The activation of dormant ependymal cells following spinal cord injury

. 2023 Jul 05 ; 14 (1) : 175. [epub] 20230705

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37408068
Odkazy

PubMed 37408068
PubMed Central PMC10324230
DOI 10.1186/s13287-023-03395-4
PII: 10.1186/s13287-023-03395-4
Knihovny.cz E-zdroje

Ependymal cells, a dormant population of ciliated progenitors found within the central canal of the spinal cord, undergo significant alterations after spinal cord injury (SCI). Understanding the molecular events that induce ependymal cell activation after SCI represents the first step toward controlling the response of the endogenous regenerative machinery in damaged tissues. This response involves the activation of specific signaling pathways in the spinal cord that promotes self-renewal, proliferation, and differentiation. We review our current understanding of the signaling pathways and molecular events that mediate the SCI-induced activation of ependymal cells by focusing on the roles of some cell adhesion molecules, cellular membrane receptors, ion channels (and their crosstalk), and transcription factors. An orchestrated response regulating the expression of receptors and ion channels fine-tunes and coordinates the activation of ependymal cells after SCI or cell transplantation. Understanding the major players in the activation of ependymal cells may help us to understand whether these cells represent a critical source of cells contributing to cellular replacement and tissue regeneration after SCI. A more complete understanding of the role and function of individual signaling pathways in endogenous spinal cord progenitors may foster the development of novel targeted therapies to induce the regeneration of the injured spinal cord.

Zobrazit více v PubMed

Ahuja CS, et al. Traumatic spinal cord injury. Nat Rev Dis Primers. 2017;3:17018. doi: 10.1038/nrdp.2017.18. PubMed DOI

Moreno-Manzano V, et al. Activated spinal cord ependymal stem cells rescue neurological function. Stem Cells. 2009;27(3):733–743. doi: 10.1002/stem.24. PubMed DOI

Sabelstrom H, et al. Resident neural stem cells restrict tissue damage and neuronal loss after spinal cord injury in mice. Science. 2013;342(6158):637–640. doi: 10.1126/science.1242576. PubMed DOI

Veceric-Haler Z, et al. Autologous mesenchymal stem cells for treatment of chronic active antibody-mediated kidney graft rejection: report of the phase I/II clinical trial case series. Transpl Int. 2022;35:10772. doi: 10.3389/ti.2022.10772. PubMed DOI PMC

Bertaina A, Roncarolo MG. Graft engineering and adoptive immunotherapy: new approaches to promote immune tolerance after hematopoietic stem cell transplantation. Front Immunol. 2019;10:1342. doi: 10.3389/fimmu.2019.01342. PubMed DOI PMC

Jimenez Hamann MC, Tator CH, Shoichet MS. Injectable intrathecal delivery system for localized administration of EGF and FGF-2 to the injured rat spinal cord. Exp Neurol. 2005;194(1):106–19. doi: 10.1016/j.expneurol.2005.01.030. PubMed DOI

Xu B, et al. Transplantation of neural stem progenitor cells from different sources for severe spinal cord injury repair in rat. Bioact Mater. 2023;23:300–313. doi: 10.1016/j.bioactmat.2022.11.008. PubMed DOI PMC

Chu W, et al. Valproic acid arrests proliferation but promotes neuronal differentiation of adult spinal NSPCs from SCI rats. Neurochem Res. 2015;40(7):1472–1486. doi: 10.1007/s11064-015-1618-x. PubMed DOI

Cawsey T, et al. Nestin-positive ependymal cells are increased in the human spinal cord after traumatic central nervous system injury. J Neurotrauma. 2015;32(18):1393–1402. doi: 10.1089/neu.2014.3575. PubMed DOI PMC

Garcia-Ovejero D, et al. The ependymal region of the adult human spinal cord differs from other species and shows ependymoma-like features. Brain. 2015;138(Pt 6):1583–1597. doi: 10.1093/brain/awv089. PubMed DOI PMC

Paniagua-Torija B, et al. Cells in the adult human spinal cord ependymal region do not proliferate after injury. J Pathol. 2018;246(4):415–421. doi: 10.1002/path.5151. PubMed DOI

Barnabe-Heider F, et al. Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell. 2010;7(4):470–482. doi: 10.1016/j.stem.2010.07.014. PubMed DOI

Meletis K, et al. Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol. 2008;6(7):e182. doi: 10.1371/journal.pbio.0060182. PubMed DOI PMC

