How to Use Ion-Molecule Reaction Data Previously Obtained in Helium at 300 K in the New Generation of Selected Ion Flow Tube Mass Spectrometry Instruments Operating in Nitrogen at 393 K
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
37454354
PubMed Central
PMC10372871
DOI
10.1021/acs.analchem.3c02173
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Selected ion flow tube mass spectrometry (SIFT-MS) instruments have significantly developed since this technique was introduced more than 20 years ago. Most studies of the ion-molecule reaction kinetics that are essential for accurate analyses of trace gases and vapors in air and breath were conducted in He carrier gas at 300 K, while the new SIFT-MS instruments (optimized to quantify concentrations down to parts per trillion by volume) operate with N2 carrier gas at 393 K. Thus, we pose the question of how to reuse the data from the extensive body of previous literature using He at room temperature in the new instruments operating with N2 carrier gas at elevated temperatures. Experimentally, we found the product ions to be qualitatively similar, although there were differences in the branching ratios, and some reaction rate coefficients were lower in the heated N2 carrier gas. The differences in the reaction kinetics may be attributed to temperature, an electric field in the current flow tubes, and the change from He to N2 carrier gas. These results highlight the importance of adopting an updated reaction kinetics library that accounts for the new instruments' specific conditions. In conclusion, almost all previous rate coefficients may be used after adjustment for higher temperatures, while some product ion branching ratios need to be updated.
J Heyrovsky Institute of Physical Chemistry 3 Dolejškova 2155 Praha 8 182 00 Libeň Czechia
Syft Technologies 68 Saint Asaph Street Christchurch Central City Christchurch 8011 New Zealand
See more in PubMed
Smith D.; Španěl P.; Demarais N.; Langford V. S.; McEwan M. J. Recent developments and applications of selected ion flow tube mass spectrometry, SIFT-MS. Mass Spectrom. Rev. 2023, 12, e2183510.1002/mas.21835. PubMed DOI PMC
Smith D.; Španěl P. Ambient analysis of trace compounds in gaseous media by SIFT-MS. Analyst 2011, 136, 2009–2032. 10.1039/c1an15082k. PubMed DOI
Španěl P.; Smith D. Quantification of volatile metabolites in exhaled breath by selected ion flow tube mass spectrometry, SIFT-MS. Clin. Mass Spectrom. 2020, 16, 18–24. 10.1016/j.clinms.2020.02.001. PubMed DOI PMC
Španěl P.; Smith D. Progress in SIFT-MS: Breath analysis and other applications. Mass Spectrom. Rev. 2011, 30, 236–267. 10.1002/mas.20303. PubMed DOI
Lehnert A. S.; Behrendt T.; Ruecker A.; Pohnert G.; Trumbore S. E. SIFT-MS optimization for atmospheric trace gas measurements at varying humidity. Atmos. Meas. Tech. 2020, 13, 3507–3520. 10.5194/amt-13-3507-2020. DOI
Wagner R. L.; Farren N. J.; Davison J.; Young S.; Hopkins J. R.; Lewis A. C.; Carslaw D. C.; Shaw M. D. Application of a mobile laboratory using a selected-ion flow-tube mass spectrometer (SIFT-MS) for characterisation of volatile organic compounds and atmospheric trace gases. Atmos. Meas. Tech. 2021, 14, 6083–6100. 10.5194/amt-14-6083-2021. DOI
Ghislain M.; Reyrolle M.; Sotiropoulos J.-M.; Pigot T.; Plaisance H.; Le Bechec M. Study of the Chemical Ionization of Organophosphate Esters in Air Using Selected Ion Flow Tube–Mass Spectrometry for Direct Analysis. J. Am. Soc. Mass Spectrom. 2022, 33, 865–874. 10.1021/jasms.2c00060. PubMed DOI
Langford V. S.; Padayachee D.; McEwan M. J.; Barringer S. A. Comprehensive odorant analysis for on-line applications using selected ion flow tube mass spectrometry (SIFT-MS). Flavour Fragrance J. 2019, 34, 393–410. 10.1002/ffj.3516. DOI
Olivares A.; Dryahina K.; Navarro J. L.; Flores M.; Smith D.; Španěl P. Selected Ion Flow Tube-Mass Spectrometry for Absolute Quantification of Aroma Compounds in the Headspace of Dry Fermented Sausages. Anal. Chem. 2010, 82, 5819–5829. 10.1021/ac1009723. PubMed DOI
Bacquart T.; Perkins M.; Ferracci V.; Martin N. A.; Resner K.; Ward M. K. M.; Cassidy N.; Hook J. B.; Brewer P. J.; Irvine J. T. C.; Connor P. A.; Murugan A. Production and stability of low amount fraction of formaldehyde in hydrogen gas standards. Int. J. Hydrogen Energy 2018, 43, 6711–6722. 10.1016/j.ijhydene.2018.02.026. DOI
Den W.; Bai H. L.; Kang Y. H. Organic airborne molecular contamination in semiconductor fabrication clean rooms—A review. J. Electrochem. Soc. 2006, 153, G149–G159. 10.1149/1.2147286. DOI
