Association of ACTN3 R577X Polymorphism with Elite Basketball Player Status and Training Responses
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
37372374
PubMed Central
PMC10298064
DOI
10.3390/genes14061190
PII: genes14061190
Knihovny.cz E-resources
- Keywords
- Yo-Yo IR 2, athletes, genotype, physical performance, rs1815739,
- MeSH
- Actinin * genetics MeSH
- Basketball * MeSH
- Gene Frequency MeSH
- Genotype MeSH
- Humans MeSH
- Polymorphism, Genetic MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- ACTN3 protein, human MeSH Browser
- Actinin * MeSH
The α-actinin-3 (ACTN3) gene rs1815739 (C/T, R577X) polymorphism is a variant frequently associated with athletic performance among different populations. However, there is limited research on the impact of this variant on athlete status and physical performance in basketball players. Therefore, the aim of this study was twofold: (1) to determine the association of ACTN3 rs1815739 polymorphism with changes in physical performance in response to six weeks of training in elite basketball players using 30 m sprint and Yo-Yo Intermittent Recovery Test Level 2 (IR 2) tests, and (2) to compare ACTN3 genotype and allelic frequencies between elite basketball players and controls. The study included a total of 363 individuals, comprising 101 elite basketball players and 262 sedentary individuals. Genomic DNA was isolated from oral epithelial cells or leukocytes, and genotyping was performed by real-time PCR using KASP genotyping method or by microarray analysis. We found that the frequency of the ACTN3 rs1815739 XX genotype was significantly lower in basketball players compared to controls (10.9 vs. 21.4%, p = 0.023), suggesting that RR/RX genotypes were more favorable for playing basketball. Statistically significant (p = 0.045) changes were observed in Yo-Yo IRT 2 performance measurement tests in basketball players with the RR genotype only. In conclusion, our findings suggest that the carriage of the ACTN3 rs1815739 R allele may confer an advantage in basketball.
Department of Medical Genetics Faculty of Medicine Gazi University 06560 Ankara Türkiye
Department of Medical Genetics Near East University Nicosia 99138 Cyprus
Department of Physical Education Plekhanov Russian University of Economics 115093 Moscow Russia
DESAM Institute Near East University Nicosia 99138 Cyprus
Laboratory of Genetics of Aging and Longevity Kazan State Medical University 420012 Kazan Russia
Sports Science Faculty Bingol University 12000 Bingol Türkiye
Sports Science Faculty Lokman Hekim University 06510 Ankara Türkiye
Vocational School of Health Services Ataturk University 25240 Erzurum Türkiye
See more in PubMed
Bulgay C., Kasakolu A., Kazan H.H., Mijaica R., Zorba E., Akman O., Bayraktar I., Ekmekci R., Koncagul S., Ulucan K., et al. Exome-Wide Association Study of Competitive Performance in Elite Athletes. Genes. 2023;14:660. doi: 10.3390/genes14030660. PubMed DOI PMC
Ahmetov I.I., Druzhevskaya A.M., Lyubaeva E.V., Popov D.V., Vinogradova O.L., Williams A.G. The Dependence of Preferred Competitive Racing Distance on Muscle Fibre Type Composition and ACTN3 Genotype in Speed Skaters. Exp. Physiol. 2011;96:1302–1310. doi: 10.1113/expphysiol.2011.060293. PubMed DOI
Baumert P., Lake M.J., Stewart C.E., Drust B., Erskine R.M. Genetic Variation and Exercise-Induced Muscle Damage: Implications for Athletic Performance, Injury and Ageing. Eur. J. Appl. Physiol. 2016;116:1595–1625. doi: 10.1007/s00421-016-3411-1. PubMed DOI PMC
Ahmetov I.I., Hall E.C.R., Semenova E.A., Pranckevičienė E., Ginevičienė V. Advances in sports genomics. Adv. Clin. Chem. 2022;107:215–263. PubMed
Ahmetov I.I., Hakimullina A.M., Popov D.V., Lyubaeva E.V., Missina S.S., Vinogradova O.L., Williams A.G., Rogozkin V.A. Association of the VEGFR2 gene His472Gln polymorphism with endurance-related phenotypes. Eur. J. Appl. Physiol. 2009;107:95–103. doi: 10.1007/s00421-009-1105-7. PubMed DOI
Ahmetov I.I., Donnikov A.E., Trofimov D.Y. ACTN3 genotype is associated with testosterone levels of athletes. Biol. Sport. 2014;31:105–108. doi: 10.5604/20831862.1096046. PubMed DOI PMC
Guest N., Corey P., Vescovi J., El-Sohemy A. Caffeine, CYP1A2 Genotype, and Endurance Performance in Athletes. Med. Sci. Sport Exerc. 2018;50:1570–1578. doi: 10.1249/MSS.0000000000001596. PubMed DOI
Macıejewska A., Sawczuk M., Cieszczyk P., Mozhayskaya I.A., Ahmetov I.I. The PPARGC1A Gene Gly482Ser in Polish and Russian Athletes. J. Sport Sci. 2012;30:101–113. doi: 10.1080/02640414.2011.623709. PubMed DOI
Cerit M. İnsan Metabolizmasının Bilinmeyenleri. 1st ed. Spor Yayınevi ve Kitapevi; Ankara, Turkey: 2021.
Lopez-Leon S., Tuvblad C., Forero D.A. Sports Genetics: The PPARA Gene and Athletes’ High Ability in Endurance Sports. A Systematic Review and Meta-Analysis. Biol. Sport. 2016;33:3–6. PubMed PMC
Silventoinen K., Magnusson P.K.E., Tynelius P., Kaprio J., Rasmussen F. Heritability of Body Size and Muscle Strength in Young Adulthood: A Study of One Million Swedish Men. Genet. Epidemiol. 2008;32:341–349. doi: 10.1002/gepi.20308. PubMed DOI
Bouchard C., Daw E.W., Rice T., Pérusse L., Gagnon J., Province M.A., Leon A.S., Rao D.C., Skinner J.S., Wilmore J.H. Familial Resemblance for VO2max in the Sedentary State: The HERITAGE Family Study. Med. Sci. Sports Exerc. 1998;30:252–258. doi: 10.1097/00005768-199802000-00013. PubMed DOI
Peeters M.W., Thomis M.A., Loos R.J.F., Derom C.A., Fagard R., Claessens A.L., Vlietinck R.F., Beunen G.P. Heritability of Somatotype Components: A Multivariate Analysis. Int. J. Obes. 2007;31:1295–1301. doi: 10.1038/sj.ijo.0803575. PubMed DOI
Yıldırım D.S., Erdoğan M., Dalip M., Bulğay C., Cerit M. Evaluation of the Soldier’s Physical Fitness Test Results (Strength Endurance) In Relation to Genotype: Longitudinal Study. Egypt. J. Med. Hum. Genet. 2022;23:114. doi: 10.1186/s43042-022-00325-6. DOI
Beggs A.H., Byers T.J., Knoll J.H., Boyce F.M., Bruns G.A., Kunkel L.M. Cloning and Characterization of Two Human Skeletal Muscle Alpha-Actinin Genes Located on Chromosomes 1 and 11. J. Biol. Chem. 1992;267:9281–9288. doi: 10.1016/S0021-9258(19)50420-3. PubMed DOI
North K.N., Beggs A.H. Deficiency of a Skeletal Muscle Isoform of α-Actinin (α-Actinin-3) in Merosin-Positive Congenital Muscular Dystrophy. Neuromuscul. Disord. 1996;6:229–235. doi: 10.1016/0960-8966(96)00361-6. PubMed DOI
North K.N., Yang N. A Common Nonsense Mutation Results in α-Actinin-3 Deficiency in the General Population. Nat. Genet. 1999;21:353–354. doi: 10.1038/7675. PubMed DOI
Yang N., MacArthur D.G., Gulbin J.P., Hahn A.G., Beggs A.H., Easteal S., North K. ACTN3 Genotype Is Associated with Human Elite Athletic Performance. Am. J. Hum. Genet. 2003;73:627–631. doi: 10.1086/377590. PubMed DOI PMC
Yang N., Macarthur D.G., Wolde B., Onywera V.O., Boit M.K., Lau S.Y.M.A., Wilson R.H., Scott R.A., Pitsiladis Y.P., North K. The ACTN3 R577X Polymorphism in East and West African Athletes. Med. Sci. Sports Exerc. 2007;39:1985–1988. doi: 10.1249/mss.0b013e31814844c9. PubMed DOI
Mills M., Yang N., Weinberger R., Vander Woude D.L., Beggs A.H., Easteal S., North K. Differential Expression of the Actin-Binding Proteins, Alpha-Actinin-2 and -3, in Different Species: Implications for the Evolution of Functional Redundancy. Hum. Mol. Genet. 2001;10:1335–1346. doi: 10.1093/hmg/10.13.1335. PubMed DOI
Druzhevskaya A.M., Ahmetov I.I., Astratenkova I.V., Rogozkin V.A. Association of the ACTN3 R577X Polymorphism with Power Athlete Status in Russians. Eur. J. Appl. Physiol. 2008;103:631–634. doi: 10.1007/s00421-008-0763-1. PubMed DOI
Eynon N., Duarte J.A., Oliveira J., Sagiv M., Yamin C., Meckel Y., Sagiv M., Goldhammer E. ACTN3 R577X Polymorphism and Israeli Top-Level Athletes. Int. J. Sports Med. 2009;30:245–252. doi: 10.1055/s-0029-1220731. PubMed DOI
Papadimitriou I., Papadopoulos C., Kouvatsi A., Triantaphyllidis C. The ACTN3 Gene in Elite Greek Track and Field Athletes. Int. J. Sports Med. 2008;29:352–355. doi: 10.1055/s-2007-965339. PubMed DOI
Clarkson P.M., Devaney J.M., Gordish-Dressman H., Thompson P.D., Hubal M.J., Urso M., Price T.B., Angelopoulos T.J., Gordon P.M., Moyna N.M., et al. ACTN3 Genotype Is Associated with Increases in Muscle Strength in Response to Resistance Training in Women. J. Appl. Physiol. 2005;99:154–163. doi: 10.1152/japplphysiol.01139.2004. PubMed DOI
Walsh S., Liu D., Metter E.J., Ferrucci L., Roth S.M. ACTN3 Genotype Is Associated with Muscle Phenotypes in Women across the Adult Age Span. J. Appl. Physiol. 2008;105:1486–1491. doi: 10.1152/japplphysiol.90856.2008. PubMed DOI PMC
Wolfarth B., Bray M.S., Hagberg J.M., Perusse L., Rauramaa R., Rivera M.A., Roth S.M., Rankinen T., Bouchard C. The Human Gene Map for Performance and Health-Related Fitness Phenotypes: The 2004 Update. Med. Sci. Sports Exerc. 2005;37:881–903. PubMed
Papadimitriou I.D., Lucia A., Pitsiladis Y.P., Pushkarev V.P., Dyatlov D.A., Orekhov E.F., Artioli G.G., Guilherme J.P.L.F., Lancha A.H., Jr., Ginevičienė V., et al. ACTN3 R577X and ACE I/D Gene Variants Influence Performance in Elite Sprinters: A Multi-Cohort Study. BMC Genom. 2016;17:285. doi: 10.1186/s12864-016-2462-3. PubMed DOI PMC
Romero-Blanco C., Artiga-González M.J., Gómez-Cabello A., Vila-Maldonado S., Casajús J.A., Ara I., Aznar S. Strength and Endurance Training in Older Women in Relation to ACTN3 R577X and ACE I/D Polymorphisms. Int. J. Environ. Res. Public Health. 2020;17:1236. doi: 10.3390/ijerph17041236. PubMed DOI PMC
Leger L.A., Lambert J. A Maximal Multistage 20-m Shuttle Run Test to Predict O2 Max. Eur. J. Appl. Physiol. Occup. Physiol. 1982;49:1–12. doi: 10.1007/BF00428958. PubMed DOI
McInnes S.E., Carlson J.S., Jones C.J., McKenna M.J. The Physiological Load Imposed on Basketball Players during Competition. J. Sports Sci. 1995;13:387–397. doi: 10.1080/02640419508732254. PubMed DOI
He C., Holme J., Anthony J. SNP Genotyping: The KASP Assay. Methods Mol. Biol. 2014;1145:75–86. doi: 10.1007/978-1-4939-0446-4_7. PubMed DOI
Coelho D., Pimenta I., Rosse C., Veneroso L., Becker M.R., Carvalho G., Pussieldi E., Silami-Garcia E. The Alpha-Actinin-3 R577X Polymorphism and Physical Performance in Soccer Players Skin Temperature Changes of under-20 Soccer Players. J. Sports Med. Phys. Fit. 2015;56:241–248. doi: 10.13140/RG.2.1.2552.6241. PubMed DOI
Guilherme P.L.F., Bosnyák E., Semenova E.A., Szmodis M., Kostryukova S., Borisov O.V., Larin A.K., Andryushchenko L.B., Akimov E.B., Paulo S. The MCT1 Gene Glu490Asp Polymorphism (rs1049434) Is Associated with Endurance Athlete Status, Lower Blood Lactate Accumulation and Higher Maximum Oxygen Uptake. Biol. Sport. 2021;38:465–474. doi: 10.5114/biolsport.2021.101638. PubMed DOI PMC
Hamada T., Sale D.G., Macdougall J.D., Tarnopolsky M.A. Postactivation potentiation, fiber type, and twitch contraction time in human knee extensor muscles. J. Appl. Physiol. 2000;88:2131–2137. doi: 10.1152/jappl.2000.88.6.2131. PubMed DOI
Lewis M.I., Fournier M., Wang H., Storer T.W., Casaburi R., Kopple J.D. Effect of Endurance and/or Strength Training on Muscle Fiber Size, Oxidative Capacity, and Capillarity in Hemodialysis Patients. J. Appl. Physiol. 2015;119:865–871. doi: 10.1152/japplphysiol.01084.2014. PubMed DOI PMC
McAuley A.B.T., Hughes D.C., Tsaprouni L.G., Varley I., Suraci B., Roos T.R., Herbert A.J., Kelly A.L. Genetic Association Research in Football: A Systematic Review. Eur. J. Sport Sci. 2021;21:714–752. doi: 10.1080/17461391.2020.1776401. PubMed DOI
Pickering C., Suraci B., Semenova E.A., Boulygina E.A., Kostryukova E.S., Kulemin N.A., Borisov O.V., Khabibova S.A., Larin A.K., Pavlenko A.V., et al. A Genome-Wide Association Study of Sprint Performance in Elite Youth Football Players. J. Strength Cond. Res. 2019;33:2344–2351. doi: 10.1519/JSC.0000000000003259. PubMed DOI
Eynon N., Ruiz J.R., Yvert T., Santiago C., Gomez-Gallego F., Lucia A., Birk R. The C Allele in NOS3-786 T/C Polymorphism Is Associated with Elite Soccer Player’s Status. Int. J. Sports Med. 2012;33:521–524. doi: 10.1055/s-0032-1306337. PubMed DOI
Massidda M., Corrias L., Ibba G., Scorcu M., Vona G., Calò C.M. Genetic Markers and Explosive Leg-Muscle Strength in Elite Italian Soccer Players. J. Sports Med. Phys. Fit. 2012;52:328–334. PubMed
Dinç N., Yücel S.B., Taneli F., Sayın M.V. The Effect of the MTHFR C677T Mutation on Athletic Performance and the Homocysteine Level of Soccer Players and Sedentary Individuals. J. Hum. Kinet. 2016;51:61–69. doi: 10.1515/hukin-2015-0171. PubMed DOI PMC
Lulińska-Kuklik E., Rahim M., Domańska-Senderowska D., Ficek K., Michałowska-Sawczyn M., Moska W., Kaczmarczyk M., Brzeziański M., Brzeziańska-Lasota E., Cięszczyk P., et al. Interactions Between COL5A1 Gene and Risk of the Anterior Cruciate Ligament Rupture. J. Hum. Kinet. 2018;62:65–71. doi: 10.1515/hukin-2017-0177. PubMed DOI PMC
MacArthur D.G., North K.N. A Gene for Speed? The Evolution and Function of A-actinin-3. Bioessays. 2004;26:786–795. doi: 10.1002/bies.20061. PubMed DOI
Vincent B., De Bock K., Ramaekers M., Van den Eede E., Van Leemputte M., Hespel P., Thomis M.A. ACTN3 (R577X) Genotype Is Associated with Fiber Type Distribution. Physiol Genom. 2007;32:58–63. doi: 10.1152/physiolgenomics.00173.2007. PubMed DOI
Yang N., Garton F., North K. α-Actinin-3 and Performance. Genet. Sports. 2009;54:88–101. PubMed
