Fosfomycin resistance mechanisms in Enterobacterales: an increasing threat

. 2023 ; 13 () : 1178547. [epub] 20230704

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37469601

Antimicrobial resistance is well-known to be a global health and development threat. Due to the decrease of effective antimicrobials, re-evaluation in clinical practice of old antibiotics, as fosfomycin (FOS), have been necessary. FOS is a phosphonic acid derivate that regained interest in clinical practice for the treatment of complicated infection by multi-drug resistant (MDR) bacteria. Globally, FOS resistant Gram-negative pathogens are raising, affecting the public health, and compromising the use of the antibiotic. In particular, the increased prevalence of FOS resistance (FOSR) profiles among Enterobacterales family is concerning. Decrease in FOS effectiveness can be caused by i) alteration of FOS influx inside bacterial cell or ii) acquiring antimicrobial resistance genes. In this review, we investigate the main components implicated in FOS flow and report specific mutations that affect FOS influx inside bacterial cell and, thus, its effectiveness. FosA enzymes were identified in 1980 from Serratia marcescens but only in recent years the scientific community has started studying their spread. We summarize the global epidemiology of FosA/C2/L1-2 enzymes among Enterobacterales family. To date, 11 different variants of FosA have been reported globally. Among acquired mechanisms, FosA3 is the most spread variant in Enterobacterales, followed by FosA7 and FosA5. Based on recently published studies, we clarify and represent the molecular and genetic composition of fosA/C2 genes enviroment, analyzing the mechanisms by which such genes are slowly transmitting in emerging and high-risk clones, such as E. coli ST69 and ST131, and K. pneumoniae ST11. FOS is indicated as first line option against uncomplicated urinary tract infections and shows remarkable qualities in combination with other antibiotics. A rapid and accurate identification of FOSR type in Enterobacterales is difficult to achieve due to the lack of commercial phenotypic susceptibility tests and of rapid systems for MIC detection.

Zobrazit více v PubMed

Aghamali M., Sedighi M., Zahedi Bialvaei A., Mohammadzadeh N., Abbasian S., Ghafouri Z., et al. . (2019). Fosfomycin: mechanisms and the increasing prevalence of resistance. J. Med. Microbiol. 68 (1), 11–25. doi: 10.1099/jmm.0.000874 PubMed DOI

Ambudkar S. V., Anantharam V., Maloney P. C. (1990). UhpT, the sugar phosphate antiporter of escherichia coli, functions as a monomer. J. Biol. Chem. 265 (21), 12287–12292. doi: 10.1016/S0021-9258(19)38343-7 PubMed DOI

Andrews J. M., Baquero F., Beltran J. M., Canton E., Crokaert F., Gobernado M., et al. . (1983). International collaborative study on standardization of bacterial sensitivity to fosfomycin. J. Antimicrob. Chemother. 12 (4), 357–361. doi: 10.1093/jac/12.4.357 PubMed DOI

.Available at: https://clsi.org/standards/products/microbiology/documents/m07/.

.Available at: https://clsi.org/standards/products/microbiology/documents/m07/.

.Available at: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_13.0_Breakpoint_Tables.pdf.

.Available at: https://www.rapidmicrobiology.com/news/new-fosfomycin-agar-dilution-panel.

.Available at: http://www.apteq.ch/saas/CustomUpload/374O357O340O370O356O369O350O320O367O371O356O368O320O326O/AD_Fosfomycin_0_25-256.pdf.

Balbin M. M., Hull D., Guest C., Nichols L., Dunn R., Hull D., et al. . (2020). Antimicrobial resistance and virulence factors profile of salmonella spp. and escherichia coli isolated from different environments exposed to anthropogenic activity. J. Glob Antimicrob. Resist. , 22:578–22:583. doi: 10.1016/j.jgar.2020.05.016 PubMed DOI

Ballestero-Téllez M., Docobo-Pérez F., Portillo-Calderón I., Rodríguez-Martínez J. M., Racero L., Ramos-Guelfo M. S., et al. . (2017). Molecular insights into fosfomycin resistance in escherichia coli. J. Antimicrob. Chemother. 72 (5), 1303–1309. doi: 10.1093/jac/dkw573 PubMed DOI

Balouiri M., Sadiki M., Ibnsouda S. K. (2016). Methods for in vitro evaluating antimicrobial activity: a review. J. Pharm. Anal. 6 (2), 71–79. doi: 10.1016/j.jpha.2015.11.005 PubMed DOI PMC

Barnett J. A., Southern P. M., Jr, Luby J. P., Sanford J. P. (1969). Efficacy of phosphonomycin in treatment of urinary-tract infections. Antimicrob. Agents Chemother. (Bethesda). 9, 349–351. PubMed

Baron D., Desjars P., Touze M., et al. . (1986). Clinical study on combined therapy with fosfomycin for staphylococcal infections. In Fosfomycin. Proceedings of the International Symposium. (Madrid: Instituto de Farmacologia Espaneola (CEPA)) p. 172e87.

Benzerara Y., Gallah S., Hommeril B., Genel N., Decré D., Rottman M., et al. . (2017). Emergence of plasmid-mediated fosfomycin-resistance genes among escherichia coli isolates, France. Emerg. Infect. Dis. 23 (9), 1564–1567. doi: 10.3201/eid2309.170560 PubMed DOI PMC

Bi W., Li B., Song J., Hong Y., Zhang X., Liu H., et al. . (2017). Antimicrobial susceptibility and mechanisms of fosfomycin resistance in extended-spectrum β-lactamase-producing escherichia coli strains from urinary tract infections in wenzhou, China. Int. J. Antimicrob. Agents. 50 (1), 29–34. doi: 10.1016/j.ijantimicag.2017.02.010 PubMed DOI

Biggel M., Zurfluh K., Treier A., Nüesch-Inderbinen M., Stephan R. (2021). Characteristics of fosA-carrying plasmids in e. coli and klebsiella spp. isolates originating from food and environmental samples. J. Antimicrob. Chemother. 76 (8), 2004–2011. doi: 10.1093/jac/dkab119 PubMed DOI

Birgy A., Madhi F., Hogan J., Doit C., Gaschignard J., Caseris M., et al. . (2018). CTX-M-55-, MCR-1-, and FosA-producing multidrug-resistant escherichia coli infection in a child in France. Antimicrob. Agents Chemother. 62 (4), e00127–e00118. doi: 10.1128/AAC.00127-18 PubMed DOI PMC

Brown E. D., Vivas E. I., Walsh C. T., Kolter R. (1995). MurA (MurZ), the enzyme that catalyzes the first committed step in peptidoglycan biosynthesis, is essential in escherichia coli. J. Bacteriol. 177 (14), 4194–4197. doi: 10.1128/jb.177.14.4194-4197.1995 PubMed DOI PMC

Candel F. J., Matesanz David M., Barberán J. (2019). New perspectives for reassessing fosfomycin: applicability in current clinical practice. Rev. Esp Quimioter. 32 Suppl 1 (Suppl 1), 1–7. PubMed PMC

Castañeda-García A., Blázquez J., Rodríguez-Rojas A. (2013). Molecular mechanisms and clinical impact of acquired and intrinsic fosfomycin resistance. Antibiotics (Basel). 2 (2), 217–236. doi: 10.3390/antibiotics2020217 PubMed DOI PMC

Cattoir V., Pourbaix A., Magnan M., Chau F., de Lastours V., Felden B., et al. . (2020). Novel chromosomal mutations responsible for fosfomycin resistance in escherichia coli. Front. Microbiol. 11. doi: 10.3389/fmicb.2020.575031 PubMed DOI PMC

