In-vitro Evaluation of Triazine Scaffold for Anticancer Drug Development: A Review

. 2024 ; 21 (2) : e170723218813.

Jazyk angličtina Země Spojené arabské emiráty Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37461340

INTRODUCTION: The widespread importance of the synthesis and modification of anticancer agents has given rise to many numbers of medicinal chemistry programs. In this regard, triazine derivatives have attracted attention due to their remarkable activity against a wide range of cancer cells. This evaluation covers work reports to define the anticancer activity, the most active synthesized compound for the target, the SAR and, when described, the probable MOA besides similarly considered to deliver complete and target-pointed data for the development of types of anti-tumour medicines of triazine derivatives. Triazine scaffold for the development of anticancer analogues. Triazine can also relate to numerous beneficial targets, and their analogues have auspicious in-vitro and in-vivo anti-tumour activity. Fused molecules can improve efficacy, and drug resistance and diminish side effects, and numerous hybrid molecules are beneath diverse stages of clinical trials, so hybrid derivatives of triazine may offer valuable therapeutic involvement for the dealing of tumours. OBJECTIVE: The objective of the recent review was to summarize the recent reports on triazine as well as its analogues with respect to its anticancer therapeutic potential. CONCLUSION: The content of the review would be helpful to update the researchers working towards the synthesis and designing of new molecules for the treatment of various types of cancer disease with the recent molecules that have been produced from the triazine scaffold. Triazine scaffolds based on 1,3,5-triazine considerably boost molecular diversity levels and enable covering chemical space in key medicinal chemistry fields.

Zobrazit více v PubMed

Siegel R.L.; Miller K.D.; Jemal A.; Cancer statistics, 2015. CA Cancer J Clin 2015,65(1),5-29 PubMed DOI

Novotny L.; Szekeres T.; Cancer therapy: new targets for chemotherapy. Hematology 2003,8(3),129-137 PubMed DOI

Jung K.H.; Park B.H.; Hong S.S.; Progress in cancer therapy targeting c-Met signaling pathway. Arch Pharm Res 2012,35(4),595-604 PubMed DOI

Sridhar A.; Saremy S.; Bhattacharjee B.; Elucidation of molecular targets of bioactive principles of black cumin relevant to its anti-tumour functionality - An in silico target fishing approach. Bioinformation 2014,10(11),684-688 PubMed DOI

Cereto-Massagué A.; Ojeda M.J.; Valls C.; Mulero M.; Pujadas G.; Garcia-Vallve S.; Tools for in silico target fishing. Methods 2015,71,98-103 PubMed DOI

Dbm V.; In silico screening of secondary metabolites derived from marine fungi for anticancer study. J Adv Bioinform Appl Res 2014,5(2),78-82

Peach M.L.; Nicklaus M.C.; Combining docking with pharmacophore filtering for improved virtual screening. J Cheminform 2009,1(1),6 PubMed DOI

Thangapandian S.; John S.; Sakkiah S.; Lee K.W.; Ligand and structure based pharmacophore modeling to facilitate novel histone deacetylase 8 inhibitor design. Eur J Med Chem 2010,45(10),4409-4417 PubMed DOI

Koutsoukas A.; Simms B.; Kirchmair J.; From in silico target prediction to multi-target drug design: Current databases, methods and applications. J Proteomics 2011,74(12),2554-2574 PubMed DOI

Wang L.; Xie X.Q.; Computational target fishing: what should chemogenomics researchers expect for the future of in silico drug design and discovery? Future Med Chem 2014,6(3),247-249 PubMed DOI

Liu X; Ouyang S; Yu B; PharmMapper server: A web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res 2010,38(Web Server issue)(Suppl. 2),W609-14 PubMed DOI

Bahar A.A.; Liu Z.; Garafalo M.; Kallenbach N.; Ren D.; Controlling persister and biofilm cells of gram-negative bacteria with a new 1, 3, 5-triazine derivative. Pharmaceuticals (Basel) 2015,8(4),696-710 PubMed DOI

Mibu N.; Yokomizo K.; Aki H.; Synthesis and antiviral evaluation of some C3-symmetrical trialkoxy-substituted 1, 3, 5-triazines and their molecular geometry. Chem Pharm Bull (Tokyo) 2015,63(11),935-944 PubMed DOI