Jacquet BV, et al. FoxJ1-dependent gene expression is required for differentiation of radial glia into ependymal cells and a subset of astrocytes in the postnatal brain. Development. 2009;136(23):4021–4031. doi: 10.1242/dev.041129. PubMed DOI PMC

Spassky N, et al. Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J Neurosci. 2005;25(1):10–18. doi: 10.1523/JNEUROSCI.1108-04.2005. PubMed DOI PMC

Johansson CB, et al. Identification of a neural stem cell in the adult mammalian central nervous system. Cell. 1999;96(1):25–34. doi: 10.1016/S0092-8674(00)80956-3. PubMed DOI

Mirzadeh Z, et al. Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell. 2008;3(3):265–278. doi: 10.1016/j.stem.2008.07.004. PubMed DOI PMC

Alfaro-Cervello C, et al. Biciliated ependymal cell proliferation contributes to spinal cord growth. J Comp Neurol. 2012;520(15):3528–3552. doi: 10.1002/cne.23104. PubMed DOI PMC

Hamilton LK, et al. Cellular organization of the central canal ependymal zone, a niche of latent neural stem cells in the adult mammalian spinal cord. Neuroscience. 2009;164(3):1044–1056. doi: 10.1016/j.neuroscience.2009.09.006. PubMed DOI

Sabourin JC, et al. A mesenchymal-like ZEB1(+) niche harbors dorsal radial glial fibrillary acidic protein-positive stem cells in the spinal cord. Stem Cells. 2009;27(11):2722–2733. doi: 10.1002/stem.226. PubMed DOI

Sabelstrom H, Stenudd M, Frisen J. Neural stem cells in the adult spinal cord. Exp Neurol. 2014;260:44–49. doi: 10.1016/j.expneurol.2013.01.026. PubMed DOI

Lee HJ, et al. SOX2 expression is upregulated in adult spinal cord after contusion injury in both oligodendrocyte lineage and ependymal cells. J Neurosci Res. 2013;91(2):196–210. doi: 10.1002/jnr.23151. PubMed DOI

Namiki J, Tator CH. Cell proliferation and nestin expression in the ependyma of the adult rat spinal cord after injury. J Neuropathol Exp Neurol. 1999;58(5):489–498. doi: 10.1097/00005072-199905000-00008. PubMed DOI

Ghazale H, et al. RNA profiling of the human and mouse spinal cord stem cell niches reveals an embryonic-like regionalization with MSX1(+) roof-plate-derived cells. Stem Cell Reports. 2019;12(5):1159–1177. doi: 10.1016/j.stemcr.2019.04.001. PubMed DOI PMC

Stenudd M, et al. Identification of a discrete subpopulation of spinal cord ependymal cells with neural stem cell properties. Cell Rep. 2022;38(9):110440. doi: 10.1016/j.celrep.2022.110440. PubMed DOI

Frederico B, et al. DNGR-1-tracing marks an ependymal cell subset with damage-responsive neural stem cell potential. Dev Cell. 2022;57(16):1957–1975 e9. doi: 10.1016/j.devcel.2022.07.012. PubMed DOI PMC

Shah PT, et al. Single-cell transcriptomics and fate mapping of ependymal cells reveals an absence of neural stem cell function. Cell. 2018;173(4):1045–1057 e9. doi: 10.1016/j.cell.2018.03.063. PubMed DOI

Xue X, et al. Lineage tracing reveals the origin of Nestin-positive cells are heterogeneous and rarely from ependymal cells after spinal cord injury. Sci China Life Sci. 2022;65(4):757–769. doi: 10.1007/s11427-020-1901-4. PubMed DOI

McDonough A, Martinez-Cerdeno V. Endogenous proliferation after spinal cord injury in animal models. Stem Cells Int. 2012;2012:387513. doi: 10.1155/2012/387513. PubMed DOI PMC

Xu L, Mahairaki V, Koliatsos VE. Host induction by transplanted neural stem cells in the spinal cord: further evidence for an adult spinal cord neurogenic niche. Regen Med. 2012;7(6):785–797. doi: 10.2217/rme.12.76. PubMed DOI PMC

Okano H, Sawamoto K. Neural stem cells: involvement in adult neurogenesis and CNS repair. Philos Trans R Soc Lond B Biol Sci. 2008;363(1500):2111–2122. doi: 10.1098/rstb.2008.2264. PubMed DOI PMC