Chen L., Ou B., Zhang M., Chou C. H., Chang S. K., Zhu G. (2021). Coexistence of fosfomycin resistance determinant fosA and fosA3 in Enterobacter cloacae isolated from pets with urinary tract infection in Taiwan. Microb. Drug Resist. 27 (3), 415–423. doi: 10.1089/mdr.2020.0077 PubMed DOI

Christensen B. G., Leanza W. J., Beattie T. R., Patchett A. A., Arison B. H., Ormond R. E., et al. . (1969). Phosphonomycin: structure and synthesis. Science 166, 123–125. doi: 10.1126/science.166.3901.123 PubMed DOI

Couce A., Briales A., Rodriguez-Rojas A., Costas C., Pascual A., Blazquez J. (2012). Genomewide overexpression screen for fosfomycin resistance in Escherichia coli: MurA confers clinical resistance at low fitness cost. Antimicrob. Agents Chemother. 56 (5), 2767–2769. doi: 10.1128/AAC.06122-11 PubMed DOI PMC

Cozzarelli N. R., Freedberg W. B., Lin E. C. (1968). Genetic control of l-alpha-glycerophosphate system in escherichia coli. J. Mol. Biol. 31 (3), 371–387. doi: 10.1016/0022-2836(68)90415-4 PubMed DOI

Croughs P. D., Konijnendijk-de Regt M., Yusuf E. (2022). Fosfomycin susceptibility testing using commercial agar dilution test. Microbiol. Spectr. 10 (2), e0250421. doi: 10.1128/spectrum.02504-21 PubMed DOI PMC

Dahl J. L., Wei B. Y., Kadner R. J. (1997). Protein phosphorylation affects binding of the escherichia coli transcription activator UhpA to the uhpT promoter. J. Biol. Chem. 272 (3), 1910–1919. doi: 10.1074/jbc.272.3.1910 PubMed DOI

Dantas Palmeira J., Ferreira H., Madec J. Y., Haenni M. (2018). Pandemic escherichia coli ST648 isolate harbouring fosA3 and blaCTX-M-8 on an IncI1/ST113 plasmid: a new successful combination for the spread of fosfomycin resistance? J. Glob Antimicrob. Resist. 15, 254–255. doi: 10.1016/j.jgar.2018.10.025 PubMed DOI

Deutscher J., Aké F. M., Derkaoui M., Zébré A. C., Cao T. N., Bouraoui H., et al. . (2014). The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol. Mol. Biol. Rev. 78 (2), 231–256. doi: 10.1128/MMBR.00001-14 PubMed DOI PMC

Dhanani A. S., Block G., Dewar K., Forgetta V., Topp E., Beiko R. G., et al. . (2015). Genomic comparison of non-typhoidal salmonella enterica serovars typhimurium, enteritidis, Heidelberg, hadar and Kentucky isolates from broiler chickens. PloS One 10 (6), e0128773. doi: 10.1371/journal.pone.0128773 PubMed DOI PMC

Doumith M., Day M., Ciesielczuk H., Hope R., Underwood A., Reynolds R., et al. . (2015). Rapid identification of major escherichia coli sequence types causing urinary tract and bloodstream infections. J. Clin. Microbiol. 53 (1), 160–166. doi: 10.1128/JCM.02562-14 PubMed DOI PMC

Ekwanzala M. D., Dewar J. B., Kamika I., Momba M. N. B. (2020). Genome sequence of carbapenem-resistant citrobacter koseri carrying blaOXA-181 isolated from sewage sludge. J. Glob Antimicrob. Resist. 20, 94–97. doi: 10.1016/j.jgar.2019.07.011 PubMed DOI

Escapa I. F., del Cerro C., García J. L., Prieto M. A. (2013). The role of GlpR repressor in pseudomonas putida KT2440 growth and PHA production from glycerol. Environ. Microbiol. 15 (1), 93–110. doi: 10.1111/j.1462-2920.2012.02790.x PubMed DOI

Eschenburg S., Priestman M., Schönbrunn E. (2005). Evidence that the fosfomycin target Cys115 in UDP-n-acetylglucosamine enolpyruvyl transferase (MurA) is essential for product release. J. Biol. Chem. 280 (5), 3757–3763. doi: 10.1074/jbc.M411325200 PubMed DOI

Ewbank A. C., Fuentes-Castillo D., Sacristán C., Cardoso B., Esposito F., Fuga B., et al. . (2022). Extended-spectrum β-lactamase (ESBL)-producing escherichia coli survey in wild seabirds at a pristine atoll in the southern Atlantic ocean, Brazil: first report of the O25b-ST131 clone harboring blaCTX-M-8 . Sci. Total Environ. 806 (Pt 2), 150539. doi: 10.1016/j.scitotenv.2021.150539 PubMed DOI

Falagas M. E., Athanasaki F., Voulgaris G. L., Triarides N. A., Vardakas K. Z. (2019). Resistance to fosfomycin: mechanisms, frequency and clinical consequences. Int. J. Antimicrob. Agents. 53 (1), 22–28. doi: 10.1016/j.ijantimicag.2018.09.013 PubMed DOI

Falagas M. E., Giannopoulou K. P., Kokolakis G. N., Rafailidis P. I. (2008). Fosfomycin: use beyond urinary tract and gastrointestinal infections. Clin. Infect. Dis. 46 (7), 1069–1077. doi: 10.1086/527442 PubMed DOI

Falagas M. E., Vouloumanou E. K., Samonis G., Vardakas K. Z. (2016). Fosfomycin. Clin. Microbiol. Rev. 29 (2), 321–347. doi: 10.1128/CMR.00068-15 PubMed DOI PMC

Feng J., Qiu Y., Yin Z., Chen W., Yang H., Yang W., et al. . (2015). Coexistence of a novel KPC-2-encoding MDR plasmid and an NDM-1-encoding pNDM-HN380-like plasmid in a clinical isolate of citrobacter freundii. J. Antimicrob. Chemother. 70 (11), 2987–2991. doi: 10.1093/jac/dkv232 PubMed DOI

Fernandes M. R., Sellera F. P., Moura Q., Souza T. A., Lincopan N. (2018). Draft genome sequence of a CTX-M-8, CTX-M-55 and FosA3 co-producing escherichia coli ST117/B2 isolated from an asymptomatic carrier. J. Glob Antimicrob. Resist. 12, 183–184. doi: 10.1016/j.jgar.2018.01.015 PubMed DOI

Forde B. M., Roberts L. W., Phan M. D., Peters K. M., Fleming B. A., Russell C. W., et al. . (2019). Population dynamics of an escherichia coli ST131 lineage during recurrent urinary tract infection. Nat. Commun. 10 (1), 3643. doi: 10.1038/s41467-019-11571-5 PubMed DOI PMC

Freitag C., Michael G. B., Li J., Kadlec K., Wang Y., Hassel M., et al. . (2018). Occurrence and characterisation of ESBL-encoding plasmids among escherichia coli isolates from fresh vegetables. Vet. Microbiol. 219, 63–69. doi: 10.1016/j.vetmic.2018.03.028 PubMed DOI

Friedrich M. J., Kadner R. J. (1987). Nucleotide sequence of the uhp region of escherichia coli. J. Bacteriol. 169 (8), 3556–3563. doi: 10.1128/jb.169.8.3556-3563.1987 PubMed DOI PMC

Galindo-Méndez M., Navarrete-Salazar H., Baltazar-Jiménez F., Muñoz-de la Paz E., Sánchez-Mawcinitt M. F., Gómez-Pardo A., et al. . (2022). Emergence of fosfomycin resistance by plasmid-mediated fos genes in uropathogenic ESBL-producing e. coli isolates in Mexico. Antibiotics (Basel). 11 (10), 1383. doi: 10.3390/antibiotics11101383 PubMed DOI PMC