Zacharie B.; Abbott S.D.; Bienvenu J.F.; 2,4,6-trisubstituted triazines as protein a mimetics for the treatment of autoimmune diseases. J Med Chem 2010,53(3),1138-1145 PubMed DOI

Liu B.; Sun T.; Zhou Z.; Du L.; A systematic review on antitumor agents with 1, 3, 5-triazines. Med Chem 2015,5(3),131-148 DOI

Singla P.; Luxami V.; Paul K.; Triazine as a promising scaffold for its versatile biological behavior. Eur J Med Chem 2015,102,39-57 PubMed DOI

Lim F.P.L.; Dolzhenko A.V.; 1,3,5-Triazine-based analogues of purine: From isosteres to privileged scaffolds in medicinal chemistry. Eur J Med Chem 2014,85,371-390 PubMed DOI

Patel R.; Keum Y.S.; Park S.; Medicinal chemistry discoveries among 1,3,5-triazines: Recent advances (2000-2013) as antimicrobial, anti-TB, anti-HIV and antimalarials. Mini Rev Med Chem 2014,14(9),768-789 PubMed DOI

Tretamine. Available From: https://go.drugbank.com/drugs/DB14031 (assessed on 09/12/2020).

Altretamine. Available From: https://go.drugbank.com/drugs/DB00488 (assessed on 09/12/2020).

Azacitidine. Available From: https://go.drugbank.com/drugs/DB00928 (assessed on 09/12/2020).

Enasidenib. Available From: https://go.drugbank.com/drugs/DB13874 (assessed on 09/12/2020).

Decitabine. Available From: https://go.drugbank.com/drugs/DB01262 (assessed on 09/12/2020).

Gedatolisib. Available From: https://go.drugbank.com/drugs/DB11896 (assessed on 09/12/2020).

Lamotrigine. Available From: https://go.drugbank.com/drugs/DB00555 (assessed on 09/12/2020).

Tirapazamine. Available From: https://go.drugbank.com/drugs/DB04858 (assessed on 09/12/2020).

Lolak N.; Akocak S.; Bua S.; Sanku R.K.K.; Supuran C.T.; Discovery of new ureido benzenesulfonamides incorporating 1,3,5-triazine moieties as carbonic anhydrase I, II, IX and XII inhibitors. Bioorg Med Chem 2019,27(8),1588-1594 PubMed DOI

Shi W.; Qiang H.; Huang D.; Bi X.; Huang W.; Qian H.; Exploration of novel pyrrolo[2,1-f][1,2,4]triazine derivatives with improved anticancer efficacy as dual inhibitors of c-Met/VEGFR-2. Eur J Med Chem 2018,158,814-831 PubMed DOI

Moreno L.; Quiroga J.; Abonia R.; Ramírez-Prada J.; Insuasty B.; Synthesis of new 1, 3, 5-triazine-based 2-pyrazolines as potential anticancer agents. Molecules 2018,23(8),1956 PubMed DOI

El-Wakil M.H.; Ashour H.M.; Saudi M.N.; Hassan A.M.; Labouta I.M.; Design, synthesis and molecular modeling studies of new series of antitumor 1,2,4-triazines with potential c-Met kinase inhibitory activity. Bioorg Chem 2018,76,154-165 PubMed DOI

Fu D.J.; Song J.; Hou Y.H.; Discovery of 5,6-diaryl-1,2,4-triazines hybrids as potential apoptosis inducers. Eur J Med Chem 2017,138,1076-1088 PubMed DOI

Narva S.; Chitti S.; Amaroju S.; Design and synthesis of 4-morpholino-6-(1,2,3,6-tetrahydropyridin-4-yl)-N-(3,4,5-trimethoxyphenyl)-1,3,5-triazin-2-amine analogues as tubulin polymerization inhibitors. Bioorg Med Chem Lett 2017,27(16),3794-3801 PubMed DOI

Nasr T.; Bondock S.; Youns M.; Fayad W.; Zaghary W.; Synthesis, antitumor evaluation and microarray study of some new pyrazolo[3,4- d][1,2,3]triazine derivatives. Eur J Med Chem 2017,141,603-614 PubMed DOI

Shen F.; Ou Z.B.; Liu Y.J.; Two Cu(II) complexes containing 2,4-diamino-6-(2-pyridyl)-1,3,5-triazine and amino acids: Synthesis, crystal structures, DNA/HSA binding, molecular docking, and in-vitro cytotoxicity studies. Inorg Chim Acta 2017,465,1-13 DOI