Shihabuddin LS, et al. Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J Neurosci. 2000;20(23):8727–8735. doi: 10.1523/JNEUROSCI.20-23-08727.2000. PubMed DOI PMC

Courtine G, Sofroniew MV. Spinal cord repair: advances in biology and technology. Nat Med. 2019;25(6):898–908. doi: 10.1038/s41591-019-0475-6. PubMed DOI

Xue W, et al. Direct neuronal differentiation of neural stem cells for spinal cord injury repair. Stem Cells. 2021;39(8):1025–1032. doi: 10.1002/stem.3366. PubMed DOI

Xu B, et al. A dual functional scaffold tethered with EGFR antibody promotes neural stem cell retention and neuronal differentiation for spinal cord injury repair. Adv Healthc Mater. 2017;6(9) PubMed

Fan C, et al. Cetuximab and Taxol co-modified collagen scaffolds show combination effects for the repair of acute spinal cord injury. Biomater Sci. 2018;6(7):1723–1734. doi: 10.1039/C8BM00363G. PubMed DOI

Li X, et al. Promotion of neuronal differentiation of neural progenitor cells by using EGFR antibody functionalized collagen scaffolds for spinal cord injury repair. Biomaterials. 2013;34(21):5107–5116. doi: 10.1016/j.biomaterials.2013.03.062. PubMed DOI

Rodriguez-Jimenez FJ, et al. Activation of neurogenesis in multipotent stem cells cultured in vitro and in the spinal cord tissue after severe injury by inhibition of glycogen synthase Kinase-3. Neurotherapeutics. 2021;18(1):515–533. doi: 10.1007/s13311-020-00928-0. PubMed DOI PMC

Abematsu M, et al. Neurons derived from transplanted neural stem cells restore disrupted neuronal circuitry in a mouse model of spinal cord injury. J Clin Invest. 2010;120(9):3255–3266. doi: 10.1172/JCI42957. PubMed DOI PMC

Wahane S, et al. Diversified transcriptional responses of myeloid and glial cells in spinal cord injury shaped by HDAC3 activity. Sci Adv. 2021;7(9):eabd8811. doi: 10.1126/sciadv.abd8811. PubMed DOI PMC

Lee JH, et al. NeuroCore formation during differentiation of neurospheres of mouse embryonic neural stem cells. Stem Cell Res. 2020;43:101691. doi: 10.1016/j.scr.2019.101691. PubMed DOI

Rodriguez-Jimenez FJ, et al. Organized neurogenic-niche-like pinwheel structures discovered in spinal cord tissue-derived neurospheres. Front Cell Dev Biol. 2019;7:334. doi: 10.3389/fcell.2019.00334. PubMed DOI PMC

Liu Z, Martin LJ. Olfactory bulb core is a rich source of neural progenitor and stem cells in adult rodent and human. J Comp Neurol. 2003;459(4):368–391. doi: 10.1002/cne.10664. PubMed DOI

Reynolds BA, Rietze RL. Neural stem cells and neurospheres–re-evaluating the relationship. Nat Methods. 2005;2(5):333–336. doi: 10.1038/nmeth758. PubMed DOI

Dromard C, et al. NG2 and Olig2 expression provides evidence for phenotypic deregulation of cultured central nervous system and peripheral nervous system neural precursor cells. Stem Cells. 2007;25(2):340–353. doi: 10.1634/stemcells.2005-0556. PubMed DOI

Stenudd M, Sabelstrom H, Frisen J. Role of endogenous neural stem cells in spinal cord injury and repair. JAMA Neurol. 2015;72(2):235–237. doi: 10.1001/jamaneurol.2014.2927. PubMed DOI

Fiorelli R, et al. The adult spinal cord harbors a population of GFAP-positive progenitors with limited self-renewal potential. Glia. 2013;61(12):2100–2113. doi: 10.1002/glia.22579. PubMed DOI

Weiss S, et al. Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci. 1996;16(23):7599–7609. doi: 10.1523/JNEUROSCI.16-23-07599.1996. PubMed DOI PMC

Shihabuddin LS, et al. Induction of mature neuronal properties in immortalized neuronal precursor cells following grafting into the neonatal CNS. J Neurocytol. 1996;25(2):101–111. doi: 10.1007/BF02284789. PubMed DOI