Garcia-Fulgueiras V., Caiata L., Bado I., Giachetto G., Robino L. (2022). Antibiotic susceptibility and fosfomycin resistance characterization in a cohort of children older than 6 years of age with urinary tract infection. Rev. Argent Microbiol. 54 (2), 120–124. doi: 10.1016/j.ram.2021.04.002 PubMed DOI

García-Lobo J. M., Ortiz J. M. (1982). Tn292l, a transposon encoding fosfomycin resistance. J. Bacteriol. 151 (1), 477–479. doi: 10.1128/jb.151.1.477-479.1982 PubMed DOI PMC

Giacobbe D. R., Del Bono V., Coppo E., Marchese A., Viscoli C. (2015). Emergence of a KPC-3-Producing escherichia coli ST69 as a cause of bloodstream infections in Italy. Microb. Drug Resist. 21 (3), 342–344. doi: 10.1089/mdr.2014.0230 PubMed DOI

Gou J. J., Liu N., Guo L. H., Xu H., Lv T., Yu X., et al. . (2020). Carbapenem-resistant Enterobacter hormaechei ST1103 with IMP-26 carbapenemase and ESBL gene bla SHV-178 . Infect. Drug Resist. 13, 597–605. doi: 10.2147/IDR.S232514 PubMed DOI PMC

Güneri CÖ, Stingl K., Grobbel M., Hammerl J. A., Kürekci C. (2022). Different fosA genes were found on mobile genetic elements in escherichia coli from wastewaters of hospitals and municipals in Turkey. Sci. Total Environ. 824, 153928. doi: 10.1016/j.scitotenv.2022.153928 PubMed DOI

Guo Q., Tomich A. D., McElheny C. L., Cooper V. S., Stoesser N., Wang M., et al. . (2016). Glutathione-s-transferase FosA6 of klebsiella pneumoniae origin conferring fosfomycin resistance in ESBL-producing escherichia coli. J. Antimicrob. Chemother. 71 (9), 2460–2465. doi: 10.1093/jac/dkw177 PubMed DOI PMC

Hall J. A., Maloney P. C. (2005). Altered oxyanion selectivity in mutants of UhpT, the pi-linked sugar phosphate carrier of escherichia coli. J. Biol. Chem. 280 (5), 3376–3381. doi: 10.1074/jbc.M409965200 PubMed DOI

Hameed M. F., Chen Y., Bilal H., Khan S., Ge H., Xiaofang C., et al. . (2022). The Co-occurrence of mcr-3 and fosA3 in IncP plasmid in ST131 escherichia coli: a novel case. J. Infect. Dev. Ctries. 16 (4), 622–629. doi: 10.3855/jidc.15943 PubMed DOI

Hammad A. M., Hoffmann M., Gonzalez-Escalona N., Abbas N. H., Yao K., Koenig S., et al. . (2019). Genomic features of colistin resistant escherichia coli ST69 strain harboring mcr-1 on IncHI2 plasmid from raw milk cheese in Egypt. Infect. Genet. Evol. 73, 126–131. doi: 10.1016/j.meegid.2019.04.021 PubMed DOI

Hao Y., Zhao X., Zhang C., Bai Y., Song Z., Lu X., et al. . (2021). Clonal dissemination of clinical carbapenem-resistant Klebsiella pneumoniae isolates carrying fosA3 and bla KPC-2 coharboring plasmids in Shandong, China. Front. Microbiol. 12. doi: 10.3389/fmicb.2021.771170 PubMed DOI PMC

Harmer C. J., Hall R. M. (2016). IS26-mediated formation of transposons carrying antibiotic resistance genes. mSphere. 1 (2), e00038–e00016. doi: 10.1128/mSphere.00038-16 PubMed DOI PMC

He S., Hickman A. B., Varani A. M., Siguier P., Chandler M., Dekker J. P., et al. . (2015). Insertion sequence IS26 reorganizes plasmids in clinically isolated multidrug-resistant bacteria by replicative transposition. mBio. 6 (3), e00762. doi: 10.1128/mBio.00762-15 PubMed DOI PMC

He D., Liu L., Guo B., Wu S., Chen X., Wang J., et al. . (2017). Chromosomal location of the fosA3 and blaCTX-m genes in Proteus mirabilis and clonal spread of escherichia coli ST117 carrying fosA3-positive IncHI2/ST3 or F2:A-:B- plasmids in a chicken farm. Int. J. Antimicrob. Agents. 49 (4), 443–448. doi: 10.1016/j.ijantimicag.2016.12.009 PubMed DOI

Hirschl A., Stanek G., Rotter M. (1980). Wirkungssteigerung von fosfomycin durch zusatz von glukose-6-Phosphat bei intraperitoneal infizierten mäusen [Improvement of the therapeutic efficacy of fosfomycin by addition of glucose-6-phosphate in the treatment of intraperitoneally infected mice (author's transl)]. Zentralbl Bakteriol A. 246 (4), 562–566. doi: 10.1016/S0172-5599(80)80090-3 PubMed DOI

Ho P. L., Chan J., Lo W. U., Law P. Y., Li Z., Lai E. L., et al. . (2013). Dissemination of plasmid-mediated fosfomycin resistance fosA3 among multidrug-resistant escherichia coli from livestock and other animals. J. Appl. Microbiol. 114 (3), 695–702. doi: 10.1111/jam.12099 PubMed DOI

Hoang H. T. T., Higashi A., Yamaguchi T., Kawahara R., Calvopina M., Bastidas-Caldés A., et al. . (2022). Fusion plasmid carrying the colistin resistance gene mcr of escherichia coli isolated from healthy residents. J. Glob Antimicrob. Resist., 30, 152–154. doi: 10.1016/j.jgar.2022.06.007 PubMed DOI

Horii T., Kimura T., Sato K., Shibayama K., Ohta M. (1999). Emergence of fosfomycin-resistant isolates of shiga-like toxin-producing escherichia coli O26. Antimicrob. Agents Chemother. 43 (4), 789–793. doi: 10.1128/AAC.43.4.789 PubMed DOI PMC

Hou J., Huang X., Deng Y., He L., Yang T., Zeng Z., et al. . (2012). Dissemination of the fosfomycin resistance gene fosA3 with CTX-m β-lactamase genes and rmtB carried on IncFII plasmids among escherichia coli isolates from pets in China. Antimicrob. Agents Chemother. 56 (4), 2135–2138. doi: 10.1128/AAC.05104-11 PubMed DOI PMC

Hua X., Zhang L., Moran R. A., Xu Q., Sun L., van Schaik W., et al. . (2020). Cointegration as a mechanism for the evolution of a KPC-producing multidrug resistance plasmid in Proteus mirabilis . Emerg. Microbes Infect. 9 (1), 1206–1218. doi: 10.1080/22221751.2020.1773322 PubMed DOI PMC

Huang L., Cao M., Hu Y., Zhang R., Xiao Y., Chen G. (2021). Prevalence and mechanisms of fosfomycin resistance among KPC-producing klebsiella pneumoniae clinical isolates in China. Int. J. Antimicrob. Agents 57 (1), 106226. doi: 10.1016/j.ijantimicag.2020.106226 PubMed DOI

Huang Y., Lin Q., Zhou Q., Lv L., Wan M., Gao X., et al. . (2020). Identification of fosA10, a novel plasmid-mediated fosfomycin resistance gene of Klebsiella pneumoniae origin, in Escherichia coli . Infect. Drug Resist. 13, 1273–1279. doi: 10.2147/IDR.S251360 PubMed DOI PMC

Ito R., Mustapha M. M., Tomich A. D., Callaghan J. D., McElheny C. L., Mettus R. T., et al. . (2017). Widespread fosfomycin resistance in gram-negative bacteria attributable to the chromosomal fosA gene. mBio. 8 (4), e00749–e00717. doi: 10.1128/mBio.00749-17 PubMed DOI PMC

