A Pharmacological Overview and Recent Patent of Triazine Scaffold in Drug Development: A Review
Language English Country United Arab Emirates Media print
Document type Journal Article, Review
PubMed
40259585
DOI
10.2174/0115701794272212240307092318
PII: COS-EPUB-142876
Knihovny.cz E-resources
- Keywords
- Anti-cancer, anti-HIV, antimalarial, antimicrobial, antiviral, cell line, toxicity, triazine.,
- MeSH
- Anti-Infective Agents * pharmacology chemistry chemical synthesis MeSH
- Humans MeSH
- Molecular Structure MeSH
- Patents as Topic MeSH
- Antineoplastic Agents * pharmacology chemistry chemical synthesis MeSH
- Triazines * chemistry pharmacology chemical synthesis MeSH
- Drug Development * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Anti-Infective Agents * MeSH
- Antineoplastic Agents * MeSH
- Triazines * MeSH
The triazine moiety holds a special and very important position in the field of medicinal chemistry owing to its enormous biological and pharmacological potential. Over eras, triazine scaffolds have been investigated for synthesizing novel molecules that may be used for the treatment of different types of pathological conditions, such as infections, cancer, inflammation etc. A vast number of lead molecules have been established from the triazine moiety. The triazine fused with numerous heterocyclic rings, such as pyrrole, benzimidazole, indole, imidazole, carbazole, etc., have formed various bicyclic with pharmacological actions. The triazines display a wide range of activities, and synthesizing various marketable medicines that hold triazine moiety has made the attention of chemists worldwide grow over the years in the moiety. In this review article, the commercially available compound containing triazine has been presented, and an attempt has been made to collect the works reported, mostly in the past decade, by numerous scientists, related to the structural differences amongst the triazine analogues giving antitumor, and antimicrobial and other activities. The objective of this review article was to outline the current information on triazines and their derivatives with respect to their biological potential and various pharmacological activities. The summary of this review article would be helpful and describe the function and activity of the moiety to bring up-to-date the scientists working in the direction of designing and synthesising novel lead molecules for the treatment of different types of disease with the current molecules that have been synthesized from the triazine scaffold.
See more in PubMed
Schroeder H.; Grundmann C.; Triazines. XIV. The extension of the pinner synthesis of monohydroxy-s-triazines to the aliphatic series. 2,4-dimethyl-s-triazine . J Am Chem Soc 1956,78(11),2447-2451 DOI
Singh S.; Mandal M.K.; Masih A.; Saha A.; Ghosh S.K.; Bhat H.R.; Singh U.P.; 1,3,5‐Triazine: A versatile pharmacophore with diverse biological activities. Arch Pharm 2021,354(6),2000363 PubMed DOI
Sharma A.; Sheyi R.; de la Torre B.G.; El-Faham A.; Albericio F.; s-Triazine: A privileged structure for drug discovery and bioconjugation. Molecules 2021,26(4),864 PubMed DOI