Fan Y.B.; Li K.; Huang M.; Design and synthesis of substituted pyrido[3,2-d]-1,2,3-triazines as potential Pim-1 inhibitors. Bioorg Med Chem Lett 2016,26(4),1224-1228 PubMed DOI

Kothayer H.; Spencer S.M.; Tripathi K.; Westwell A.D.; Palle K.; Synthesis and in-vitro anticancer evaluation of some 4,6-diamino-1,3,5-triazine-2-carbohydrazides as Rad6 ubiquitin conjugating enzyme inhibitors. Bioorg Med Chem Lett 2016,26(8),2030-2034 PubMed DOI

Singla P.; Luxami V.; Paul K.; Synthesis and in-vitro evaluation of novel triazine analogues as anticancer agents and their interaction studies with bovine serum albumin. Eur J Med Chem 2016,117,59-69 PubMed DOI

Wang G.; Peng Z.; Wang J.; Li X.; Li J.; Synthesis, in-vitro evaluation and molecular docking studies of novel triazine-triazole derivatives as potential α-glucosidase inhibitors. Eur J Med Chem 2017,125,423-429 PubMed DOI

Mojzych M.; Ceruso M.; Bielawska A.; Bielawski K.; Fornal E.; Supuran C.T.; New pyrazolo[4,3-e][1,2,4]triazine sulfonamides as carbonic anhydrase inhibitors. Bioorg Med Chem 2015,23(13),3674-3680 PubMed DOI

Singla P.; Luxami V.; Paul K.; Triazine–benzimidazole hybrids: Anticancer activity, DNA interaction and dihydrofolate reductase inhibitors. Bioorg Med Chem 2015,23(8),1691-1700 PubMed DOI

Patel A.B.; Chikhalia K.H.; Kumari P.; An efficient synthesis of new thiazolidin-4-one fused s-triazines as potential antimicrobial and anticancer agents. J Saudi Chem Soc 2014,18(5),646-656 DOI

Yurttaş L, Demirayak Ş Ilgın S, Atlı Ö. In-vitro antitumor activity evaluation of some 1,2,4-triazine derivatives bearing piperazine amide moiety against breast cancer cells. Bioorg Med Chem 2014,22(22),6313-6323 PubMed DOI

Pogorelčnik B, Brvar M, Zajc I, Filipič M, Solmajer T, Perdih A. Monocyclic 4-amino-6-(phenylamino)-1,3,5-triazines as inhibitors of human DNA topoisomerase IIα. Bioorg Med Chem Lett 2014,24(24),5762-5768 PubMed DOI

Kang S.M.; Lee J.; Jin J.H.; Synthesis and PGE2 production inhibition of s-triazine derivatives as a novel scaffold in RAW 264.7 macrophage cells. Bioorg Med Chem Lett 2014,24(23),5418-5422 PubMed DOI

Mojzych M.; Bielawska A.; Bielawski K.; Ceruso M.; Supuran C.T.; Pyrazolo[4,3-e][1,2,4]triazine sulfonamides as carbonic anhydrase inhibitors with antitumor activity. Bioorg Med Chem 2014,22(9),2643-2647 PubMed DOI

Bera H.; Lee M.H.; Sun L.; Dolzhenko A.V.; Chui W.K.; Synthesis, anti-thymidine phosphorylase activity and molecular docking of 5-thioxo-[1,2,4]triazolo[1,5-a][1,3,5]triazin-7-ones. Bioorg Chem 2013,50,34-40 PubMed DOI

Dao P.; Jarray R.; Le Coq J.; Synthesis of novel diarylamino-1,3,5-triazine derivatives as FAK inhibitors with anti-angiogenic activity. Bioorg Med Chem Lett 2013,23(16),4552-4556 PubMed DOI

Khoshneviszadeh M.; Ghahremani M.H.; Foroumadi A.; Design, synthesis and biological evaluation of novel anti-cytokine 1, 2, 4-triazine derivatives. Bioorganic and medicinal chemistry 2013,21(21),6708-6717

Kothayer H.; Elshanawani A.A.; Abu Kull M.E.; Design, synthesis and in-vitro anticancer evaluation of 4,6-diamino-1,3,5-triazine-2-carbohydrazides and -carboxamides. Bioorg Med Chem Lett 2013,23(24),6886-6889 PubMed DOI