Jafari A., Falahatkar S., Delpasand K., Sabati H., Sedigh Ebrahim-Saraie H. (2020). Emergence of Escherichia coli ST131 causing urinary tract infection in Western Asia: a systematic review and meta-analysis. Microb. Drug Resist. 26 (11), 1357–1364. doi: 10.1089/mdr.2019.0312 PubMed DOI

Jiang W., Men S., Kong L., Ma S., Yang Y., Wang Y., et al. . (2017). Prevalence of plasmid-mediated fosfomycin resistance gene fosA3 among CTX-M-Producing escherichia coli isolates from chickens in China. Foodborne Pathog. Dis. 14 (4), 210–218. doi: 10.1089/fpd.2016.2230 PubMed DOI

Jovčić B., Novović K., Filipić B., Velhner M., Todorović D., Matović K., et al. . (2020). Genomic characteristics of colistin-resistant Salmonellaenterica subsp. enterica serovar infantis from poultry farms in the republic of Serbia. Antibiotics (Basel). 9 (12), 886. doi: 10.3390/antibiotics9120886 PubMed DOI PMC

Kadner R. J., Shattuck-Eidens D. M. (1983). Genetic control of the hexose phosphate transport system of escherichia coli: mapping of deletion and insertion mutations in the uhp region. J. Bacteriol. 155 (3), 1052–1061. doi: 10.1128/jb.155.3.1052-1061.1983 PubMed DOI PMC

Kahan F. M., Kahan J. S., Cassidy P. J., Kropp H. (1974). The mechanism of action of fosfomycin (phosphonomycin). Ann. N Y Acad. Sci. 235 (0), 364–386. doi: 10.1111/j.1749-6632.1974.tb43277.x PubMed DOI

Kansak N., Arıcı N., Adaleti R., Nakipoglu Y., Aksaray S. (2021). Rapid detection of fosfomycin resistance in escherichia coli and klebsiella spp. strains isolated from urinary tract infections. J. Microbiol. Methods 188, 106296. doi: 10.1016/j.mimet.2021.106296 PubMed DOI

Kieffer N., Poirel L., Descombes M. C., Nordmann P. (2020). Characterization of FosL1, a plasmid-encoded fosfomycin resistance protein identified in escherichia coli. Antimicrob. Agents Chemother. 64 (4), e02042–e02019. doi: 10.1128/AAC.02042-19 PubMed DOI PMC

Kim D. H., Lees W. J., Kempsell K. E., Lane W. S., Duncan K., Walsh C. T. (1996). Characterization of a Cys115 to asp substitution in the escherichia coli cell wall biosynthetic enzyme UDP-GlcNAc enolpyruvyl transferase (MurA) that confers resistance to inactivation by the antibiotic fosfomycin. Biochemistry 35 (15), 4923–4928. doi: 10.1021/bi952937w PubMed DOI

Law C. J., Enkavi G., Wang D. N., Tajkhorshid E. (2009). Structural basis of substrate selectivity in the glycerol-3-phosphate: phosphate antiporter GlpT. Biophys. J. 97 (5), 1346–1353. doi: 10.1016/j.bpj.2009.06.026 PubMed DOI PMC

Lee S. Y., Park Y. J., Yu J. K., Jung S., Kim Y., Jeong S. H., et al. . (2012). Prevalence of acquired fosfomycin resistance among extended-spectrum β-lactamase-producing escherichia coli and klebsiella pneumoniae clinical isolates in Korea and IS26-composite transposon surrounding fosA3. J. Antimicrob. Chemother. 67 (12), 2843–2847. doi: 10.1093/jac/dks319 PubMed DOI

Lei C. W., Chen Y. P., Kang Z. Z., Kong L. H., Wang H. N. (2018). Characterization of a novel SXT/R391 integrative and conjugative element carrying cfr, bla CTX-M-65, fosA3, and aac(6')-ib-cr in Proteus mirabilis. Antimicrob. Agents Chemother. 62 (9), e00849–e00818. doi: 10.1128/AAC.00849-18 PubMed DOI PMC

Lei C. W., Yao T. G., Yan J., Li B. Y., Wang X. C., Zhang Y., et al. . (2020). Identification of Proteus genomic island 2 variants in two clonal Proteus mirabilis isolates with coexistence of a novel genomic resistance island PmGRI1. J. Antimicrob. Chemother. 75 (9), 2503–2507. doi: 10.1093/jac/dkaa215 PubMed DOI

Lemieux M. J., Huang Y., Wang D. N. (2004). The structural basis of substrate translocation by the escherichia coli glycerol-3-phosphate transporter: a member of the major facilitator superfamily. Curr. Opin. Struct. Biol. 14 (4), 405–412. doi: 10.1016/j.sbi.2004.06.003 PubMed DOI

Li Y., Zheng B., Li Y., Zhu S., Xue F., Liu J. (2015). Antimicrobial susceptibility and molecular mechanisms of fosfomycin resistance in clinical escherichia coli isolates in mainland China. PloS One 10 (8), e0135269. doi: 10.1371/journal.pone.0135269 PubMed DOI PMC

Lin D., Chen S. (2015). First detection of conjugative plasmid-borne fosfomycin resistance gene fosA3 in salmonella isolates of food origin. Antimicrob. Agents Chemother. 59 (2), 1381–1383. doi: 10.1128/AAC.04750-14 PubMed DOI PMC

Liu B. T., Song F. J., Zou M., Zhang Q. D., Shan H. (2017). High incidence of escherichia coli strains coharboring mcr-1 and bla NDM from chickens. Antimicrob. Agents Chemother. 61 (3), e02347–e02316. doi: 10.1128/AAC.02347-16 PubMed DOI PMC

Liu F., Tian A., Wang J., Zhu Y., Xie Z., Zhang R., et al. . (2022). Occurrence and molecular epidemiology of fosA3-bearing escherichia coli from ducks in Shandong province of China. Poult Sci. 101 (3), 101620. doi: 10.1016/j.psj.2021.101620 PubMed DOI PMC

Loras C., González-Prieto A., Pérez-Vázquez M., Bautista V., Ávila A., Campoy P. S., et al. . (2021). Prevalence, detection and characterisation of fosfomycin-resistant escherichia coli strains carrying fosA genes in community of Madrid, Spain. J. Glob Antimicrob. Resist. 25, 137–141. doi: 10.1016/j.jgar.2021.02.032 PubMed DOI

Lu P. L., Hsieh Y. J., Lin J. E., Huang J. W., Yang T. Y., Lin L., et al. . (2016). Characterisation of fosfomycin resistance mechanisms and molecular epidemiology in extended-spectrum β-lactamase-producing klebsiella pneumoniae isolates. Int. J. Antimicrob. Agents. 48 (5), 564–568. doi: 10.1016/j.ijantimicag.2016.08.013 PubMed DOI

Lu J., Zhao K., Xie H., Li R., Zhou M. (2021). Identification and characterization of a novel SXT/R391 integrative and conjugative element in a Proteus mirabilis food isolate. Foodborne Pathog. Dis. 18 (10), 727–732. doi: 10.1089/fpd.2020.2886 PubMed DOI

Lucas A. E., Ito R., Mustapha M. M., McElheny C. L., Mettus R. T., Bowler S. L., et al. . (2017). Frequency and mechanisms of spontaneous fosfomycin nonsusceptibility observed upon disk diffusion testing of escherichia coli. J. Clin. Microbiol. 56 (1), e01368–e01317. doi: 10.1128/JCM.01368-17 PubMed DOI PMC