Wang Z.; Pinner S-triazine synthesis. Comprehensive Organic Name Reactions and Reagents 2010,2241-2243 DOI
Baldaniya B.B.; Patel P.K.; Synthesis, antibacterial and antifungal activities of s derivatives. E-J Chem 2009,6(3),673-680 DOI
Chang T.H.; Klassen W.; Comparative effects of tretamine, tepa, apholate and their structural analogs on human chromosomes in vitro. Chromosoma 1968,24(3),314-323 PubMed DOI
Lee C.R.; Faulds D.; Altretamine. Drugs 1995,49(6),932-953 PubMed DOI
Issa J.P.J.; Kantarjian H.M.; Kirkpatrick P.; Azacitidine. Nat Rev Drug Discov 2005,4(4),275-276 PubMed DOI
Kim E.S.; Enasidenib: First global approval. Drugs 2017,77(15),1705-1711 PubMed DOI
Gore S.D.; Jones C.; Kirkpatrick P.; Decitabine. Nat Rev Drug Discov 2006,5(11),891-892 PubMed DOI
Wainberg Z.A.; Alsina M.; Soares H.P.; Braña I.; Britten C.D.; Del Conte G.; Ezeh P.; Houk B.; Kern K.A.; Leong S.; Pathan N.; Pierce K.J.; Siu L.L.; Vermette J.; Tabernero J.; A multi-arm phase i study of the PI3K/mTOR inhibitors PF-04691502 and gedatolisib (PF-05212384) plus irinotecan or the MEK inhibitor PD-0325901 in advanced cancer. Target Oncol 2017,12(6),775-785 PubMed DOI
Goa K.L.; Ross S.R.; Chrisp P.; Lamotrigine. Drugs 1993,46(1),152-176 PubMed DOI
Reddy S.B.; Williamson S.K.; Tirapazamine: A novel agent targeting hypoxic tumor cells. Expert Opin Investig Drugs 2009,18(1),77-87 PubMed DOI
Richards D.M.; Heel R.C.; Brogden R.N.; Speight T.M.; Avery G.S.; Ceftriaxone. A review of its antibacterial activity, pharmacological properties and therapeutic use. Drugs 1984,27(6),469-527 PubMed DOI
Graymore M.; Stagnitti F.; Allinson G.; Impacts of atrazine in aquatic ecosystems. Environ Int 2001,26(7-8),483-495 PubMed DOI
Karimi-Maleh H.; Karimi F.; Fu L.; Sanati A.L.; Alizadeh M.; Karaman C.; Orooji Y.; Cyanazine herbicide monitoring as a hazardous substance by a DNA nanostructure biosensor. J Hazard Mater 2022,423(Pt A),127058 PubMed DOI
Zhang J.J.; Wang Y.K.; Zhou J.H.; Xie F.; Guo Q.N.; Lu F.F.; Jin S.F.; Zhu H.M.; Yang H.; Reduced phytotoxicity of propazine on wheat, maize and rapeseed by salicylic acid. Ecotoxicol Environ Saf 2018,162,42-50 PubMed DOI
Cox L.; Cecchi A.; Celis R.; Hermosín M.C.; Koskinen W.C.; Cornejo J.; Effect of exogenous carbon on movement of simazine and 2, 4‐D in soils. Soil Sci Soc Am J 2001,65(6),1688-1695 DOI
Sato Y.; Morimoto A.; Kiue A.; Okamura K.; Hamanaka R.; Kohno K.; Kuwano M.; Sakata T.; Irsogladine is a potent inhibitor of angiogenesis. FEBS Lett 1993,322(2),155-158 PubMed DOI
Daves G.; Robins R.; Cheng C.; Communications- the structure of fervenulin, a new antibiotic. J Org Chem 1961,26(12),5256-5257 DOI
Shokoohian M.; Hazeri N.; Maghsoodlou M.T.; Lashkari M.; Design and synthesis, antimicrobial activities of 1,2,4-triazine derivatives as representation of a new hetrocyclic system. Polycycl Aromat Compd 2020,42(1),1-12 DOI
Jain S.; Sharma A.; Agrawal M.; Sharma S.; Dwivedi J.; Kishore D.; Synthesis and antimicrobial evaluation of some novel trisubstituted s-triazine derivatives based on isatinimino, sulphonamido, and azacarbazole. J Chem 2013,2013,1-9 DOI