Španěl P.; Swift S. J.; Dryahina K.; Smith D. Relative influence of helium and nitrogen carrier gases on analyte ion branching ratios in SIFT-MS. Int. J. Mass Spectrom. 2022, 476, 116835.10.1016/j.ijms.2022.116835. DOI
Smith D.; McEwan M. J.; Španěl P. Understanding Gas Phase Ion Chemistry Is the Key to Reliable Selected Ion Flow Tube-Mass Spectrometry Analyses. Anal. Chem. 2020, 92, 12750–12762. 10.1021/acs.analchem.0c03050. PubMed DOI
Španěl P.; Dryahina K.; Smith D. A general method for the calculation of absolute trace gas concentrations in air and breath from selected ion flow tube mass spectrometry data. Int. J. Mass Spectrom. 2006, 249–250, 230–239. 10.1016/j.ijms.2005.12.024. DOI
Španěl P.; Smith D. Advances in On-line Absolute Trace Gas Analysis by SIFT-MS. Curr. Anal. Chem. 2013, 9, 525–539. 10.2174/15734110113099990017. DOI
Smith D.; Adams N. G. The selected ion flow tube(SIFT): studies of ion-neutral reactions. Adv. At. Mol. Phys. 1988, 24, 1–49. 10.1016/S0065-2199(08)60229-8. DOI
Swift S. J.; Smith D.; Dryahina K.; Omezzine Gnioua M.; Španěl P. Kinetics of reactions of NH4+ with some biogenic organic molecules and monoterpenes in He and N2 carrier gases: a potential SIFT-MS reagent ion. Rapid Commun. Mass Spectrom. 2022, 36, e932810.1002/rcm.9328. PubMed DOI
Hera D.; Langford V. S.; McEwan M. J.; McKellar T. I.; Milligan D. B. Negative Reagent Ions for Real Time Detection Using SIFT-MS. Environments 2017, 4, 16.10.3390/environments4010016. DOI
Španěl P.; Smith D. Dissociation of H3O+, NO+ and O2+• reagent ions injected into nitrogen carrier gas in SIFT-MS and reactivity of the ion fragments. Int. J. Mass Spectrom. 2020, 458, 116438.10.1016/j.ijms.2020.116438. DOI
Smith D.; Pysanenko A.; Španěl P. Ionic diffusion and mass discrimination effects in the new generation of short flow tube SIFT-MS instruments. Int. J. Mass Spectrom. 2009, 281, 15–23. 10.1016/j.ijms.2008.11.007. DOI
Ausloos P. J.Kinetics of ion-molecule reactions; Springer, 1978; Vol. 40.
Španěl P.; Smith D. SIFT studies of the reactions of H3O+, NO+ and O2+ with a series of alcohols. Int. J. Mass Spectrom. 1997, 167–168, 375–388. 10.1016/s0168-1176(97)00085-2. DOI
Španěl P.; Ji Y. F.; Smith D. SIFT studies of the reactions of H3O+, NO+ and O2+ with a series of aldehydes and ketones. Int. J. Mass Spectrom. 1997, 165–166, 25–37. 10.1016/s0168-1176(97)00166-3. DOI
Španěl P.; Smith D. SIFT studies of the reactions of H3O+, NO+ and O2+ with a series of volatile carboxylic acids and esters. Int. J. Mass Spectrom. 1998, 172, 137–147. 10.1016/s0168-1176(97)00246-2. DOI
Smith D.; Chippendale T. W. E.; Španěl P. Reactions of the selected ion flow tube mass spectrometry reagent ions H3O+ and NO+ with a series of volatile aldehydes of biogenic significance. Rapid Commun. Mass Spectrom. 2014, 28, 1917–1928. 10.1002/rcm.6977. PubMed DOI
Španěl P.; Zabka J.; Zymak I.; Smith D. Selected ion flow tube study of the reactions of H3O+ and NO+ with a series of primary alcohols in the presence of water vapour in support of selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 2017, 31, 437–446. 10.1002/rcm.7811. PubMed DOI
Smith D.; Španěl P.; Dryahina K. H3O+, NO+ and O2+ reactions with saturated and unsaturated monoketones and diones; focus on hydration of product ions. Int. J. Mass Spectrom. 2019, 435, 173–180. 10.1016/j.ijms.2018.10.027. DOI
Brůhová Michalčíková R.; Španěl P. A selected ion flow tube study of the ion molecule association reactions of protonated (MH+), nitrosonated (MNO+) and dehydroxidated (M-OH)(+) carboxylic acids (M) with H2O. Int. J. Mass Spectrom. 2014, 368, 15–22. 10.1016/j.ijms.2014.04.010. DOI
Spesyvyi A.; Sovová K.; Smith D.; Španěl P. Increase of the Charge Transfer Rate Coefficients for NO+ and O2+• Reactions with Isoprene Molecules at Elevated Interaction Energies. J. Phys. Chem. A 2018, 122, 9733–9737. 10.1021/acs.jpca.8b08580. PubMed DOI
Spesyvyi A.; Smith D.; Španěl P. Ion chemistry at elevated ion-molecule interaction energies in a selected ion flow-drift tube: reactions of H3O+, NO+ and O2+ with saturated aliphatic ketones. Phys. Chem. Chem. Phys. 2017, 19, 31714–31723. 10.1039/c7cp05795d. PubMed DOI
Su T.; Chesnavich W. J. Parametrization of the ion–polar molecule collision rate constant by trajectory calculations. J. Chem. Phys. 1982, 76, 5183–5185. 10.1063/1.442828. DOI
The National Institute of Standards and Technology (NIST) . Chemistry WebBook, SRD 69. http://webbook.nist.gov/.