Carlen M, et al. Forebrain ependymal cells are Notch-dependent and generate neuroblasts and astrocytes after stroke. Nat Neurosci. 2009;12(3):259–267. doi: 10.1038/nn.2268. PubMed DOI

Paez-Gonzalez P, et al. Ank3-dependent SVZ niche assembly is required for the continued production of new neurons. Neuron. 2011;71(1):61–75. doi: 10.1016/j.neuron.2011.05.029. PubMed DOI PMC

Gomez-Villafuertes R. Contribution of purinergic receptors to spinal cord injury repair: stem cell-based neuroregeneration. Neural Regen Res. 2016;11(3):418–419. doi: 10.4103/1673-5374.179049. PubMed DOI PMC

Ohori Y, et al. Growth factor treatment and genetic manipulation stimulate neurogenesis and oligodendrogenesis by endogenous neural progenitors in the injured adult spinal cord. J Neurosci. 2006;26(46):11948–11960. doi: 10.1523/JNEUROSCI.3127-06.2006. PubMed DOI PMC

Horky LL, et al. Fate of endogenous stem/progenitor cells following spinal cord injury. J Comp Neurol. 2006;498(4):525–538. doi: 10.1002/cne.21065. PubMed DOI PMC

Barnabe-Heider F, Frisen J. Stem cells for spinal cord repair. Cell Stem Cell. 2008;3(1):16–24. doi: 10.1016/j.stem.2008.06.011. PubMed DOI

Ren Y, et al. Ependymal cell contribution to scar formation after spinal cord injury is minimal, local and dependent on direct ependymal injury. Sci Rep. 2017;7:41122. doi: 10.1038/srep41122. PubMed DOI PMC

Yamamoto S, et al. Transcription factor expression and Notch-dependent regulation of neural progenitors in the adult rat spinal cord. J Neurosci. 2001;21(24):9814–9823. doi: 10.1523/JNEUROSCI.21-24-09814.2001. PubMed DOI PMC

Mothe AJ, Tator CH. Advances in stem cell therapy for spinal cord injury. J Clin Invest. 2012;122(11):3824–3834. doi: 10.1172/JCI64124. PubMed DOI PMC

Wang Z, et al. BAF45D downregulation in spinal cord ependymal cells following spinal cord injury in adult rats and its potential role in the development of neuronal lesions. Front Neurosci. 2019;13:1151. doi: 10.3389/fnins.2019.01151. PubMed DOI PMC

Mladinic M, et al. ATF3 is a novel nuclear marker for migrating ependymal stem cells in the rat spinal cord. Stem Cell Res. 2014;12(3):815–827. doi: 10.1016/j.scr.2014.03.006. PubMed DOI

Chevreau R, et al. RNA profiling of mouse ependymal cells after spinal cord injury identifies the oncostatin pathway as a potential key regulator of spinal cord stem cell fate. Cells. 2021;10(12):3332. doi: 10.3390/cells10123332. PubMed DOI PMC

Tsujino H, et al. Activating transcription factor 3 (ATF3) induction by axotomy in sensory and motoneurons: a novel neuronal marker of nerve injury. Mol Cell Neurosci. 2000;15(2):170–182. doi: 10.1006/mcne.1999.0814. PubMed DOI

Seijffers R, Allchorne AJ, Woolf CJ. The transcription factor ATF-3 promotes neurite outgrowth. Mol Cell Neurosci. 2006;32(1–2):143–154. doi: 10.1016/j.mcn.2006.03.005. PubMed DOI

Wang LF, et al. Activating transcription factor 3 promotes spinal cord regeneration of adult zebrafish. Biochem Biophys Res Commun. 2017;488(3):522–527. doi: 10.1016/j.bbrc.2017.05.079. PubMed DOI

Panayiotou E, Malas S. Adult spinal cord ependymal layer: a promising pool of quiescent stem cells to treat spinal cord injury. Front Physiol. 2013;4:340. doi: 10.3389/fphys.2013.00340. PubMed DOI PMC

Llorens-Bobadilla E, et al. A latent lineage potential in resident neural stem cells enables spinal cord repair. Science. 2020;370(6512):eabb8795. doi: 10.1126/science.abb8795. PubMed DOI

Morante-Redolat JM, Porlan E. Neural stem cell regulation by adhesion molecules within the subependymal niche. Front Cell Dev Biol. 2019;7:102. doi: 10.3389/fcell.2019.00102. PubMed DOI PMC