Lakum H.P.; Desai D.V.; Chikhalia K.H.; Synthesis, characterization, and antimicrobial screening of s -triazines linked with piperazine or aniline scaffolds. hc 2013,19(5),351-355 DOI
Milata V.; Reinprecht L.; Kizlink J.; Synthesis and antifungal efficacy of 1,3,5-triazines. Acta Chim Slov 2012,5(1),95-99
Al-Zaydi K.M.; Khalil H.H.; El-Faham A.; Khattab S.N.; Synthesis, characterization and evaluation of 1,3,5-triazine aminobenzoic acid derivatives for their antimicrobial activity. Chem Cent J 2017,11(1),39 PubMed DOI
Gunasekaran P.; Amphiphilic triazine polymer Derivatives as Antibacterial and anti-atopic agents in Mice Model. Sci Rep 2019,9(1),1-17 PubMed
Swami G.A.; Bothara K.G.; Optimization of antimicrobial activity of synthesized s-triazine derivatives. Int J Res Pharm Chem 2019,9(4),211-214 DOI
Rathavi A.; Thakor M.K.; Design, synthesis and in vitro antimicrobial activity of trisubstituted s-triazine. Acta Chim Pharm Indica 2015,5(2),60-67
Desai N.C.; Makwana A.H.; Rajpara K.M.; Synthesis and study of 1,3,5-triazine based thiazole derivatives as antimicrobial agents. J Saudi Chem Soc 2016,20,S334-S341 DOI
Bhat H.R.; Masih A.; Shakya A.; Ghosh S.K.; Singh U.P.; Design, synthesis, anticancer, antibacterial, and antifungal evaluation of 4‐aminoquinoline‐1,3,5‐triazine derivatives. J Heterocycl Chem 2020,57(1),390-399 DOI
Singh U.P.; Singh R.K.; Bhat H.R.; Subhashchandra Y.P.; Kumar V.; Kumawat M.K.; Gahtori P.; Synthesis and antibacterial evaluation of series of novel tri-substituted-s-triazine derivatives. Med Chem Res 2011,20(9),1603-1610 DOI
Dongre R.P.; Rathod S.P.; Design, synthesis and pharmacological evaluation of new series of 2-pyrazoline containing s-triazine and their derivatives. Der Chemica Sinica 2016,7(4),36-41
Raval J.P.; Rai A.R.; Patel N.H.; Patel H.V.; Patel P.S.; Synthesis and in vitro antimicrobial activity of N′-(4-(arylamino)-6-(pyridin-2-ylamino)-1,3,5-triazin-2-yl)benzohydrazide. Int J Chemtech Res 2009,1(3),616-620
Kavitha N.; Karthi A.; Arun A.; Shafi S.; Synthesis, characterization and antimicrobial activity of some novel s-triazine derivatives incorporating quinoline moiety. Pharma Chem 2015,7,10-453
Khan F.G.; Yadav M.V.; Sagar A.D.; Synthesis, characterization, and antimicrobial evaluation of novel trichalcones containing core s-triazine moiety. Med Chem Res 2014,23(5),2633-2638 DOI
Desai N.C.; Makwana A.H.; Senta R.D.; Synthesis, characterization and antimicrobial activity of some novel 4-(4-(arylamino)-6-(piperidin-1-yl)-1,3,5-triazine-2-ylamino)-N-(pyrimidin-2-yl)benzenesulfonamides. J Saudi Chem Soc 2016,20(6),686-694 DOI
Cirrincione G.; Almerico A.M.; Barraja P.; Diana P.; Lauria A.; Passannanti A.; Musiu C.; Pani A.; Murtas P.; Minnei C.; Marongiu M.E.; La Colla P.; Derivatives of the new ring system indolo[1,2-c]benzo[1,2,3]triazine with potent antitumor and antimicrobial activity. J Med Chem 1999,42(14),2561-2568 PubMed DOI
Pomarnacka E.; Bednarski P.; Grunert R.; Reszka P.; Synthesis and anticancer activity of novel 2-amino-4-(4-phenylpiperazino)- 1,3,5-triazine derivatives. Acta Pol Pharm 2004,61(6),461-466 PubMed