Lupo A., Saras E., Madec J. Y., Haenni M. (2018). Emergence of blaCTX-M-55 associated with fosA, rmtB and mcr gene variants in escherichia coli from various animal species in France. J. Antimicrob. Chemother. 73 (4), 867–872. doi: 10.1093/jac/dkx489 PubMed DOI

Lv L., Huang X., Wang J., Huang Y., Gao X., Liu Y., et al. . (2020). Multiple plasmid vectors mediate the spread of fosA3 in extended-Spectrum-β-Lactamase-Producing Enterobacterales isolates from retail vegetables in China. mSphere. 5 (4), e00507–e00520. doi: 10.1128/mSphere.00507-20 PubMed DOI PMC

Ma W. Q., Han Y. Y., Zhou L., Peng W. Q., Mao L. Y., Yang X., et al. . (2022). Contamination of Proteus mirabilis harbouring various clinically important antimicrobial resistance genes in retail meat and aquatic products from food markets in China. Front. Microbiol. 13. doi: 10.3389/fmicb.2022.1086800 PubMed DOI PMC

Ma Y., Xu X., Guo Q., Wang P., Wang W., Wang M. (2015). Characterization of fosA5, a new plasmid-mediated fosfomycin resistance gene in escherichia coli. Lett. Appl. Microbiol. 60 (3), 259–264. doi: 10.1111/lam.12366 PubMed DOI

Marquardt J. L., Siegele D. A., Kolter R., Walsh C. T. (1992). Cloning and sequencing of escherichia coli murZ and purification of its product, a UDP-n-acetylglucosamine enolpyruvyl transferase. J. Bacteriol. 174 (17), 5748–5752. doi: 10.1128/jb.174.17.5748-5752.1992 PubMed DOI PMC

Mattioni Marchetti V., Kraftova L., Finianos M., Sourenian T., Hrabak J., Bitar I. (2023). Polyclonal spread of fosfomycin resistance among carbapenemase-producing members of the Enterobacterales in the Czech republic. Microbiol. Spectr. 26, e0009523. doi: 10.1128/spectrum.00095-23 PubMed DOI PMC

Mazé A., Glatter T., Bumann D. (2014). The central metabolism regulator EIIAGlc switches salmonella from growth arrest to acute virulence through activation of virulence factor secretion. Cell Rep. 7 (5), 1426–1433. doi: 10.1016/j.celrep.2014.04.022 PubMed DOI

Mendes A. C., Rodrigues C., Pires J., Amorim J., Ramos M. H., Novais Â, et al. . (2016). Importation of fosfomycin resistance fosA3 gene to Europe. Emerg. Infect. Dis. 22 (2), 346–348. doi: 10.3201/eid2202.151301 PubMed DOI PMC

Mendoza C., Garcia J. M., Llaneza J., Mendez F. J., Hardisson C., Ortiz J. M. (1980). Plasmid-determined resistance to fosfomycin in serratia marcescens. Antimicrob. Agents Chemother. 18 (2), 215–219. doi: 10.1128/AAC.18.2.215 PubMed DOI PMC

Michalopoulos A. S., Livaditis I. G., Gougoutas V. (2011). The revival of fosfomycin. Int. J. Infect. Dis. 15 (11), e732–e739. doi: 10.1016/j.ijid.2011.07.007 PubMed DOI

Michalopoulos A., Virtzili S., Rafailidis P., Chalevelakis G., Damala M., Falagas M. E. (2010). Intravenous fosfomycin for the treatment of nosocomial infections caused by carbapenem-resistant klebsiella pneumoniae in critically ill patients: a prospective evaluation. Clin. Microbiol. Infect. 16 (2), 184–186. doi: 10.1111/j.1469-0691.2009.02921.x PubMed DOI

Milner K. A., Bay D. C., Alexander D., Walkty A., Karlowsky J. A., Mulvey M. R., et al. . (2020). Identification and characterization of a novel FosA7 member from fosfomycin-resistant escherichia coli clinical isolates from Canadian hospitals. Antimicrob. Agents Chemother. 65 (1), e00865–e00820. doi: 10.1128/AAC.00865-20 PubMed DOI PMC

Mosime L. B., Newton-Foot M., Nel P. (2022). Fosfomycin resistance in community-acquired urinary pathogens from Western cape, south Africa. S Afr J. Infect. Dis. 37 (1), 321. doi: 10.4102/sajid.v37i1.321 PubMed DOI PMC

Mowlaboccus S., Daley D., Pang S., Gottlieb T., Merlino J., Nimmo G. R., et al. . (2020). Identification and characterisation of fosfomycin resistance in escherichia coli urinary tract infection isolates from Australia. Int. J. Antimicrob. Agents. 56 (4), 106121. doi: 10.1016/j.ijantimicag.2020.106121 PubMed DOI

Mueller L., Cimen C., Poirel L., Descombes M. C., Nordmann P. (2019). Prevalence of fosfomycin resistance among ESBL-producing escherichia coli isolates in the community, Switzerland. Eur. J. Clin. Microbiol. Infect. Dis. 38 (5), 945–949. doi: 10.1007/s10096-019-03531-0 PubMed DOI

Muthuirulandi Sethuvel D. P., Anandan S., Devanga Ragupathi N. K., Gajendiran R., Kuroda M., Shibayama K., et al. . (2019). IncFII plasmid carrying antimicrobial resistance genes in shigella flexneri: vehicle for dissemination. J. Glob Antimicrob. Resist. 16, 215–219. doi: 10.1016/j.jgar.2018.10.014 PubMed DOI

Nakamura G., Wachino J., Sato N., Kimura K., Yamada K., Jin W., et al. . (2014). Practical agar-based disk potentiation test for detection of fosfomycin-nonsusceptible escherichia coli clinical isolates producing glutathione s-transferases. J. Clin. Microbiol. 52 (9), 3175–3179. doi: 10.1128/JCM.01094-14 PubMed DOI PMC

Nilsson A. I., Berg O. G., Aspevall O., Kahlmeter G., Andersson D. I. (2003). Biological costs and mechanisms of fosfomycin resistance in escherichia coli. Antimicrob. Agents Chemother. 47 (9), 2850–2858. doi: 10.1128/AAC.47.9.2850-2858.2003 PubMed DOI PMC

Nishida S., Matsunaga N., Kamimura Y., Ishigaki S., Furukawa T., Ono Y. (2020). Emergence of Enterobacter cloacae complex Co-producing IMP-10 and CTX-m, and Klebsiella pneumoniae producing VIM-1 in clinical isolates in Japan. Microorganisms. 8 (11), 1816. doi: 10.3390/microorganisms8111816 PubMed DOI PMC

Nordmann P., Poirel L., Mueller L. (2019). Rapid detection of fosfomycin resistance in escherichia coli. J. Clin. Microbiol. 57 (1), e01531–e01518. doi: 10.1128/JCM.01531-18 PubMed DOI PMC

Nordmann P., Sadek M., Ortiz de la Rosa J. M., Pfister S., Fournier C., Poirel L. (2022). Selective culture medium for screening of fosfomycin resistance in Enterobacterales . J. Clin. Microbiol. 60 (1), e0206321. doi: 10.1128/JCM.02063-21 PubMed DOI PMC

Norizuki C., Kawamura K., Wachino J. I., Suzuki M., Nagano N., Kondo T., et al. . (2018). Detection of escherichia coli producing CTX-M-1-Group extended-spectrum β-lactamases from pigs in aichi prefecture, Japan, between 2015 and 2016. Jpn J. Infect. Dis. 71 (1), 33–38. doi: 10.7883/yoken.JJID.2017.206 PubMed DOI

Ohkoshi Y., Sato T., Suzuki Y., Yamamoto S., Shiraishi T., Ogasawara N., et al. . (2017). Mechanism of reduced susceptibility to fosfomycin in Escherichia coli clinical isolates. BioMed. Res. Int. 2017, 5470241. doi: 10.1155/2017/5470241 PubMed DOI PMC