Doetsch F. A niche for adult neural stem cells. Curr Opin Genet Dev. 2003;13(5):543–550. doi: 10.1016/j.gde.2003.08.012. PubMed DOI

Moore SA, Oglesbee MJ. Spinal cord ependymal responses to naturally occurring traumatic spinal cord injury in dogs. Vet Pathol. 2015;52(6):1108–1117. doi: 10.1177/0300985814560235. PubMed DOI

Chen D, et al. E-cadherin regulates biological behaviors of neural stem cells and promotes motor function recovery following spinal cord injury. Exp Ther Med. 2019;17(3):2061–2070. PubMed PMC

North HA, et al. beta1-Integrin alters ependymal stem cell BMP receptor localization and attenuates astrogliosis after spinal cord injury. J Neurosci. 2015;35(9):3725–3733. doi: 10.1523/JNEUROSCI.4546-14.2015. PubMed DOI PMC

Tzeng SF, et al. Expression of neural cell adhesion molecule in spinal cords following a complete transection. Life Sci. 2001;68(9):1005–1012. doi: 10.1016/S0024-3205(00)01003-1. PubMed DOI

Ronn LC, Hartz BP, Bock E. The neural cell adhesion molecule (NCAM) in development and plasticity of the nervous system. Exp Gerontol. 1998;33(7–8):853–864. doi: 10.1016/S0531-5565(98)00040-0. PubMed DOI

Tysseling VM, et al. SDF1 in the dorsal corticospinal tract promotes CXCR4+ cell migration after spinal cord injury. J Neuroinflammation. 2011;8:16. doi: 10.1186/1742-2094-8-16. PubMed DOI PMC

Wang GD, et al. The SDF-1/CXCR4 axis promotes recovery after spinal cord injury by mediating bone marrow-derived from mesenchymal stem cells. Oncotarget. 2017;8(7):11629–11640. doi: 10.18632/oncotarget.14619. PubMed DOI PMC

Franke H, Krugel U, Illes P. P2 receptors and neuronal injury. Pflugers Arch. 2006;452(5):622–644. doi: 10.1007/s00424-006-0071-8. PubMed DOI

Ceruti S, et al. The P2Y-like receptor GPR17 as a sensor of damage and a new potential target in spinal cord injury. Brain. 2009;132(Pt 8):2206–2218. doi: 10.1093/brain/awp147. PubMed DOI

Boccazzi M, et al. A new role for the P2Y-like GPR17 receptor in the modulation of multipotency of oligodendrocyte precursor cells in vitro. Purinergic Signal. 2016;12(4):661–672. doi: 10.1007/s11302-016-9530-7. PubMed DOI PMC

Gomez-Villafuertes R, et al. Purinergic receptors in spinal cord-derived ependymal stem/progenitor cells and their potential role in cell-based therapy for spinal cord injury. Cell Transpl. 2015;24(8):1493–1509. doi: 10.3727/096368914X682828. PubMed DOI

Rodriguez-Zayas AE, Torrado AI, Miranda JD. P2Y2 receptor expression is altered in rats after spinal cord injury. Int J Dev Neurosci. 2010;28(6):413–421. doi: 10.1016/j.ijdevneu.2010.07.001. PubMed DOI PMC

North RA. Molecular physiology of P2X receptors. Physiol Rev. 2002;82(4):1013–1067. doi: 10.1152/physrev.00015.2002. PubMed DOI

Scemes E, Duval N, Meda P. Reduced expression of P2Y1 receptors in connexin43-null mice alters calcium signaling and migration of neural progenitor cells. J Neurosci. 2003;23(36):11444–11452. doi: 10.1523/JNEUROSCI.23-36-11444.2003. PubMed DOI PMC

Scemes E, et al. Connexin and pannexin mediated cell-cell communication. Neuron Glia Biol. 2007;3(3):199–208. doi: 10.1017/S1740925X08000069. PubMed DOI PMC

Miras-Portugal MT, et al. Nucleotides in neuroregeneration and neuroprotection. Neuropharmacology. 2016;104:243–254. doi: 10.1016/j.neuropharm.2015.09.002. PubMed DOI

Marichal N, et al. Purinergic signalling in a latent stem cell niche of the rat spinal cord. Purinergic Signal. 2016;12(2):331–341. doi: 10.1007/s11302-016-9507-6. PubMed DOI PMC