Said M.; Elshihawy H.; Synthesis, anticancer activity and structure-activity relationship of some anticancer agents based on cyclopenta (b) thiophene scaffold. Pak J Pharm Sci 2014,27(4),885-892 PubMed
Sączewski F.; Bułakowska A.; Bednarski P.; Grunert R.; Synthesis, structure and anticancer activity of novel 2,4-diamino-1,3,5-triazine derivatives. Eur J Med Chem 2006,41(2),219-225 PubMed DOI
Dubey P.; Pathak D.P.; Ali F.; Chauhan G.; Kalaiselvan V.; In vitro evaluation of triazine scaffold for anticancer drug development: A review. Curr Drug Discov Technol 2023,20 PubMed DOI
Kothayer H.; Spencer S.M.; Tripathi K.; Westwell A.D.; Palle K.; Synthesis and in vitro anticancer evaluation of some 4,6-diamino-1,3,5-triazine-2-carbohydrazides as Rad6 ubiquitin conjugating enzyme inhibitors. Bioorg Med Chem Lett 2016,26(8),2030-2034 PubMed DOI
Balaha M.F.; El-Hamamsy M.H.; Sharaf El-Din N.A.; El-Mahdy N.A.; Synthesis, evaluation and docking study of 1, 3, 5-triazine derivatives as cytotoxic agents against lung cancer. J Appl Pharm Sci 2016,6(4),28-45 DOI
Huang Q.; Fu Q.; Liu Y.; Bai J.; Wang Q.; Liao H.; Gong P.; Design, synthesis and anticancer activity of novel 6-(aminophenyl)-2,4-bismorpholino-1,3,5-triazine derivatives bearing arylmethylene hydrazine moiety. Chem Res Chin Univ 2014,30(2),257-265 DOI
Sączewski F.; Bułakowska A.; Synthesis, structure and anticancer activity of novel alkenyl-1,3,5-triazine derivatives. Eur J Med Chem 2006,41(5),611-615 PubMed DOI
Moreno L.; Quiroga J.; Abonia R.; Ramírez-Prada J.; Insuasty B.; Synthesis of new 1,3,5-triazine-based 2-pyrazolines as potential anticancer agents. Molecules 2018,23(8),1956 PubMed DOI
Yan W.; Zhao Y.; He J.; Anti‑breast cancer activity of selected 1,3,5‑triazines via modulation of EGFR‑TK. Mol Med Rep 2018,18(5),4175-4184 PubMed DOI
Srivastava J.K.; Pillai G.G.; Bhat H.R.; Verma A.; Singh U.P.; Design and discovery of novel monastrol-1,3,5-triazines as potent anti-breast cancer agent via attenuating Epidermal Growth Factor Receptor tyrosine kinase. Sci Rep 2017,7(1),5851 PubMed DOI
Wróbel A.; Kolesińska B.; Frączyk J.; Kamiński Z.J.; Tankiewicz-Kwedlo A.; Hermanowicz J.; Czarnomysy R.; Maliszewski D.; Drozdowska D.; Synthesis and cellular effects of novel 1,3,5-triazine derivatives in DLD and Ht-29 human colon cancer cell lines. Invest New Drugs 2019,1-13 PubMed
Marwa I.S.; Rania M.G.; Mohamed A.M.; Hassan M.E.; Design, synthesis and molecular modeling of new 1,3,5-triazine derivatives as anticancer agents. Pharma Chem 2019,11(5),7-14
Shuttleworth S.J.; Silva F.A.; Cecil A.R.; Tomassi C.D.; Hill T.J.; Raynaud F.I.; Clarke P.A.; Workman P.; Progress in the preclinical discovery and clinical development of class I and dual class I/IV phosphoinositide 3-kinase (PI3K) inhibitors. Curr Med Chem 2011,18(18),2686-2714 PubMed DOI
Meadows S.A.; Vega F.; Kashishian A.; Johnson D.; Diehl V.; Miller L.L.; Younes A.; Lannutti B.J.; PI3Kδ inhibitor, GS-1101 (CAL-101), attenuates pathway signaling, induces apoptosis, and overcomes signals from the microenvironment in cellular models of Hodgkin lymphoma. Blood 2012,119(8),1897-1900 PubMed DOI