EL Massry A.M.; Asal A.M.; Khattab S.N.; Synthesis and structure elucidation of novel fused 1,2,4-triazine derivatives as potent inhibitors targeting CYP1A1 activity. Bioorg Med Chem 2012,20(8),2624-2637 PubMed DOI

Sączewski F, Bułakowska A, Bednarski P, Grunert R. Synthesis, structure and anticancer activity of novel 2,4-diamino-1,3,5-triazine derivatives. Eur J Med Chem 2006,41(2),219-225 PubMed DOI

Balahaa M.F.; El-Hamamsyb M.H.; El-Dinc N.A.; El-Mahdyd N.A.; Synthesis, evaluation and docking study of 1, 3, 5-triazine derivatives as cytotoxic agents against lung cancer. J Appl Pharm Sci 2016,6(4),28-45 DOI

Huang Q.; Fu Q.; Liu Y.; Design, synthesis and anticancer activity of novel 6-(aminophenyl)-2,4-bismorpholino-1,3,5-triazine derivatives bearing arylmethylene hydrazine moiety. Chem Res Chin Univ 2014,30(2),257-265 DOI

Sączewski F, Bułakowska A. Synthesis, structure and anticancer activity of novel alkenyl-1,3,5-triazine derivatives. Eur J Med Chem 2006,41(5),611-615 PubMed DOI

Yan W.; Zhao Y.; He J.; Anti breast cancer activity of selected 1,3,5 triazines via modulation of EGFR TK. Mol Med Rep 2018,18(5),4175-4184 PubMed DOI

Srivastava J.K.; Pillai G.G.; Bhat H.R.; Verma A.; Singh U.P.; Design and discovery of novel monastrol-1,3,5-triazines as potent anti-breast cancer agent via attenuating Epidermal Growth Factor Receptor tyrosine kinase. Sci Rep 2017,7(1),5851 PubMed DOI

Wróbel A; Kolesińska B; Frączyk J; Synthesis and cellular effects of novel 1,3,5-triazine derivatives in DLD and Ht-29 human colon cancer cell lines. Invest New Drugs 2020,38,990-1002 PubMed

Marwa I.S.; Rania M.G.; Mohamed A.M.; Hassan M.E.; Design, synthesis and molecular modeling of new 1,3,5-triazine derivatives as anticancer agents. Pharma Chem 2019,11(5),7-14

Shuttleworth S.J.; Silva F.A.; Cecil A.R.; Progress in the preclinical discovery and clinical development of class I and dual class I/IV phosphoinositide 3-kinase (PI3K) inhibitors. Curr Med Chem 2011,18(18),2686-2714 PubMed DOI

Meadows S.A.; Vega F.; Kashishian A.; PI3Kδ inhibitor, GS-1101 (CAL-101), attenuates pathway signaling, induces apoptosis, and overcomes signals from the microenvironment in cellular models of Hodgkin lymphoma. Blood 2012,119(8),1897-1900 PubMed DOI

Lannutti B.J.; Meadows S.A.; Herman S.E.M.; CAL-101, a p110δ selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood 2011,117(2),591-594 PubMed DOI

Verheijen J.C.; Richard D.J.; Curran K.; Kaplan J.; Yu K.; Zask A.; 2-Arylureidophenyl-4-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)triazines as highly potent and selective ATP competitive mTOR inhibitors: Optimization of human microsomal stability. Bioorg Med Chem Lett 2010,20(8),2648-2653 PubMed DOI

Ma Z.Y.; Zhang X.H.; Li C.; Zheng Y.; Yang G.; Design and synthesis of 3-substitued methylenethiochroman-4-ones-as anticancer agents. Chem Res Chin Univ 2011,27(5),787-791

Bai F.; Liu H.; Tong L.; Discovery of novel selective inhibitors for EGFR-T790M/L858R. Bioorg Med Chem Lett 2012,22(3),1365-1370 PubMed DOI

Sielecki T.M.; Boylan J.F.; Benfield P.A.; Trainor G.L.; Cyclin-dependent kinase inhibitors: useful targets in cell cycle regulation. J Med Chem 2000,43(1),1-18 PubMed DOI

Maccioni R.B.; Otth C.; Concha I.I.; Muñoz J.P.; The protein kinase Cdk5. Eur J Biochem 2001,268(6),1518-1527 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...