FosA3 emerging in clinical carbapenemase-producing C. freundii
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39247055
PubMed Central
PMC11378647
DOI
10.3389/fcimb.2024.1447933
Knihovny.cz E-zdroje
- Klíčová slova
- Citrobacter freundii, carbapenemases, fosA3 gene, fosfomycin, fosfomycin resistance,
- MeSH
- antibakteriální látky * farmakologie MeSH
- bakteriální proteiny * genetika metabolismus MeSH
- beta-laktamasy * genetika metabolismus MeSH
- Citrobacter freundii * genetika enzymologie účinky léků MeSH
- enterobakteriální infekce * mikrobiologie MeSH
- fosfomycin * farmakologie MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- mnohočetná bakteriální léková rezistence genetika MeSH
- plazmidy genetika MeSH
- sekvenování celého genomu MeSH
- transpozibilní elementy DNA MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Itálie epidemiologie MeSH
- Názvy látek
- antibakteriální látky * MeSH
- bakteriální proteiny * MeSH
- beta-laktamasy * MeSH
- carbapenemase MeSH Prohlížeč
- fosfomycin * MeSH
- transpozibilní elementy DNA MeSH
Fosfomycin (FOS) is an effective antibiotic against multidrug-resistant Enterobacterales, but its effectiveness is reducing. Little is known on the current prevalence of FosA enzymes in low-risk pathogens, such as Citrobacter freundii. The aim of the study was the molecular characterization of a carbapenemase- and FosA-producing C. freundii collected in Italy. AK867, collected in 2023, showed an XDR profile, retaining susceptibility only to colistin. AK867 showed a FOS MIC >128 mg/L by ADM. Based on WGS, AK867 belonged to ST116 and owned a wide resistome, including fosA3, blaKPC-2, and blaVIM-1. fosA3 was carried by a conjugative pKPC-CAV1312 plasmid of 320,480 bp, on a novel composite transposon (12,907 bp). FosA3 transposon shared similarities with other fosA3-harboring pKPC-CAV1312 plasmids among Citrobacter spp. We report the first case of FosA3 production in clinical carbapenemase-producing C. freundii ST116. The incidence of FosA3 enzymes is increasing among Enterobacterales, affecting even low-virulence pathogens, as C. freundii.
1 R C C S Policlinico S Matteo Pavia Italy
Biomedical Center Faculty of Medicine Charles University Pilsen Czechia
Clinical Microbiology Azienda Unità Sanitaria Locale Modena Modena Italy
Infectious Diseases Clinic Azienda Ospedaliera Universitaria Policlinico di Modena Modena Italy
Zobrazit více v PubMed
Antonello R. M., Principe L., Maraolo A. E., Viaggi V., Pol R., Fabbiani M., et al. . (2020). Fosfomycin as partner drug for systemic infection management. A systematic review of its synergistic properties from in vitro and in vivo studies. Antibiotics (Basel) 9, 500. doi: 10.3390/antibiotics9080500 PubMed DOI PMC
Aziz R. K., Bartels D., Best A. A., DeJongh M., Disz T., Edwards R. A., et al. . (2008). The RAST server: rapid annotations using subsystems technology. BMC Genomics 9, 75. doi: 10.1186/1471-2164-9-75 PubMed DOI PMC
Bakthavatchalam Y. D., Shankar A., Muthuirulandi Sethuvel D. P., Asokan K., Kanthan K., Veeraraghavan B. (2020). Synergistic activity of fosfomycin-meropenem and fosfomycin-colistin against carbapenem resistant Klebsiella pneumoniae: an in vitro evidence. Future Sci. OA 6, FSO461. doi: 10.2144/fsoa-2019-0074 PubMed DOI PMC
Bielen L., Likic R. (2019). Experience with fosfomycin in the treatment of complicated urinary tract infections caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae. Ther. Adv. Infect. Dis. 6, 2049936119858883. doi: 10.1177/2049936119858883 PubMed DOI PMC
Bielen L., Likić R., Erdeljić V., Mareković I., Firis N., Grgić-Medić M., et al. . (2018). Activity of fosfomycin against nosocomial multiresistant bacterial pathogens from Croatia: a multicentric study. Croat Med. J. 59, 56–64. doi: 10.3325/cmj.2018.59.56 PubMed DOI PMC
Bitar I., Caltagirone M., Villa L., Mattioni Marchetti V., Nucleo E., Sarti M., et al. . (2019). Interplay among IncA and blaKPC-carrying plasmids in Citrobacter freundii . Antimicrob. Agents Chemother. 63, e02609–e02618. doi: 10.1128/AAC.02609-18 PubMed DOI PMC
Carattoli A., Bertini A., Villa L., Falbo V., Hopkins K. L., Threlfall E. J. (2005). Identification of plasmids by PCR-based replicon typing. J. Microbiol. Methods 63, 219–228. doi: 10.1016/j.mimet.2005.03.018 PubMed DOI
Chen L., Ou B., Zhang M., Chou C. H., Chang S. K., Zhu G. (2021). Coexistence of fosfomycin resistance determinant fosA and fosA3 in Enterobacter cloacae isolated from pets with urinary tract infection in Taiwan. Microb. Drug Resist. 27, 415–423. doi: 10.1089/mdr.2020.0077 PubMed DOI
Chudejova K., Caltagirone M. S., Mattioni Marchetti V., Rezzani A., Navarra A., Bitar I. (2024). FosA8-producing E. coliST131: clinical cases in Italy, February 2023. Euro Surveill 29, 2400276. doi: 10.2807/1560-7917.ES.2024.29.21.2400276 PubMed DOI PMC
Chudejova K., Kraftova L., Mattioni Marchetti V., Hrabak J., Papagiannitsis C. C., Bitar I. (2021). Genetic plurality of OXA/NDM-encoding features characterized from Enterobacterales recovered from Czech hospitals. Front. Microbiol. 12. doi: 10.3389/fmicb.2021.641415 PubMed DOI PMC
Dijkmans A. C., Zacarías N. V. O., Burggraaf J., Mouton J. W., Wilms E. B., van Nieuwkoop C., et al. . (2017). Fosfomycin: pharmacological, clinical and future perspectives. Antibiotics 6, 24. doi: 10.3390/antibiotics6040024 PubMed DOI PMC
Edgell D. R. (2009). Selfish DNA: homing endonucleases find a home. Curr. Biol. 19, R115–R117. doi: 10.1016/j.cub.2008.12.019 PubMed DOI
Falagas M. E., Roussos N., Gkegkes I. D., Rafailidis P. I., Karageorgopoulos D. E. (2009). Fosfomycin for the treatment of infections caused by Gram-positive cocci with advanced antimicrobial drug resistance: a review of microbiological, animal and clinical studies. Expert Opin. Investig. Drugs 18, 921–944. doi: 10.1517/13543780902967624 PubMed DOI
Hameed M. F., Chen Y., Bilal H., Khan S., Ge H., Xiaofang C., et al. . (2022). The Co-occurrence of mcr-3 and fosA3 in IncP plasmid in ST131 Escherichia coli: a novel case. J. Infect. Dev. Ctries 16, 622–629. doi: 10.3855/jidc.15943 PubMed DOI
Hou J., Huang X., Deng Y., He L., Yang T., Zeng Z., et al. . (2012). Dissemination of the fosfomycin resistance gene fosA3 with CTX-M β-lactamase genes and rmtB carried on IncFII plasmids among Escherichia coli isolates from pets in China. Antimicrob. Agents Chemother. 56, 2135–2138. doi: 10.1128/AAC.05104-11 PubMed DOI PMC
Li Z., Lin Y., Lu L., Wang K., Yang L., Li P., et al. . (2020). Genetic characterisation of a complex class 1 integron in an NDM-1-producing Citrobacter freundii ST396 clinical strain isolated from a urine sample. J. Glob Antimicrob. Resist. 23, 64–66. doi: 10.1016/j.jgar.2020.08.002 PubMed DOI
Liu F., Tian A., Wang J., Zhu Y., Xie Z., Zhang R., et al. . (2022). Occurrence and molecular epidemiology of fosA3-bearing Escherichia coli from ducks in Shandong province of China. Poult Sci. 101, 101620. doi: 10.1016/j.psj.2021.101620 PubMed DOI PMC
Lv L., Huang X., Wang J., Huang Y., Gao X., Liu Y., et al. . (2020). Multiple plasmid vectors mediate the spread of fosA3 in extended-spectrum-β-lactamase-producing enterobacterales isolates from retail vegetables in China. mSphere 5, e00507-20. doi: 10.1128/mSphere.00507-20 PubMed DOI PMC
Mattioni Marchetti V., Hrabak J., Bitar I. (2023. a). Fosfomycin resistance mechanisms in Enterobacterales: an increasing threat. Front. Cell Infect. Microbiol. 13. doi: 10.3389/fcimb.2023.1178547 PubMed DOI PMC
Mattioni Marchetti V., Kraftova L., Finianos M., Sourenian T., Hrabak J., Bitar I. (2023. b). Polyclonal spread of fosfomycin resistance among carbapenemase-producing members of the enterobacterales in the Czech Republic. Microbiol. Spectr. 11, e0009523. doi: 10.1128/spectrum.00095-23 PubMed DOI PMC
Nakamura G., Wachino J., Sato N., Kimura K., Yamada K., Jin W., et al. . (2014). Practical agar-based disk potentiation test for detection of fosfomycin-nonsusceptible Escherichia coli clinical isolates producing glutathione S-transferases. J. Clin. Microbiol. 52, 3175–3179. doi: 10.1128/JCM.01094-14 PubMed DOI PMC
Nobrega D., Peirano G., Matsumura Y., Pitout J. D. D. (2023). Molecular epidemiology of global carbapenemase-producing citrobacter spp. (2015-2017). Microbiol. Spectr. 11, e0414422. doi: 10.1128/spectrum.04144-22 PubMed DOI PMC
Sato N., Kawamura K., Nakane K., Wachino J., Arakawa Y. (2013). First detection of fosfomycin resistance gene fosA3 in CTX-m-producing Escherichia coli isolates from healthy individuals in Japan. Microb. Drug Resist. 19, 477–482. doi: 10.1089/mdr.2013.0061 PubMed DOI
Shiju K. S., Pallam G., Mandal J., Jindal B., S K. (2020). Use of fosfomycin combination therapy to treat multidrug-resistant urinary tract infection among paediatric surgical patients - a tertiary care center experience. Access Microbiol. 2, acmi000163. doi: 10.1099/acmi.0.000163 PubMed DOI PMC
Singkham-In U., Muhummudaree N., Chatsuwan T. (2020). fosA3 overexpression with transporter mutations mediates high-level of fosfomycin resistance and silence of fosA3 in fosfomycin-susceptible Klebsiella pneumoniae producing carbapenemase clinical isolates. PLoS One 15, e0237474. doi: 10.1371/journal.pone.0237474 PubMed DOI PMC
Sullivan M. J., Petty N. K., Beatson S. A. (2011). Easyfig: a genome comparison visualizer. Bioinformatics 27, 1009–1010. doi: 10.1093/bioinformatics/btr039 PubMed DOI PMC
Tonkin-Hill G., Lees J. A., Bentley S. D., Frost S. D. W., Corander J. (2019). Fast hierarchical Bayesian analysis of population structure. Nucleic Acids Res. 47, 5539–5549. doi: 10.1093/nar/gkz361 PubMed DOI PMC
Treangen T. J., Ondov B. D., Koren S., Phillippy A. M. (2014). The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 15, 524. doi: 10.1186/s13059-014-0524-x PubMed DOI PMC
Wachino J., Yamane K., Suzuki S., Kimura K., Arakawa Y. (2010). Prevalence of fosfomycin resistance among CTX-m-producing Escherichia coli clinical isolates in Japan and identification of novel plasmid-mediated fosfomycin-modifying enzymes. Antimicrob. Agents Chemother. 54, 3061–3064. doi: 10.1128/AAC.01834-09 PubMed DOI PMC
Wang H., Min C., Li J., Yu T., Hu Y., Dou Q., et al. . (2021). Characterization of fosfomycin resistance and molecular epidemiology among carbapenem-resistant Klebsiella pneumoniae strains from two tertiary hospitals in China. BMC Microbiol. 21, 109. doi: 10.1186/s12866-021-02165-7 PubMed DOI PMC
Yao Y., Falgenhauer L., Falgenhauer J., Hauri A. M., Heinmuller P., Domann E., et al. . (2021). Carbapenem-resistant Citrobacter spp. as an emerging concern in the hospital-setting: results from a genome-based regional surveillance study. Front. Cell Infect. Microbiol., 11, 744431. doi: 10.3389/fcimb.2021.744431 PubMed DOI PMC
Zhang L. J., Gu X. X., Zhang J., Yang L., Lu Y. W., Fang L. X., et al. . (2020). Characterization of a fosA3 carrying IncC-IncN plasmid from a multidrug-resistant ST17 Salmonella Indiana isolate. Front. Microbiol. 11. doi: 10.3389/fmicb.2020.01582 PubMed DOI PMC
Zou M., Ma P. P., Liu W. S., Liang X., Li X. Y., Li Y. Z., et al. . (2021). Prevalence and antibiotic resistance characteristics of extraintestinal pathogenic Escherichia coli among healthy chickens from farms and live poultry markets in China. Animals 11, 1112. doi: 10.3390/ani11041112 PubMed DOI PMC