Lannutti B.J.; Meadows S.A.; Herman S.E.M.; Kashishian A.; Steiner B.; Johnson A.J.; Byrd J.C.; Tyner J.W.; Loriaux M.M.; Deininger M.; Druker B.J.; Puri K.D.; Ulrich R.G.; Giese N.A.; CAL-101, a p110δ selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood 2011,117(2),591-594 PubMed DOI
Verheijen J.C.; Richard D.J.; Curran K.; Kaplan J.; Yu K.; Zask A.; 2-Arylureidophenyl-4-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)triazines as highly potent and selective ATP competitive mTOR inhibitors: Optimization of human microsomal stability. Bioorg Med Chem Lett 2010,20(8),2648-2653 PubMed DOI
Ma Z.Y.; Zhang X.H.; Li C.; Zheng Y.; Yang G.; Design and synthesis of 3-substitued methylenethiochroman-4-ones-as anticancer agents. Chem Res Chin Univ 2011,27(5),787-791
Bai F.; Liu H.; Tong L.; Zhou W.; Liu L.; Zhao Z.; Liu X.; Jiang H.; Wang X.; Xie H.; Li H.; Discovery of novel selective inhibitors for EGFR-T790M/L858R. Bioorg Med Chem Lett 2012,22(3),1365-1370 PubMed DOI
Dao P.; Jarray R.; Le Coq J.; Lietha D.; Loukaci A.; Lepelletier Y.; Hadj-Slimane R.; Garbay C.; Raynaud F.; Chen H.; Synthesis of novel diarylamino-1,3,5-triazine derivatives as FAK inhibitors with anti-angiogenic activity. Bioorg Med Chem Lett 2013,23(16),4552-4556 PubMed DOI
Sielecki T.M.; Boylan J.F.; Benfield P.A.; Trainor G.L.; Cyclin-dependent kinase inhibitors: Useful targets in cell cycle regulation. J Med Chem 2000,43(1),1-18 PubMed DOI
Maccioni R.B.; Otth C.; Concha I.I.; Muñoz J.P.; The protein kinase Cdk5. Eur J Biochem 2001,268(6),1518-1527 PubMed DOI
Barakar A.; El-Senduny F.F.; Almarhoon Z.; Al-Rasheed H.H.; Badria F.A.; Al-Majid A.M.; Ghabbour H.A.; El-Faham A.; Synthesis, X-ray crystal structures, and preliminary antiproliferative activities of new s-triazine-hydroxybenzylidene hydrazone derivatives. J Chem 2019,2019,9403908
Fiorot R.G.; Westphal R.; Lemos B.C.; Romagna R.A.; Gonçalves P.R.; Fernandes M.R.N.; Ferreira C.V.; Taranto A.G.; Greco S.J.; Synthesis, molecular modeling and anticancer activities of new molecular hybrids containing 1,4-Naphthoquinone, 7-Chloroquinoline, 1,3,5-triazine and morpholine cores as PI3K and AMPK inhibitors in the metastatic melanoma cells. J Braz Chem Soc 2019,30(9),1860-1873
Gao W-L.; Li J-X.; Design, synthesis, and structure-activity relationship of imidazolidin-2-one-1,3,5-triazine conjugates as Enterovirus 71 and Coxsackievirus A16 Inhibitor. Biomed Res 2017,8(2),811-816
Mibu N.; Yokomizo K.; Koga A.; Honda M.; Mizokami K.; Fujii H.; Ota N.; Yuzuriha A.; Ishimaru K.; Zhou J.; Miyata T.; Sumoto K.; Synthesis and antiviral activities of some 2,4,6-trisubstituted 1,3,5-triazines. Chem Pharm Bull 2014,62(10),1032-1040 PubMed DOI
Qiang Z.; Yu W.; Yu Y.; Design and development of novel 1,3,5-triazine-procaine derivatives as protective agent against myocardial ischemia/reperfusion injury via inhibitor of nuclear factor-κB. Pharmacology 2019,104(3-4),126-138 PubMed DOI
Szacoń E.; Rządkowska M.; Kaczor A.A.; Kędzierska E.; Mazur A.; Fidecka S.; Matosiuk D.; Synthesis, central nervous system activity and structure–activity relationship of N-substituted derivatives of 1-arylimidazolidyn-2-ylideneurea and products of their cyclization. J Enzyme Inhib Med Chem 2015,30(5),746-760 PubMed DOI
Klenke B.; Barrett M.P.; Brun R.; Gilbert I.H.; Antiplasmodial activity of a series of 1,3,5-triazine-substituted polyamines. J Antimicrob Chemother 2003,52(2),290-293 PubMed DOI
Sunduru N.; Sharma M.; Srivastava K.; Rajakumar S.; Puri S.K.; Saxena J.K.; Chauhan P.M.S.; Synthesis of oxalamide and triazine derivatives as a novel class of hybrid 4-aminoquinoline with potent antiplasmodial activity. Bioorg Med Chem 2009,17(17),6451-6462 PubMed DOI
Kumar A.; Srivastava K.; Raja Kumar S.; Puri S.K.; Chauhan P.M.S.; Synthesis and bioevaluation of hybrid 4-aminoquinoline triazines as a new class of antimalarial agents. Bioorg Med Chem Lett 2008,18(24),6530-6533 PubMed DOI
Kumar A.; Srivastava K.; Raja Kumar S.; Puri S.K.; Chauhan P.M.S.; Synthesis of 9-anilinoacridine triazines as new class of hybrid antimalarial agents. Bioorg Med Chem Lett 2009,19(24),6996-6999 PubMed DOI
Kertesz D.J.; Brotherton-Pleiss C.; Yang M.; Wang Z.; Lin X.; Qiu Z.; Hirschfeld D.R.; Gleason S.; Mirzadegan T.; Dunten P.W.; Harris S.F.; Villaseñor A.G.; Hang J.Q.; Heilek G.M.; Klumpp K.; Discovery of piperidin-4-yl-aminopyrimidines as HIV-1 reverse transcriptase inhibitors. N-Benzyl derivatives with broad potency against resistant mutant viruses. Bioorg Med Chem Lett 2010,20(14),4215-4218 PubMed DOI
Tang G.; Kertesz D.J.; Yang M.; Lin X.; Wang Z.; Li W.; Qiu Z.; Chen J.; Mei J.; Chen L.; Mirzadegan T.; Harris S.F.; Villaseñor A.G.; Fretland J.; Fitch W.L.; Hang J.Q.; Heilek G.; Klumpp K.; Exploration of piperidine-4-yl-aminopyrimidines as HIV-1 reverse transcriptase inhibitors. N-Phenyl derivatives with broad potency against resistant mutant viruses. Bioorg Med Chem Lett 2010,20(20),6020-6023 PubMed DOI
Chen X.; Zhan P.; Liu X.; Cheng Z.; Meng C.; Shao S.; Pannecouque C.; Clercq E.D.; Liu X.; Design, synthesis, anti-HIV evaluation and molecular modeling of piperidine-linked amino-triazine derivatives as potent non-nucleoside reverse transcriptase inhibitors. Bioorg Med Chem 2012,20(12),3856-3864 PubMed DOI
Bollini M.; Frey K.M.; Cisneros J.A.; Spasov K.A.; Das K.; Bauman J.D.; Arnold E.; Anderson K.S.; Jorgensen W.L.; Jorgensen W.L.; Extension into the entrance channel of HIV-1 reverse transcriptase—Crystallography and enhanced solubility. Bioorg Med Chem Lett 2013,23(18),5209-5212 PubMed DOI
Bollini M.; Cisneros J.A.; Spasov K.A.; Anderson K.S.; Jorgensen W.L.; Optimization of diarylazines as anti-HIV agents with dramatically enhanced solubility. Bioorg Med Chem Lett 2013,23(18),5213-5216 PubMed DOI
Zacharie B.; Abbott S.D.; Bienvenu J.F.; Cameron A.D.; Cloutier J.; Duceppe J.S.; Ezzitouni A.; Fortin D.; Houde K.; Lauzon C.; Moreau N.; Perron V.; Wilb N.; Asselin M.; Doucet A.; Fafard M.È.; Gaudreau D.; Grouix B.; Sarra-Bournet F.; St-Amant N.; Gagnon L.; Penney C.L.; 2,4,6-trisubstituted triazines as protein a mimetics for the treatment of autoimmune diseases. J Med Chem 2010,53(3),1138-1145 PubMed DOI
Gewald R.; Grunwald C.; Egerland U.; Discovery of triazines as potent, selective and orally active PDE4 inhibitors. Bioorg Med Chem Lett 2013,23(15),4308-4314 PubMed DOI
Sunduru N.; Agarwal A.; Katiyar S.B.; Nishi ; Goyal N.; Gupta S.; Chauhan P.M.S.; Synthesis of 2,4,6-trisubstituted pyrimidine and triazine heterocycles as antileishmanial agents. Bioorg Med Chem 2006,14(23),7706-7715 PubMed DOI
Wani M.Y.; Bhat A.R.; Azam A.; Choi I.; Athar F.; Probing the antiamoebic and cytotoxicity potency of novel tetrazole and triazine derivatives. Eur J Med Chem 2012,48,313-320 PubMed DOI
Avupati V.R.; Yejella R.P.; Parala V.R.; Killari K.N.; Papasani V.M.R.; Cheepurupalli P.; Gavalapu V.R.; Boddeda B.; Synthesis, characterization and in vitro biological evaluation of some novel 1,3,5-triazine–Schiff base conjugates as potential antimycobacterial agents. Bioorg Med Chem Lett 2013,23(21),5968-5970 PubMed DOI
Ho K.K.; Beasley J.R.; Belanger L.; Black D.; Chan J.H.; Dunn D.; Hu B.; Klon A.; Kultgen S.G.; Ohlmeyer M.; Parlato S.M.; Ray P.C.; Pham Q.; Rong Y.; Roughton A.L.; Walker T.L.; Wright J.; Xu K.; Xu Y.; Zhang L.; Webb M.; Triazine and pyrimidine based ROCK inhibitors with efficacy in spontaneous hypertensive rat model. Bioorg Med Chem Lett 2009,19(21),6027-6031 PubMed DOI
Yan Xia ; Mirzai B.; Chackalamannil S.; Czarniecki M.; Wang S.; Clemmons A.; Ahn H.S.; Boykow G.C.; Substituted 1,3,5-triazines as cholesteryl ester transfer protein inhibitors. Bioorg Med Chem Lett 1996,6(7),919-922 DOI
Pastorin G.; Federico S.; Paoletta S.; Corradino M.; Cateni F.; Cacciari B.; Klotz K.N.; Gao Z.G.; Jacobson K.A.; Spalluto G.; Moro S.; Synthesis and pharmacological characterization of a new series of 5,7-disubstituted-[1,2,4]triazolo[1,5-a][1,3,5]triazine derivatives as adenosine receptor antagonists: A preliminary inspection of ligand–receptor recognition process. Bioorg Med Chem 2010,18(7),2524-2536 PubMed DOI
Hortala L.; Arnaud J.; Roux P.; Oustric D.; Boulu L.; Oury-Donat F.; Avenet P.; Rooney T.; Alagille D.; Barret O.; Tamagnan G.; Barth F.; Synthesis and preliminary evaluation of a new fluorine-18 labelled triazine derivative for PET imaging of cannabinoid CB2 receptor. Bioorg Med Chem Lett 2014,24(1),283-287 PubMed DOI
Zhang Z.; Li C.; 2021
Babich J.W.; Zimmerman C.; Joyal J.L.; Lu G.; 2021
Langguth T.; Bracht S.; Multi-layered transdermal system with triazine UV absorber. 2015
Pflumm C.; Leu S.; Kaiser J.; Parham A.H.; Voges F.; Kroeber J.V.; Organic electroluminescent device comprising triazine derivatives. 2014
Nishimura N.; Kato T.; Ozawa M.; Hida M.; Koide Y.; Triazine ring-containing polymer and film-forming composition comprising same. 2013
Tao C.; Wang Q.; Nallan L.; Polat T.; Koroniak L.; Desai N.; 2012
Zacharie B.; Penney C.; Gagnon L.; Grouix B.; Geerts L.; Abbott S.D.; 2012
Tao C.; Wang Q.; Koroniak L.; Nallan L.; Desai N.; 2012
Tao C.; Wang Q.; Desai N.P.; 2010
Timmer R.T.; Alexander C.W.; Pillarisetti S.; Saxena U.; Yeleswarapu K.R.; Pal M.; 2007
Timmer R.T.; Alexander C.W.; Pillarisetti S.; Saxena U.; Yeleswarapu K.R.; Pal M.; 2006
Lowe C.R.; Sproule K.; Li R.; Stewart D.J.; Pearson J.C.; Burton S.J.; Triazine based ligands and use thereof. 2000
Maeda A.; Morinaga F.; Okamura K.; Higo K.; Irikura T.; Abe Y.; Triazine derivatives. 1973