Cięszczyk P., Eider J., Ostanek M., Arczewska A., Leońska-Duniec A., Sawczyn S., Ficek K., Krupecki K. Association of the ACTN3 R577X Polymorphism in Polish Power-Orientated Athletes. J. Hum. Kinet. 2011;28:55–61. doi: 10.2478/v10078-011-0022-0. PubMed DOI PMC
Kikuchi N., Miyamoto-Mikami E., Murakami H., Nakamura T., Min S.-K., Mizuno M., Naito H., Miyachi M., Nakazato K., Fuku N. ACTN3 R577X Genotype and Athletic Performance in a Large Cohort of Japanese Athletes. Eur. J. Sports Sci. 2016;16:694–701. doi: 10.1080/17461391.2015.1071879. PubMed DOI
Roth S.M., Walsh S., Liu D., Metter E.J., Ferrucci L., Hurley B.F. The ACTN3 R577X Nonsense Allele Is Under-Represented in Elite-Level Strength Athletes. J. Hum. Genet. 2008;16:391–394. doi: 10.1038/sj.ejhg.5201964. PubMed DOI PMC
Scott R.A., Irvıng R., Irwın L., Morrıson E., Charlton V., Austın K., Tladı D., Deason M., Headley S.A., Kolkhorst F.W., et al. ACTN3 and ACE Genotypes in Elite Jamaican and US Sprinters. Med. Sci. Sports Exerc. 2010;42:107–112. doi: 10.1249/MSS.0b013e3181ae2bc0. PubMed DOI
Sessa F., Chetta M., Petito A., Franzetti M., Bafunno V., Pisanelli D., Sarno M., Iuso S., Margaglione M. Gene Polymorphisms and Sport Attitude in Italian Athletes. Genet. Test. Mol. Biomark. 2011;15:285–290. doi: 10.1089/gtmb.2010.0179. PubMed DOI
Orysiak J., Mazur-Różycka J., Busko K., Gajewski J., Szczepanska B., Malczewska-Lenczowska J. Individual and Combined Influence of ACE and ACTN3 Genes on Muscle Phenotypes in Polish Athletes. J. Strength Cond. Res. 2018;32:2776–2782. doi: 10.1519/JSC.0000000000001839. PubMed DOI
North K. Why Is α-Actinin-3 Deficiency so Common in the General Population? The Evolution of Athletic Performance. Twin Res. Hum. Genet. 2008;11:384–394. doi: 10.1375/twin.11.4.384. PubMed DOI
McCauley T., Mastana S.S., Folland J.P. ACE I/D and ACTN3 R/X Polymorphisms and Muscle Function and Muscularity of Older Caucasian Men. Eur. J. Appl. Physiol. 2010;109:269–277. doi: 10.1007/s00421-009-1340-y. PubMed DOI
Norman B., Esbjörnsson M., Rundqvist H., Österlund T., von Walden F., Tesch P.A. Strength, Power, Fiber Types, and MRNA Expression in Trained Men and Women with Different ACTN3 R577X Genotypes. J. Appl. Physiol. 2009;106:959–965. doi: 10.1152/japplphysiol.91435.2008. PubMed DOI
Lima G., Almeida S.S., Silva E.D., Rosa J.P.P., de Souza A.L., Sierra A.P.R., Doretto A.R., Costa C.A., Correia P.R., Pesquero J.B. Association between basketball playing position and ACTN3 R577X polymorphism in athletes of first division Brazilian Basketball League. Gene. 2023;863:147302. doi: 10.1016/j.gene.2023.147302. PubMed DOI
Jones N., Kiely J., Collins D.J., De Lorenzo D., Pickering C., Grimaldi K.A. A Genetic-Based Algorithm for Personalized Resistance Training. Biol. Sport. 2016;33:117–126. doi: 10.5604/20831862.1198210. PubMed DOI PMC