Wang X, et al. P2X7 receptor inhibition improves recovery after spinal cord injury. Nat Med. 2004;10(8):821–827. doi: 10.1038/nm1082. PubMed DOI

Remy M, et al. An in vivo evaluation of Brilliant Blue G in animals and humans. Br J Ophthalmol. 2008;92(8):1142–1147. doi: 10.1136/bjo.2008.138164. PubMed DOI

Jiang LH, et al. Brilliant blue G selectively blocks ATP-gated rat P2X(7) receptors. Mol Pharmacol. 2000;58(1):82–88. doi: 10.1124/mol.58.1.82. PubMed DOI

Peng W, et al. Systemic administration of an antagonist of the ATP-sensitive receptor P2X7 improves recovery after spinal cord injury. Proc Natl Acad Sci USA. 2009;106(30):12489–12493. doi: 10.1073/pnas.0902531106. PubMed DOI PMC

Marcillo A, et al. A reassessment of P2X7 receptor inhibition as a neuroprotective strategy in rat models of contusion injury. Exp Neurol. 2012;233(2):687–692. doi: 10.1016/j.expneurol.2011.06.008. PubMed DOI PMC

Hofer A, Dermietzel R. Visualization and functional blocking of gap junction hemichannels (connexons) with antibodies against external loop domains in astrocytes. Glia. 1998;24(1):141–154. doi: 10.1002/(SICI)1098-1136(199809)24:1<141::AID-GLIA13>3.0.CO;2-R. PubMed DOI

Rodriguez-Jimenez FJ, et al. Connexin 50 expression in ependymal stem progenitor cells after spinal cord injury activation. Int J Mol Sci. 2015;16(11):26608–26618. doi: 10.3390/ijms161125981. PubMed DOI PMC

Ke Q, et al. Connexin 43 is involved in the generation of human-induced pluripotent stem cells. Hum Mol Genet. 2013;22(11):2221–2233. doi: 10.1093/hmg/ddt074. PubMed DOI

Lee IH, et al. Glial and neuronal connexin expression patterns in the rat spinal cord during development and following injury. J Comp Neurol. 2005;489(1):1–10. doi: 10.1002/cne.20567. PubMed DOI

Tonkin RS, et al. Gap junction proteins and their role in spinal cord injury. Front Mol Neurosci. 2014;7:102. PubMed PMC

Huang C, et al. Critical role of connexin 43 in secondary expansion of traumatic spinal cord injury. J Neurosci. 2012;32(10):3333–3338. doi: 10.1523/JNEUROSCI.1216-11.2012. PubMed DOI PMC

Mao Y, et al. Systemic administration of connexin43 mimetic peptide improves functional recovery after traumatic spinal cord injury in adult rats. J Neurotrauma. 2017;34(3):707–719. doi: 10.1089/neu.2016.4625. PubMed DOI

Rodriguez-Jimenez FJ, et al. Connexin 50 modulates Sox2 expression in spinal-cord-derived ependymal stem/progenitor cells. Cell Tissue Res. 2016;365(2):295–307. doi: 10.1007/s00441-016-2421-y. PubMed DOI

Fabbiani G, et al. Connexin signaling is involved in the reactivation of a latent stem cell niche after spinal cord injury. J Neurosci. 2020;40(11):2246–2258. doi: 10.1523/JNEUROSCI.2056-19.2020. PubMed DOI PMC

Wang A, Xu C. The role of connexin43 in neuropathic pain induced by spinal cord injury. Acta Biochim Biophys Sin (Shanghai) 2019;51(6):555–561. doi: 10.1093/abbs/gmz038. PubMed DOI

Suadicani SO, Brosnan CF, Scemes E. P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling. J Neurosci. 2006;26(5):1378–1385. doi: 10.1523/JNEUROSCI.3902-05.2006. PubMed DOI PMC

Suadicani SO, et al. Acute downregulation of Cx43 alters P2Y receptor expression levels in mouse spinal cord astrocytes. Glia. 2003;42(2):160–171. doi: 10.1002/glia.10197. PubMed DOI PMC

Muthusamy N, et al. Foxj1 expressing ependymal cells do not contribute new cells to sites of injury or stroke in the mouse forebrain. Sci Rep. 2018;8(1):1766. doi: 10.1038/s41598-018-19913-x. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...