Ortiz de la Rosa J. M., Nordmann P., Zong Z., Poirel L. (2022). Aliidiomarina shirensis as possible source of the integron- and plasmid-mediated fosfomycin resistance gene fosC2 . Antimicrob. Agents Chemother. 66 (3), e0222721. doi: 10.1128/aac.02227-21 PubMed DOI PMC

Ortiz-Padilla M., Portillo-Calderón I., Velázquez-Escudero A., Rodríguez-Baño J., Pascual Á, Rodríguez-Martínez J. M., et al. . (2022). Effect of glycerol on fosfomycin activity against escherichia coli. Antibiotics (Basel) 11 (11), 1612. doi: 10.3390/antibiotics11111612 PubMed DOI PMC

Pan Y., Hu B., Bai X., Yang X., Cao L., Liu Q., et al. . (2021). Antimicrobial resistance of non-O157 shiga toxin-producing Escherichia coli isolated from humans and domestic animals. Antibiotics (Basel). 10 (1), 74. doi: 10.3390/antibiotics10010074 PubMed DOI PMC

Partridge S. R., Kwong S. M., Firth N., Jensen S. O. (2018). Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 31 (4), e00088–e00017. doi: 10.1128/CMR.00088-17 PubMed DOI PMC

Peng Z., Hu Z., Li Z., Li X., Jia C., Zhang X., et al. . (2019). Characteristics of a colistin-resistant Escherichia coli ST695 harboring the chromosomally-encoded mcr-1 gene. Microorganisms. 7 (11), 558. doi: 10.3390/microorganisms7110558 PubMed DOI PMC

Pérez D. S., Tapia M. O., Soraci A. L. (2014). Fosfomycin: uses and potentialities in veterinary medicine. Open Vet. J. 4 (1), 26–43. PubMed PMC

Poirel L., Vuillemin X., Kieffer N., Mueller L., Descombes M. C., Nordmann P. (2019). Identification of FosA8, a plasmid-encoded fosfomycin resistance determinant from escherichia coli, and its origin in leclercia adecarboxylata. Antimicrob. Agents Chemother. 63 (11), e01403–e01419. doi: 10.1128/AAC.01403-19 PubMed DOI PMC

Postma P. W., Lengeler J. W., Jacobson G. R. (1993). Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol. Rev. 57 (3), 543–594. doi: 10.1128/mr.57.3.543-594.1993 PubMed DOI PMC

Prestinaci F., Pezzotti P., Pantosti A. (2015). Antimicrobial resistance: a global multifaceted phenomenon. Pathog. Glob Health 109 (7), 309–318. doi: 10.1179/2047773215Y.0000000030 PubMed DOI PMC

Putensen C., Ellger B., Sakka S. G., Weyland A., Schmidt K., Zoller M., et al. . (2019). Current clinical use of intravenous fosfomycin in ICU patients in two European countries. Infection. 47 (5), 827–836. doi: 10.1007/s15010-019-01323-4 PubMed DOI

Ramadan H., Soliman A. M., Hiott L. M., Elbediwi M., Woodley T. A., Chattaway M. A., et al. . (2021). Emergence of multidrug-resistant Escherichia coli producing CTX-m, MCR-1, and FosA in retail food from Egypt. Front. Cell Infect. Microbiol. 11. doi: 10.3389/fcimb.2021.681588 PubMed DOI PMC

Rehman M. A., Yin X., Persaud-Lachhman M. G., Diarra M. S. (2017). First detection of a fosfomycin resistance gene, fosA7, in salmonella enterica serovar Heidelberg isolated from broiler chickens. Antimicrob. Agents Chemother. 61 (8), e00410–e00417. doi: 10.1128/AAC.00410-17 PubMed DOI PMC

Rigsby R. E., Rife C. L., Fillgrove K. L., Newcomer M. E., Armstrong R. N. (2004). Phosphonoformate: a minimal transition state analogue inhibitor of the fosfomycin resistance protein, FosA. Biochemistry 43 (43), 13666–13673. doi: 10.1021/bi048767h PubMed DOI

Rodriguez M. M., Ghiglione B., Power P., Naas T., Gutkind G. (2018). Proposing kluyvera georgiana as the origin of the plasmid-mediated resistance gene fosA4. Antimicrob. Agents Chemother. 62 (8), e00710–e00718. doi: 10.1128/AAC.00710-18 PubMed DOI PMC

Sadek M., Ortiz de la Rosa J. M., Ramadan M., Nordmann P., Poirel L. (2022). Molecular characterization of extended-spectrum ß-lactamase producers, carbapenemase producers, polymyxin-resistant, and fosfomycin-resistant enterobacterales among pigs from Egypt. J. Glob Antimicrob. Resist., 30, 81–87. doi: 10.1016/j.jgar.2022.05.022 PubMed DOI

Saffen D. W., Presper K. A., Doering T. L., Roseman S. (1987). Sugar transport by the bacterial phosphotransferase system. molecular cloning and structural analysis of the escherichia coli ptsH, ptsI, and crr genes. J. Biol. Chem. 262 (33), 16241–16253. PubMed

Sato N., Kawamura K., Nakane K., Wachino J., Arakawa Y. (2013). First detection of fosfomycin resistance gene fosA3 in CTX-m-producing escherichia coli isolates from healthy individuals in Japan. Microb. Drug Resist. 19 (6), 477–482. doi: 10.1089/mdr.2013.0061 PubMed DOI

Schreiber A., Härter G., Schubert A., Bunjes D., Mertens T., Michel D. (2009). Antiviral treatment of cytomegalovirus infection and resistant strains. Expert Opin. Pharmacother. 10 (2), 191–209. doi: 10.1517/14656560802678138 PubMed DOI

Seoane A., Sangari F. J., Lobo J. M. (2010). Complete nucleotide sequence of the fosfomycin resistance transposon Tn2921. Int. J. Antimicrob. Agents. 35 (4), 413–414. doi: 10.1016/j.ijantimicag.2009.12.006 PubMed DOI

Seok H., Choi J. Y., Wi Y. M., Park D. W., Peck K. R., Ko K. S. (2020). Fosfomycin resistance in Escherichia coli isolates from south Korea and in vitro activity of fosfomycin alone and in combination with other antibiotics. Antibiotics (Basel). 9 (3), 112. doi: 10.3390/antibiotics9030112 PubMed DOI PMC

Shi L., Feng J., Zhan Z., Zhao Y., Zhou H., Mao H., et al. . (2018). Comparative analysis of bla KPC-2- and rmtB-carrying IncFII-family pKPC-LK30/pHN7A8 hybrid plasmids from Klebsiella pneumoniae CG258 strains disseminated among multiple Chinese hospitals. Infect. Drug Resist. 11, 1783–1793. doi: 10.2147/IDR.S171953 PubMed DOI PMC

Silver L. L. (2017). Fosfomycin: mechanism and resistance. Cold Spring Harb. Perspect. Med. 7 (2), a025262. doi: 10.1101/cshperspect.a025262 PubMed DOI PMC

Singkham-In U., Muhummudaree N., Chatsuwan T. (2020). fosA3 overexpression with transporter mutations mediates high-level of fosfomycin resistance and silence of fosA3 in fosfomycin-susceptible klebsiella pneumoniae producing carbapenemase clinical isolates. PloS One 15 (8), e0237474. doi: 10.1371/journal.pone.0237474 PubMed DOI PMC

Skarżyńska M., Zaja C. M., Bomba A., Bocian Ł, Kozdruń W., Polak M., et al. . (2021). Antimicrobial resistance glides in the sky-Free-Living birds as a reservoir of resistant Escherichia coli with zoonotic potential. Front. Microbiol. 12. doi: 10.3389/fmicb.2021.656223 PubMed DOI PMC