Alfred T., Ben-Shlomo Y., Cooper R., Hardy R., Cooper C., Deary I.J., Gunnell D., Harris S.E., Kumari M., Martin R.M., et al. ACTN3 Genotype, Athletic Status, and Life Course Physical Capability: Meta-analysis of the Published Literature and Findings from Nine Studies. Hum. Mutat. 2011;32:1008–1018. doi: 10.1002/humu.21526. PubMed DOI PMC
Döring F.E., Onur S., Geisen U., Boulay M.R., Pérusse L., Rankinen T., Rauramaa R., Wolfahrt B., Bouchard C. ACTN3 R577X and Other Polymorphisms Are Not Associated with Elite Endurance Athlete Status in the Genathlete Study. J. Sports Sci. 2010;28:1355–1359. doi: 10.1080/02640414.2010.507675. PubMed DOI
Hong S.S., Jin H.J. Assessment of Association of ACTN3 Genetic Polymorphism with Korean Elite Athletic Performance. Genes Genom. 2013;35:617–621. doi: 10.1007/s13258-013-0111-7. DOI
Lucia A., Gomez-Gallego F., Santiago C., Bandres F., Earnest C., Rabadan M., Alonso J.M., Hoyos J., Córdova A., Villa G., et al. ACTN3 Genotype in Professional Endurance Cyclists. Int. J. Sports Med. 2006;27:880–884. doi: 10.1055/s-2006-923862. PubMed DOI
Ruiz J.R., Santiago C., Yvert T., Muniesa C., Díaz-Ureña G., Bekendam N., Fiuza-Luces C., Gómez-Gallego F., Femia P., Lucia A. ACTN3 Genotype in Spanish Elite Swimmers: No “Heterozygous Advantage”. Scand. J. Med. Sci. Sports. 2013;23:12045. doi: 10.1111/sms.12045. PubMed DOI
Ahmetov I.I., Vinogradova O.L., Williams A.G. Gene Polymorphisms and Fiber-Type Composition of Human Skeletal Muscle. Int. J. Sport Nutr. Exerc. Metab. 2012;22:292–303. doi: 10.1123/ijsnem.22.4.292. PubMed DOI
Dionísio T.J., Thiengo C.R., Brozoski D.T., Dionísio E.J., Talamoni G.A., Silva R.B., Garlet G.P., Santos C.F., Amaral S.L. The Influence of Genetic Polymorphisms on Performance and Cardiac and Hemodynamic Parameters among Brazilian Soccer Players. Appl. Physiol. Nutr. Metab. 2017;42:596–604. doi: 10.1139/apnm-2016-0608. PubMed DOI
Pickering C., Kiely J. ACTN3: More than Just a Gene for Speed. Front. Physiol. 2017;8:1080. doi: 10.3389/fphys.2017.01080. PubMed DOI PMC
Tural E., Kara N., Agaoglu S.A., Elbistan M., Tasmektepligil M.Y., Imamoglu O. PPAR-α and PPARGC1A Gene Variants Have Strong Effects on Aerobic Performance of Turkish Elite Endurance Athletes. Mol. Biol. Rep. 2014;41:5799–5804. doi: 10.1007/s11033-014-3453-6. PubMed DOI
Ben Abdelkrim N., El Fazaa S., El Ati J., Tabka Z. Time-Motion Analysis and Physiological Data of Elite under-19-Year-Old Basketball Players during Competition * Commentary. Br. J. Sports Med. 2007;41:69–75. doi: 10.1136/bjsm.2006.032318. PubMed DOI PMC
Abdelkrim N.B., Castagna C., El Fazaa S., Tabka Z., Jalila A., Ati E.L. Blood Metabolıtes Durıng Basketball Competıtıons. J. Strength Cond. Res. 2009;23:765–773. doi: 10.1519/JSC.0b013e3181a2d8fc. PubMed DOI
Leite N., Coutinho D. Effects of Fatigue and Time-out on Physiological, Time-Motion Indicators and in Patterns of Spatial Organization of the Teams in Basketball. Rev. Psicol. Deporte. 2013;22:0215–0218.
Bishop D.C., Wright C. A Time-Motion Analysis of Professional Basketball to Determine the Relationship between Three Activity Profiles: High, Medium and Low Intensity and the Length of the Time Spent on Court. Int. J. Perform. Anal. Sport. 2006;6:130–139. doi: 10.1080/24748668.2006.11868361. DOI
Scanlan A., Dascombe B., Reaburn P. A Comparison of the Activity Demands of Elite and Sub-Elite Australian Men’s Basketball Competition. J. Sports Sci. 2011;29:1153–1160. doi: 10.1080/02640414.2011.582509. PubMed DOI
Castagna C., Impellizzeri F., Cecchini E., Rampinini E., Carlos J., Alvarez B. Effects of Intermıttent-Endurance Fıtness On Match Performance In Young Male Soccer Players. J. Strength Cond. Res. 2009;23:1954–1959. doi: 10.1519/JSC.0b013e3181b7f743. PubMed DOI
Meckel Y., Eliakim A., Nemet D., Levin N., Ben-Zaken S. PPARD CC and ACTN3 RR Genotype Prevalence among Elite Soccer Players. Sci. Med. Footb. 2020;4:156–161. doi: 10.1080/24733938.2019.1677936. DOI
Bangsbo J., Marcello Iaia F., Krustrup P. The Yo-Yo Intermittent Recovery Test A Useful Tool for Evaluation of Physical Performance in Intermittent Sports. Sports Med. 2008;38:37–51. doi: 10.2165/00007256-200838010-00004. PubMed DOI
Apostotolidis N., Nassis G.P., Bolatoglou T., Geladas N.D. Physiological and Technical Characteristics of Elite Young Basketball Players. J. Sport. Med. Phys. Fit. Preview Publ. Details. 2003;44:157–163. PubMed
Helgerud J., Christian Engen L., Wisløff U., Hoff J. Aerobic Endurance Training Improves Soccer Performance. Med. Sci. Sports Exerc. 2001;33:1925–1931. doi: 10.1097/00005768-200111000-00019. PubMed DOI
Ziv G., Lidor R. Physical Attributes, Physiological Characteristics, On-Court Performances and Nutritional Strategies of Female and Male Basketball Players. Sports Med. 2009;39:547–568. doi: 10.2165/00007256-200939070-00003. PubMed DOI
Pimenta E.M., Coelho D.B., Veneroso C.E., Barros Coelho E.J., Cruz I.R., Morandi R.F., De Pussieldi G.A., Carvalho M.R.S., Garcia E.S., De Paz Fernández J.A. Effect of ACTN3 Gene on Strength and Endurance in Soccer Players. J. Strength Cond. Res. 2013;27:3286–3292. doi: 10.1519/JSC.0b013e3182915e66. PubMed DOI
Végh D., Reichwalderová K., Slaninová M., Vavák M. The Effect of Selected Polymorphisms of the ACTN3, ACE, HIF1A and PPARA Genes on the Immediate Supercompensation Training Effect of Elite Slovak Endurance Runners and Football Players. Genes. 2022;13:1525. doi: 10.3390/genes13091525. PubMed DOI PMC
Ulucan K., Sercan C., Biyikli T. Distribution of Angiotensin-1 Converting Enzyme Insertion/Deletion and α-Actinin-3 Codon 577 Polymorphisms in Turkish Male Soccer Players. Genet. Epigenet. 2015;7:1–4. doi: 10.4137/GEG.S31479. PubMed DOI PMC
Ulucan K. Literature Review of Turkish Sportsmen in Terms of ACTN3 R577X Polymorphism. Clin. Exp. Health Sci. 2016;6:44–47. doi: 10.5152/clinexphealthsci.2016.059. DOI
Garatachea N., Verde Z., Santos-Lozano A., Yvert T., Rodriguez-Romo G., Sarasa F.J., Hernández-Sánchez S., Santiago C., Lucia A. ACTN3 R577X Polymorphism and Explosive Leg-Muscle Power in Elite Basketball Players. Int. J. Sports Physiol. Perform. 2014;9:226–232. doi: 10.1123/ijspp.2012-0331. PubMed DOI