamoto-Mikami E., Murakami H., Nakamura T., Min S.-K., Mizuno M., Naito H., Miyachi M., Nakazato K., Fuku N. ACTN3 R577X Genotype and Athletic Performance in a Large Cohort of Japanese Athletes. Eur. J. Sports Sci. 2016;16:694–701. doi: 10.1080/17461391.2015.1071879. PubMed DOI

Roth S.M., Walsh S., Liu D., Metter E.J., Ferrucci L., Hurley B.F. The ACTN3 R577X Nonsense Allele Is Under-Represented in Elite-Level Strength Athletes. J. Hum. Genet. 2008;16:391–394. doi: 10.1038/sj.ejhg.5201964. PubMed DOI PMC

Scott R.A., Irvıng R., Irwın L., Morrıson E., Charlton V., Austın K., Tladı D., Deason M., Headley S.A., Kolkhorst F.W., et al. ACTN3 and ACE Genotypes in Elite Jamaican and US Sprinters. Med. Sci. Sports Exerc. 2010;42:107–112. doi: 10.1249/MSS.0b013e3181ae2bc0. PubMed DOI

Sessa F., Chetta M., Petito A., Franzetti M., Bafunno V., Pisanelli D., Sarno M., Iuso S., Margaglione M. Gene Polymorphisms and Sport Attitude in Italian Athletes. Genet. Test. Mol. Biomark. 2011;15:285–290. doi: 10.1089/gtmb.2010.0179. PubMed DOI

Orysiak J., Mazur-Różycka J., Busko K., Gajewski J., Szczepanska B., Malczewska-Lenczowska J. Individual and Combined Influence of ACE and ACTN3 Genes on Muscle Phenotypes in Polish Athletes. J. Strength Cond. Res. 2018;32:2776–2782. doi: 10.1519/JSC.0000000000001839. PubMed DOI

North K. Why Is α-Actinin-3 Deficiency so Common in the General Population? The Evolution of Athletic Performance. Twin Res. Hum. Genet. 2008;11:384–394. doi: 10.1375/twin.11.4.384. PubMed DOI

McCauley T., Mastana S.S., Folland J.P. ACE I/D and ACTN3 R/X Polymorphisms and Muscle Function and Muscularity of Older Caucasian Men. Eur. J. Appl. Physiol. 2010;109:269–277. doi: 10.1007/s00421-009-1340-y. PubMed DOI

Norman B., Esbjörnsson M., Rundqvist H., Österlund T., von Walden F., Tesch P.A. Strength, Power, Fiber Types, and MRNA Expression in Trained Men and Women with Different ACTN3 R577X Genotypes. J. Appl. Physiol. 2009;106:959–965. doi: 10.1152/japplphysiol.91435.2008. PubMed DOI

Lima G., Almeida S.S., Silva E.D., Rosa J.P.P., de Souza A.L., Sierra A.P.R., Doretto A.R., Costa C.A., Correia P.R., Pesquero J.B. Association between basketball playing position and ACTN3 R577X polymorphism in athletes of first division Brazilian Basketball League. Gene. 2023;863:147302. doi: 10.1016/j.gene.2023.147302. PubMed DOI

Jones N., Kiely J., Collins D.J., De Lorenzo D., Pickering C., Grimaldi K.A. A Genetic-Based Algorithm for Personalized Resistance Training. Biol. Sport. 2016;33:117–126. doi: 10.5604/20831862.1198210. PubMed DOI PMC

Alfred T., Ben-Shlomo Y., Cooper R., Hardy R., Cooper C., Deary I.J., Gunnell D., Harris S.E., Kumari M., Martin R.M., et al. ACTN3 Genotype, Athletic Status, and Life Course Physical Capability: Meta-analysis of the Published Literature and Findings from Nine Studies. Hum. Mutat. 2011;32:1008–1018. doi: 10.1002/humu.21526. PubMed DOI PMC