Skarzynski T., Mistry A., Wonacott A., Hutchinson S. E., Kelly V. A., Duncan K. (1996). Structure of UDP-n-acetylglucosamine enolpyruvyl transferase, an enzyme essential for the synthesis of bacterial peptidoglycan, complexed with substrate UDP-n-acetylglucosamine and the drug fosfomycin. Structure 4 (12), 1465–1474. doi: 10.1016/S0969-2126(96)00153-0 PubMed DOI

Soliman A. M., Ramadan H., Zarad H., Sugawara Y., Yu L., Sugai M., et al. . (2021). Coproduction of Tet(X7) conferring high-level tigecycline resistance, fosfomycin FosA4, and colistin mcr-1.1 in escherichia coli strains from chickens in Egypt. Antimicrob. Agents Chemother. 65 (6), e02084–e02020. doi: 10.1128/AAC.02084-20 PubMed DOI PMC

Song Z., Lei C. W., Zuo L., Li C., Wang Y. L., Tian Y. M., et al. . (2022). Whole genome sequence of Proteus mirabilis ChSC1905 strain harbouring a new SXT/R391-family ICE. J. Glob Antimicrob. Resist. 30, 279–281. doi: 10.1016/j.jgar.2022.07.004 PubMed DOI

Sorlozano-Puerto A., Lopez-Machado I., Albertuz-Crespo M., Martinez-Gonzalez L. J., Gutierrez-Fernandez J. (2020). Characterization of fosfomycin and nitrofurantoin resistance mechanisms in Escherichia coli isolated in clinical urine samples. Antibiotics (Basel). 9 (9), 534. doi: 10.3390/antibiotics9090534 PubMed DOI PMC

Sun H., Li S., Xie Z., Yang F., Sun Y., Zhu Y., et al. . (2012). A novel multidrug resistance plasmid isolated from an escherichia coli strain resistant to aminoglycosides. J. Antimicrob. Chemother. 67 (7), 1635–1638. doi: 10.1093/jac/dks107 PubMed DOI

Takahata S., Ida T., Hiraishi T., Sakakibara S., Maebashi K., Terada S., et al. . (2010). Molecular mechanisms of fosfomycin resistance in clinical isolates of escherichia coli. Int. J. Antimicrob. Agents 35 (4), 333–337. doi: 10.1016/j.ijantimicag.2009.11.011 PubMed DOI

Tang Y., Zhou Y., Meng C., Huang Y., Jiang X. (2020). Co-Occurrence of a novel VIM-1 and FosA3-encoding multidrug-resistant plasmid and a KPC-2-encoding pKP048-like plasmid in a clinical isolate of klebsiella pneumoniae sequence type 11. Infect. Genet. Evol. 85, 104479. doi: 10.1016/j.meegid.2020.104479 PubMed DOI

Taniguchi Y., Maeyama Y., Ohsaki Y., Hayashi W., Osaka S., Koide S., et al. . (2017). Co-Resistance to colistin and tigecycline by disrupting mgrB and ramR with IS insertions in a canine klebsiella pneumoniae ST37 isolate producing SHV-12, DHA-1 and FosA3. Int. J. Antimicrob. Agents. 50 (5), 697–698. doi: 10.1016/j.ijantimicag.2017.09.011 PubMed DOI

Ten Doesschate T., Abbott I. J., Willems R. J. L., Top J., Rogers M. R. C., Bonten M. M., et al. . (2019). In vivo acquisition of fosfomycin resistance in escherichia coli by fosA transmission from commensal flora. J. Antimicrob. Chemother. 74 (12), 3630–3632. doi: 10.1093/jac/dkz380 PubMed DOI PMC

Theuretzbacher U., Paul M. (2015). Revival of old antibiotics: structuring the re-development process to optimize usage. Clin. Microbiol. Infect. 21 (10), 878–880. doi: 10.1016/j.cmi.2015.06.019 PubMed DOI

Tian X., Zheng X., Sun Y., Fang R., Zhang S., Zhang X., et al. . (2020). Molecular mechanisms and epidemiology of carbapenem-resistant Escherichiacoli isolated from Chinese patients during 2002-2017. Infect. Drug Resist. 13, 501–512. doi: 10.2147/IDR.S232010 PubMed DOI PMC

Tseng S. P., Wang S. F., Kuo C. Y., Huang J. W., Hung W. C., Ke G. M., et al. . (2015). Characterization of fosfomycin resistant extended-spectrum β-Lactamase-Producing escherichia coli isolates from human and pig in Taiwan. PloS One 10 (8), e0135864. doi: 10.1371/journal.pone.0135864 PubMed DOI PMC

Tseng S. P., Wang S. F., Ma L., Wang T. Y., Yang T. Y., Siu L. K., et al. . (2017). The plasmid-mediated fosfomycin resistance determinants and synergy of fosfomycin and meropenem in carbapenem-resistant klebsiella pneumoniae isolates in Taiwan. J. Microbiol. Immunol. Infect. 50 (5), 653–661. doi: 10.1016/j.jmii.2017.03.003 PubMed DOI

Turcotte M. R., Smith J. T., Li J., Zhang X., Wolfe K. L., Gao F., et al. . (2022). Genome characteristics of clinical salmonella enterica population from a state public health laboratory, new Hampshire, USA, 2017-2020. BMC Genomics 23 (1), 537. doi: 10.1186/s12864-022-08769-1 PubMed DOI PMC

van den Bijllaardt W., Schijffelen M. J., Bosboom R. W., Cohen Stuart J., Diederen B., Kampinga G., et al. . (2018). Susceptibility of ESBL escherichia coli and klebsiella pneumoniae to fosfomycin in the Netherlands and comparison of several testing methods including etest, MIC test strip, Vitek2, phoenix and disc diffusion. J. Antimicrob. Chemother. 73 (9), 2380–2387. doi: 10.1093/jac/dky214 PubMed DOI

Västermark A., Saier M. H., Jr. (2014). The involvement of transport proteins in transcriptional and metabolic regulation. Curr. Opin. Microbiol. 18, 8–15. doi: 10.1016/j.mib.2014.01.002 PubMed DOI PMC

Vázquez X., Fernández J., Rodríguez-Lozano J., Calvo J., Rodicio R., Rodicio M. R. (2022). Genomic analysis of two MDR isolates of Salmonella enterica serovar infantis from a Spanish hospital bearing the bla CTX-M-65 gene with or without fosA3 in pESI-like plasmids. Antibiotics (Basel). 11 (6), 786. doi: 10.3390/antibiotics11060786 PubMed DOI PMC

Villa L., Guerra B., Schmoger S., Fischer J., Helmuth R., Zong Z., et al. . (2015). IncA/C plasmid carrying bla(NDM-1), bla(CMY-16), and fosA3 in a salmonella enterica serovar Corvallis strain isolated from a migratory wild bird in Germany. Antimicrob. Agents Chemother. 59 (10), 6597–6600. doi: 10.1128/AAC.00944-15 PubMed DOI PMC

Wachino J., Yamane K., Suzuki S., Kimura K., Arakawa Y. (2010). Prevalence of fosfomycin resistance among CTX-m-producing escherichia coli clinical isolates in Japan and identification of novel plasmid-mediated fosfomycin-modifying enzymes. Antimicrob. Agents Chemother. 54 (7), 3061–3064. doi: 10.1128/AAC.01834-09 PubMed DOI PMC

Wang Y. P., Chen Y. H., Hung I. C., Chu P. H., Chang Y. H., Lin Y. T., et al. . (2022). Transporter genes and fosA associated with fosfomycin resistance in carbapenem-resistant Klebsiella pneumoniae . Front. Microbiol. 13. doi: 10.3389/fmicb.2022.816806 PubMed DOI PMC