Döring F.E., Onur S., Geisen U., Boulay M.R., Pérusse L., Rankinen T., Rauramaa R., Wolfahrt B., Bouchard C. ACTN3 R577X and Other Polymorphisms Are Not Associated with Elite Endurance Athlete Status in the Genathlete Study. J. Sports Sci. 2010;28:1355–1359. doi: 10.1080/02640414.2010.507675. PubMed DOI

Hong S.S., Jin H.J. Assessment of Association of ACTN3 Genetic Polymorphism with Korean Elite Athletic Performance. Genes Genom. 2013;35:617–621. doi: 10.1007/s13258-013-0111-7. DOI

Lucia A., Gomez-Gallego F., Santiago C., Bandres F., Earnest C., Rabadan M., Alonso J.M., Hoyos J., Córdova A., Villa G., et al. ACTN3 Genotype in Professional Endurance Cyclists. Int. J. Sports Med. 2006;27:880–884. doi: 10.1055/s-2006-923862. PubMed DOI

Ruiz J.R., Santiago C., Yvert T., Muniesa C., Díaz-Ureña G., Bekendam N., Fiuza-Luces C., Gómez-Gallego F., Femia P., Lucia A. ACTN3 Genotype in Spanish Elite Swimmers: No “Heterozygous Advantage”. Scand. J. Med. Sci. Sports. 2013;23:12045. doi: 10.1111/sms.12045. PubMed DOI

Ahmetov I.I., Vinogradova O.L., Williams A.G. Gene Polymorphisms and Fiber-Type Composition of Human Skeletal Muscle. Int. J. Sport Nutr. Exerc. Metab. 2012;22:292–303. doi: 10.1123/ijsnem.22.4.292. PubMed DOI

Dionísio T.J., Thiengo C.R., Brozoski D.T., Dionísio E.J., Talamoni G.A., Silva R.B., Garlet G.P., Santos C.F., Amaral S.L. The Influence of Genetic Polymorphisms on Performance and Cardiac and Hemodynamic Parameters among Brazilian Soccer Players. Appl. Physiol. Nutr. Metab. 2017;42:596–604. doi: 10.1139/apnm-2016-0608. PubMed DOI

Pickering C., Kiely J. ACTN3: More than Just a Gene for Speed. Front. Physiol. 2017;8:1080. doi: 10.3389/fphys.2017.01080. PubMed DOI PMC

Tural E., Kara N., Agaoglu S.A., Elbistan M., Tasmektepligil M.Y., Imamoglu O. PPAR-α and PPARGC1A Gene Variants Have Strong Effects on Aerobic Performance of Turkish Elite Endurance Athletes. Mol. Biol. Rep. 2014;41:5799–5804. doi: 10.1007/s11033-014-3453-6. PubMed DOI

Ben Abdelkrim N., El Fazaa S., El Ati J., Tabka Z. Time-Motion Analysis and Physiological Data of Elite under-19-Year-Old Basketball Players during Competition * Commentary. Br. J. Sports Med. 2007;41:69–75. doi: 10.1136/bjsm.2006.032318. PubMed DOI PMC

Abdelkrim N.B., Castagna C., El Fazaa S., Tabka Z., Jalila A., Ati E.L. Blood Metabolıtes Durıng Basketball Competıtıons. J. Strength Cond. Res. 2009;23:765–773. doi: 10.1519/JSC.0b013e3181a2d8fc. PubMed DOI

Leite N., Coutinho D. Effects of Fatigue and Time-out on Physiological, Time-Motion Indicators and in Patterns of Spatial Organization of the Teams in Basketball. Rev. Psicol. Deporte. 2013;22:0215–0218.

Bishop D.C., Wright C. A Time-Motion Analysis of Professional Basketball to Determine the Relationship between Three Activity Profiles: High, Medium and Low Intensity and the Length of the Time Spent on Court. Int. J. Perform. Anal. Sport. 2006;6:130–139. doi: 10.1080/24748668.2006.11868361. DOI

Scanlan A., Dascombe B., Reaburn P. A Comparison of the Activity Demands of Elite and Sub-Elite Australian Men’s Basketball Competition. J. Sports Sci. 2011;29:1153–1160. doi: 10.1080/02640414.2011.582509. PubMed DOI

Castagna C., Impellizzeri F., Cecchini E., Rampinini E., Carlos J., Alvarez B. Effects of Intermıttent-Endurance Fıtness On Match Performance In Young Male Soccer Players. J. Strength Cond. Res. 2009;23:1954–1959. doi: 10.1519/JSC.0b013e3181b7f743. PubMed DOI

Meckel Y., Eliakim A., Nemet D., Levin N., Ben-Zaken S. PPARD CC and ACTN3 RR Genotype Prevalence among Elite Soccer Players. Sci. Med. Footb. 2020;4:156–161. doi: 10.1080/24733938.2019.1677936. DOI

Bangsbo J., Marcello Iaia F., Krustrup P. The Yo-Yo Intermittent Recovery Test A Useful Tool for Evaluation of Physical Performance in Intermittent Sports. Sports Med. 2008;38:37–51. doi: 10.2165/00007256-200838010-00004. PubMed DOI

Apostotolidis N., Nassis G.P., Bolatoglou T., Geladas N.D. Physiological and Technical Characteristics of Elite Young Basketball Players. J. Sport. Med. Phys. Fit. Preview Publ. Details. 2003;44:157–163. PubMed

Helgerud J., Christian Engen L., Wisløff U., Hoff J. Aerobic Endurance Training Improves Soccer Performance. Med. Sci. Sports Exerc. 2001;33:1925–1931. doi: 10.1097/00005768-200111000-00019. PubMed DOI

Ziv G., Lidor R. Physical Attributes, Physiological Characteristics, On-Court Performances and Nutritional Strategies of Female and Male Basketball Players. Sports Med. 2009;39:547–568. doi: 10.2165/00007256-200939070-00003. PubMed DOI

Pimenta E.M., Coelho D.B., Veneroso C.E., Barros Coelho E.J., Cruz I.R., Morandi R.F., De Pussieldi G.A., Carvalho M.R.S., Garcia E.S., De Paz Fernández J.A. Effect of ACTN3 Gene on Strength and Endurance in Soccer Players. J. Strength Cond. Res. 2013;27:3286–3292. doi: 10.1519/JSC.0b013e3182915e66. PubMed DOI

Végh D., Reichwalderová K., Slaninová M., Vavák M. The Effect of Selected Polymorphisms of the ACTN3, ACE, HIF1A and PPARA Genes on the Immediate Supercompensation Training Effect of Elite Slovak Endurance Runners and Football Players. Genes. 2022;13:1525. doi: 10.3390/genes13091525. PubMed DOI PMC

Ulucan K., Sercan C., Biyikli T. Distribution of Angiotensin-1 Converting Enzyme Insertion/Deletion and α-Actinin-3 Codon 577 Polymorphisms in Turkish Male Soccer Players. Genet. Epigenet. 2015;7:1–4. doi: 10.4137/GEG.S31479. PubMed DOI PMC

Ulucan K. Literature Review of Turkish Sportsmen in Terms of ACTN3 R577X Polymorphism. Clin. Exp. Health Sci. 2016;6:44–47. doi: 10.5152/clinexphealthsci.2016.059. DOI

Garatachea N., Verde Z., Santos-Lozano A., Yvert T., Rodriguez-Romo G., Sarasa F.J., Hernández-Sánchez S., Santiago C., Lucia A. ACTN3 R577X Polymorphism and Explosive Leg-Muscle Power in Elite Basketball Players. Int. J. Sports Physiol. Perform. 2014;9:226–232. doi: 10.1123/ijspp.2012-0331. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...