Wang X. M., Dong Z., Schwarz S., Zhu Y., Hua X., Zhang Y., et al. . (2017). Plasmids of diverse inc groups disseminate the fosfomycin resistance gene fosA3 among escherichia coli isolates from pigs, chickens, and dairy cows in northeast China. Antimicrob. Agents Chemother. 24 61 (9), e00859–e00817. doi: 10.1128/AAC.00859-17 PubMed DOI PMC

Wang D., Fang L. X., Jiang Y. W., Wu D. S., Jiang Q., Sun R. Y., et al. . (2022). Comparison of the prevalence and molecular characteristics of fosA3 and fosA7 among salmonella isolates from food animals in China. J. Antimicrob. Chemother. 77 (5), 1286–1295. doi: 10.1093/jac/dkac061 PubMed DOI

Wang Y., Lo W. U., Lai E. L., Chow K. H., Ho P. L. (2015). Complete sequence of the multidrug-resistant IncL/M plasmid pIMP-HB623 cocarrying bla IMP-34 and fosC2 in an enterobacter cloacae strain associated with medical travel to China. Antimicrob. Agents Chemother. 59 (9), 5854–5856. doi: 10.1128/AAC.00375-15 PubMed DOI PMC

Wang Z., Xu H., Tang Y., Li Q., Jiao X. (2020). A multidrug-resistant monophasic Salmonella typhimurium Co-harboring mcr-1, fosA3, bla CTX-M-14 in a transferable IncHI2 plasmid from a healthy catering worker in China. Infect. Drug Resist. 13, 3569–3574. doi: 10.2147/IDR.S272272 PubMed DOI PMC

Wang Q., Zhang P., Zhao D., Jiang Y., Zhao F., Wang Y., et al. . (2018). Emergence of tigecycline resistance in Escherichia coli co-producing MCR-1 and NDM-5 during tigecycline salvage treatment. Infect. Drug Resist. 11, 2241–2248. doi: 10.2147/IDR.S179618 PubMed DOI PMC

Wang S., Zhou K., Xiao S., Xie L., Gu F., Li X., et al. . (2019). A multidrug resistance plasmid pIMP26, carrying blaIMP-26, fosA5, blaDHA-1, and qnrB4 in enterobacter cloacae. Sci. Rep. 9 (1), 10212. doi: 10.1038/s41598-019-46777-6 PubMed DOI PMC

Wong M. H., Xie M., Xie L., Lin D., Li R., Zhou Y., et al. . (2016). Complete sequence of a F33:A-:B- conjugative plasmid carrying the oqxAB, fosA3, and bla CTX-M-55 elements from a foodborne escherichia coli strain. Front. Microbiol. 7. doi: 10.3389/fmicb.2016.01729 PubMed DOI PMC

Xiang D. R., Li J. J., Sheng Z. K., Yu H. Y., Deng M., Bi S., et al. . (2015). Complete sequence of a novel IncR-F33:A-:B- plasmid, pKP1034, harboring fosA3, blaKPC-2, blaCTX-M-65, blaSHV-12, and rmtB from an epidemic klebsiella pneumoniae sequence type 11 strain in China. Antimicrob. Agents Chemother. 60 (3), 1343–1348. doi: 10.1128/AAC.01488-15 PubMed DOI PMC

Xie M., Lin D., Chen K., Chan E. W., Yao W., Chen S. (2016). Molecular characterization of escherichia coli strains isolated from retail meat that harbor blaCTX-m and fosA3 genes. Antimicrob. Agents Chemother. 60 (4), 2450–2455. doi: 10.1128/AAC.03101-15 PubMed DOI PMC

Xu S., Fu Z., Zhou Y., Liu Y., Xu X., Wang M. (2017). Mutations of the transporter proteins GlpT and UhpT confer fosfomycin resistance in staphylococcus aureus. Front. Microbiol. 8. doi: 10.3389/fmicb.2017.00914 PubMed DOI PMC

Xu H., Miao V., Kwong W., Xia R., Davies J. (2011). Identification of a novel fosfomycin resistance gene (fosA2) in enterobacter cloacae from the salmon river, Canada. Lett. Appl. Microbiol. 52 (4), 427–429. doi: 10.1111/j.1472-765X.2011.03016.x PubMed DOI

Yang R. S., Feng Y., Lv X. Y., Duan J. H., Chen J., Fang L. X., et al. . (2016). Emergence of NDM-5- and MCR-1-Producing escherichia coli clones ST648 and ST156 from a single Muscovy duck (Cairina moschata). Antimicrob. Agents Chemother. 60 (11), 6899–6902. doi: 10.1128/AAC.01365-16 PubMed DOI PMC

Yang B., Larson T. J. (1998). Multiple promoters are responsible for transcription of the glpEGR operon of escherichia coli K-12. Biochim. Biophys. Acta 1396 (1), 114–126. doi: 10.1016/s0167-4781(97)00179-6 PubMed DOI

Yang Y., Sun H., Liu X., Wang M., Xue T., Sun B. (2016). Regulatory mechanism of the three-component system HptRSA in glucose-6-phosphate uptake in staphylococcus aureus. Med. Microbiol. Immunol. 205 (3), 241–253. doi: 10.1007/s00430-015-0446-6 PubMed DOI

Yunus F., Hussain A., Mirza I. A., Hanif F., Hussain W., Satti L., et al. . (2021). Diagnostic accuracy of rapid fosfomycin Np test for detection of fosfomycin resistance in escherichia coli in a tertiary care hospital in Pakistan. J. Ayub Med. Coll. Abbottabad 33 (4), 668–672. PubMed

Zhang L. J., Gu X. X., Zhang J., Yang L., Lu Y. W., Fang L. X., et al. . (2020). Characterization of a fosA3 carrying IncC-IncN plasmid from a multidrug-resistant ST17 Salmonella Indiana isolate. Front. Microbiol. 11. doi: 10.3389/fmicb.2020.01582 PubMed DOI PMC

Zhao W., Li W., Du X. D., Yao H. (2022). Hybrid IncFIA/FIB/FIC(FII) plasmid co-carrying blaNDM-5 and fosA3 from an escherichia coli ST117 strain of retail chicken. Int. J. Food Microbiol. 382, 109914. doi: 10.1016/j.ijfoodmicro.2022.109914 PubMed DOI

Zhao D., Zhou Z., Hua X., Zhang H., Quan J., Li X., et al. . (2018). Coexistence of mcr-1, blaKPC-2 and two copies of fosA3 in a clinical escherichia coli strain isolated from urine. Infect. Genet. Evol. 60, 77–79. doi: 10.1016/j.meegid.2018.02.025 PubMed DOI

Zhao J. Y., Zhu Y. Q., Li Y. N., Mu X. D., You L. P., Xu C., et al. . (2015). Coexistence of SFO-1 and NDM-1 β-lactamase genes and fosfomycin resistance gene fosA3 in an escherichia coli clinical isolate. FEMS Microbiol. Lett. 362 (1), 1–7. doi: 10.1093/femsle/fnu018 PubMed DOI

Zhou Y., Ai W., Cao Y., Guo Y., Wu X., Wang B., et al. . (2022). The Co-occurrence of NDM-5, MCR-1, and FosA3-encoding plasmids contributed to the generation of extensively drug-resistant klebsiella pneumoniae. Front. Microbiol. 12. doi: 10.3389/fmicb.2021.811263 PubMed DOI PMC

Zurfluh K., Treier A., Schmitt K., Stephan R. (2020). Mobile fosfomycin resistance genes in enterobacteriaceae-an increasing threat. Microbiologyopen. 9 (12), e1135. doi: 10.1002/mbo3.1135 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace